ON THE BOUNDEDNESS OF DISCRETE WOLFF POTENTIALS

CARME CASCANTE AND JOAQUIN M. ORTEGA

ABSTRACT. We obtain characterizations of the pairs of positive measures p
and v for which the discrete non-linear Wolff-type potential associated to u
sends LP(dv) into L9(du).

1. INTRODUCTION

The object of this paper is the study of LP — L? imbeddings of discrete Wolft’s
potentials assocciated to nonnegative Borel measures.

We recall that Wolff’s potentials were introduced originally in [HW] in relation
to the spectral synthesis problem for Sobolev spaces.

If p is a nonnegative Borel measure on R", 1 < s < 400 and o > 0, the Wolff
potential associated to p is defined by

W= [ (HEEDY

Let I,(7,y) = —L1:— be the Riesz kernel in R", 0 < a < n. If ;1 is a nonnegative

= el

Borel measure on R"™, let
dp(y n
Io(p)(2) :/ |x—g§|”)—a’ z € R™.

The nonlinear potential associated to p is defined by

Ve, p(1) () = Lo (Lo ()P ~dz)(2),

and the energy of a positive Borel measure p in R™ by
Ea,p(p) = ||Ia(ﬂ)||2p/ dz) Va, ph(z)dp(z),
( ) R»

1 1
where — + — = 1 and the last equality is an immediate consequence of Fubini’s the-
p p

orem. Since there exists a constant C' > 0 such that for any x € R", W,,, 1_(u)(z) <
CVa,p(p)(x), we have that [, W, 1 (p)(@)du(z) < C&, p(p). The converse is

the fundamental Wolff’s inequality (see [HW]), which gives that there exists a
constant C' > 0 such that
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Wolff’s potentials have applications to many areas of analysis. In the last years,
there have been sustantial advances in the solvability of quasilinear and Hessian
equations of Lane-Emden type which heavily relies on systematic use of Wolff’s
potentials, dyadic models and nonlinear trace inequalities (see [PhV], [KM], [L]
and references therein). If Q is a bounded domain in R™, n > 2, and w is a
nonnegative Borel locally finite measure on €2, it is studied in [PhV] the existence
problem for the quasilinear equation

—divA(z,Vu) =u!4w, «w>0 in Qu=0 on 099,
where p > 1, ¢ > p—1 and A(z,¢)-¢ > a|¢|?, |A(z, ()| < BI¢|P~1, for some o, 8 > 0.
This equation includes the model problem
—-Apu=u'4w, u>0 in Qu=0 on 09,

where Apu = div(|Vu|P~2Vu) is the p-Laplacian.
In [PhV] it has been obtained a criteria for solvability of quasilinear and Hessian
equations on the entire space R”, which in particular states:

Theorem 1.1 (Theorem 2.3 [PhV]). Let w be a nonnegative Borel locally finite
measure on R", 1 < p < n and ¢ > p— 1. Then there exists a nonnegative

A-superharmonic solution u € L}, (R™) to the equation

(1.1) —divA(z,Vu) =u! +ew, in R, iGIgn u(z) =0,

for some € > 0 if and only if there is a constant C > 0 such that
W, ﬁ(W (W) (xz) <CW, pfilw(x) < 400, a.e.

Moreover, there is a constant Cy such that if the above condition holds, with

C < Cy, then equation (1.1) has a solution u with € = 1 which satisfies the two-
sided pointwise estimate

%Wp, plj(w)(x) <u(z) <KW, p%l(w)(x), reR™

One natural question that arises from the above existence theorem is the study
of the following LP — LY trace estimates of the Wolff potential: Given 0 < ¢ < +o0,
1 < p < 400, which are the positive measures + on R" such that

(1.2) ' (Wp, ﬁ(fdw))p

for any f > 07

A characterization of such measures would give information on the regularity of
the solution of the quasilinear equation given in the above theorem.

We can consider other measures v rather that the Lebesgue measure dz, and
define the corresponding Wolff type potential: If s > 0, « > 0, v is a positive Borel
measure on R™, and f is a nonnegative v-measurable function on R", let

+oo dy s .
Wa,s(fdl/)(x):/o [fBuf] dr

rn-o r

< ClfllLr(de)s

La(dp)

The general trace problem reads as follows:
Given 0 < ¢q,s < 400, 1 < p < 400, which are the pair of positive Borel measures
u, v on R™ such that

(1.3) | Wa, s(fdv))* [|La(ap) < ClISfl|Lr(an),
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for any f > 07

In [HW] it also was introduced a dyadic version of Wolff’s potential. If D = {Q}
is the collection of all dyadic cubes in R™, |Q)| is the Lebesgue measure of the cube
@, and p is a positive locally finite Borel measure on R", WO? ot is defined by

weante) = 3 (i) e =3 (15%) (g [, 740) reto)

QeD QeD

Here x¢q denotes the characteristic function of the cube @. The discrete Riesz
potential I2(p) is

P =3 2@ @,

1—<
Sep QI
and the discrete energy associated with p is given by
p/
' n(@Q
R R AT WS N D DR )
n n er |Q| n

An alternative expression for 55 p is an immediate consequence of Fubini’s theorem:
D _ D7D -1
e0, 0 = [ IP(I2 1) de)

where IP[(ID[u])?' ~'dz] is a dyadic analogue of the nonlinear potential of Havin—
Maz’ya (see [AH], [M]).

A dyadic version of Wolft’s inequality established in [HW] shows that, for 1 <
p < +00, and v a nonnegative Borel measure on R”, there exist constants Cy,Cy >
0, such that

Ch Sgp[l/] < Wf %[V](x) dv(x) < Cq Ezp[u].
R" ' p—
The purpose of this paper is to study a discrete version of trace estimate (1.3):

Given 0 < ¢q,s < 400, 1 < p < 400, which are the pair of positive Borel measures
u, v on R™ such that

1
(1.5) I (Wo?, SfAv)) T | Laqam < CNFI e (an)s
for any f > 07 The relative position of p and ¢ and of p and s will play an esential
role in the proof of the above characterization. The main result we obtain is the
following theorem.

Theorem A. Let 0 < g, < 400, 1 < p < 400, 0 < a < n and u, v locally finite
positive Borel measures on R™.

1. If p < g, there exists C' > 0 such that

(1.6) | OWVE (fd) " [|za(a) < ClIfILo(an):

if and only if one of the following cases holds:
(i) s > p and there exists C > 0 such that for any @ € D,

2
1 q
s

L5 Gy ) ) <o
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(ii) s < p and there exists C' > 0 such that for any cube @ € D, the
following two conditions are satisfied:

qa/s @
v(@Q) ' v(@QNQ) s/
© Qgp(m-%) W@y X)) =M
o) ( | /sy \ @
Q) \ w@nQ '
b v a) , d Cu(OV/ /)
CRVA Q%Qw-n @) X)) =@

2. If ¢ < p, and the following additional condition is satisfied: There
exists A > 0 such that for any Q € D, z,y € Q,

> (|5/(|Ci2:)z>s><@’(x)<‘4 > (%)Sm'(y)

Q'CQ Q'CQ
where A does not depend on @ € D. Then there exists C > 0 such
that
1
1.7 HWD dv))* < C||f| o)
(L.7) (W s(fdv)) - £l e ()

if and only if one of the following cases hold:
(iii) s < p and

UQ) o QN7 v(@) \* ooy
S () |2 () | e F

QeD QCcQ

(iv) p<sand

Q'
sup du(x) < +oo.

(Corco( 2L )y (@) Eu(@)\ ™"
/R” z€Q v(Q)

Observe that in the case that dv = dx, the additional condition on the second
part of the theorem holds automatically, since for any @@ € D and = € Q,

> (i) xe@ =l

Q'CQ

This implies that the original problem (1.2) can be solved without any further
hypothesis. In particular, condition (i) corresponding to the case p < ¢ and ¢ < p
reads as the following simple test condition, namely: there exists C' > 0 such that
for any Q € D, u(Q) < C|Q[» ).

Condition (iii) coresponding to the case ¢ < p and s < p reads as

Z |Q|% < :U'(Q) >“XQ c L%(dﬂ)

1— as
QeD ‘Q| n
And finally, condition (iv) corresponding to the case ¢ < p and p < s is just that
sup HQ) € Lva (dp).

veQ Q'
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The proof of Theorem 1 will be obtained by reformulating it as a particular case of
the following problem of discrete multipliers: Given 0 < ¢,s < 400, 1 < p < 400,
and a sequence (cg)g of nonnegative reals, which are the pair of positive Borel
measures p, ¥ on R™ such that

l Z coAoXQ | lra@w < Cll sup (Agxe)llLe(an)?
Scb QeD

Notations: Throughout the paper, the letter C' may denote various non-negative
numerical constants, possibly different in different places. The notation f(z) < g(2)
means that there exists C' > 0, which does not depends of z, f and g, such that
f(2) < Cy(2).

Acknowledgements: We are deeply thankful to Professor Igor Verbitsky for
several helpful conversations during the preparation of this paper.

2. DISCRETE MULTIPLIERS

We will begin formulating the discrete version of (1.2) we have given in the
introduction. The question we want to deal with is then: Given 0 < ¢ < 400,
1 < p < 400, which are the pair of positive measures u, ¥ on R™ such that

(2.1) 2 (|5(1Q)%)8 (u(lc» /Qf d”>SXQ = W2 (fdv)||Lagapn

QeD
La(dp)
< CIfllze(av)s

for any f > 07.
The following lemma shows that (1.5) can be rewritten in terms of discrete
multipliers.

Lemma 2.1. Assume 1 < p < +o0. Then estimate (1.5) holds if and only if there
exists C' > 0 such that for any sequence (A\g)q of nonnegative numbers,

V(( ?) )S s
2.2 = C A p(dv)-
(22) Qg <|Q|l—n QXeQ < ||Slép( QXaQ)llze ()

La(dp)

Proof of Lemma 2.1. Assume that (1.5) holds, and let f = supg(Agxq)- Since

1 1 1
Q) /Q =@ /Q S/ue%(/\Q'XQ')d” )] /Q AoXedy = Aq;
(1.5) gives that

s

v(@Q) \ s
Z( 1—0) AgXe < Ol sup (A\ox@) e (av),
QeD QI QeD
La(dp)

which is (2.2).
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Conversely, assume that (2.2) holds, and let A\g = ﬁ@) fQ fdv, f > 0. We have

that since p > 1, the dyadic maximal operator with respect to v, MP, given by

Dy — o L
M, f(:v)—itelg V(Q)/Qfdu,

is of strong type (p,p) with respect to v. Hence the hypothesis gives that

2 <5|(1Q)%>s (u(lcn /Qfd”ym

QeD

La(dp)
<C| CS;‘EI%()\QXQ)”LP(dV) = C”Mny”LP(du) < C”f”LP(du)-

O

In what follows we will study the more general discrete multiplier problem given
by

(2.3) > cgroxe < O sup (Aox@) |l Lr(av)-
QeD QeP
La(dp)
The different characterizations we will obtain depend in the relative position of

p and ¢, and in any of the possibilities we will need to consider the different relative
positions of p and s. More specifically, we will consider the following cases:

(1) p<gand s>p.

(2) p<gands<p.

(3) ¢g<pands<p.

(4) g <pand s >p.

1
2.1. The case p < g and s > p. If in (2.3) we replace Ay by )\é’?, the estimate can
be rewritten in an equivalent way as

Qs

(2.4) [ S vbcone| dn| = cllsw o)l
" \Qep Q€D

where 1 < % and 1 < 2. Next, this last estimate can be expressed in terms of

SR

weighted mixed norms. Namely, if we denote L} (lciQ) the weighted mixed norm
space defined by

ya
aq

L 12) = (Goxalaens [Ooxalaenl s s = | [ X Mocoxo | du| <-+oo),
LM(ZCQ) R QeD

q
s

then (2.4) is reformulated as

2.5 A .. <C A .
(2.5) I( QXQ)QeDHLﬁ(lch < ”Slé%( ox)llzt(av)
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Observe that if for any @ € D we consider sequences (Ag/)¢ satisfying that Ag: =1
for any Q' C @ and zero elsewhere, we have that

| (Aoxe )Lt @) = v(Q),

| sup
Q' eD

and consequently, if (2.5) holds, then

ya

s =Y e | | <cvi@)
H(CQ) n Q’CQ

@l

(2.6) H(XQ’)Q’EDHL

The object of the following theorem is to prove that the converse is also true.

Theorem 2.2. If p < q and s > p, the discrete multiplier problem (2.3) (and
consequentely (2.5)) holds if and only if there exists C > 0 such that for any Q € D,

b
q P
s q

(2.7) /R ) Q;ch,m dp | <Cov(Q).

Proof of Theorem 2.2. The necessity of condition (2.7) have just been proved. Be-
fore we give the proof of the sufficiency, we make some simplifications:

Step 1: It is enough to show the sufficiency for sequences (Ag)g with a finite
number of nonzero terms, with constant C' which do not depend on the number
of nonzero terms. This is a consequence of the Lebesgue Monotone Convergence
Theorem.

Step 2: It is enough to show the sufficiency for the case where the finite number
of A\g’s different from zero are the ones corresponding to a fixed cube and its
descendents. This is due to the fact that if the finite number of nonzero terms
correspond to the descendents of m disjoint cubes @; j =1,--- ,m, we can deduce
this general case from the particular one just observing that

sup (AQx@) = sup (Agxe) +---+ sup (Agxe),
QeD QCQ1 QCQm
and consequentely,

A q s
¢ QXQ)QED”LE, i)

Bl

P
q

< /n Z coxq | dp| 4+t / Z coxq | dp] <

o hQ
”hQ

n

Q'C Q'CQm

C (/ sup (Agxq)dv + - +/ sup ()\QXQ)CZV> =C sup (Agxo)dv
R" QCQu R" QCQm R~ Q€D

= C| sup (Aex@) Lt (av)-
QeD

Step 3: By the previous reductions, we just may assume that the finite number
of X’s different from zero correspond to a fixed cube Q° and its descendents up to
order m, which we denote by fllk, k=1, miy, iy =1,---,2" Our
next observation is to observe that in addition we may assume that the sequence
of N’s satisfies the following monotone condition, namely, Ago < )\Qil for any i, =
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1,---,2", and for any fixed k =1,--- ,m, and i1, -+ ,4 = 1,---,2 /\QL1 S
k+1
AQilv--vik=’7k+1

hold, i.e., there exists k € {1,--- ,m}, and 41,---ip € {1,--- ,2"} with )\k >

)\lgrll , we just substitute )\kﬂ by )\k . We then have that while
i k41 il ot

for any ix41 =1,---,2". Indeed if any of these inequalities does not

the expression on the right hand of (2.5) does not Change the expression on the
left hand side increases. We have that for these monotone sequences,

ICsup Aox)lloiay = >, Ab., .. v(QF .. i)
QCQO 7;la"'airn

In summary, the above steps give that in order to prove the sufficiency it is enough
to show the following assertion:
Assume that there exists C' > 0 such that for any Q°, and for any fixed finite

number of descendents, Qk i B =00 my g gy = 1,27 (here we are
assuming that when k& = 0 we just have the cube Q°), we have that if j =0,--- ,m,
ipoee iy =1,---,2",

2.8 ( ) . o<ou@Q ).

T [ (D PR PP A

Then for any (Ag)g, satisfying that Ao # 0 only if @ is one of the fixed finite
number of descendents and satisfying also the monotone condition, we have that if
G=0, my iy iy =1, ,2",

a
ik)k:l,-u,m;il,m,im:l,- L”(l )

<C Y der ., v(@F i) =Cll sup (Maxa)llLian):
QCQo

11,00 lm

H(AQg,ﬁkXszu
(2.9)

Before we give the proof of the assertion in the above general situation, we begin
by briefly sketch the simpler case where the only \’s different from zero correspond

to a fixed cube Q°, and its first and second generations of descendents, Q} , Q7 ;. ,

i1,90 = 1,---,2". We split the sequence of \'s as a sum of a ﬁnlte number of
sequences as follows,

()‘QXQ)QCQO = Z (()\Q?LiQ - )\Qh >XQ12111'2>
i1,t9=1,---,27
n Z ((A% - AQO)XQ)QC% + Ao (xQ)qcqr-

7,11

Since s/p > 1 and ¢/p > 1, the mixed space L%(ZCZQ) is normed. Then

[(Aex@)acqoll Lhasy =€ > (e

1,12
cQ) .
i1,i2=1,---,2"

t 2 Do le@)TAen@)=0 3 e M@

01,02
11=1,- i1,12=1,---,2™

- Ale )V(szl,iz)

which gives the desired estimate for this particular situation.
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For the general setting, we use the same type of argument and decompose (Ag)qg
as a finite sum of sequences as follows,

(2.10)
(AoxQlocqr = > ((AQ;;L,___ = )‘Q;’;"}Himl)XQ?;,___,im)
i1y =1, 20

2 (Bar rare, D%t L) e

i1,y ime1 =1, 27 ip=1,,2™
Aym— — A ym— m—k

+ ) . Z <( Qi1w2- vim—2 Qilv'?‘ -,imfs)XQHv'k- ’imk) k=0,1,2;

i1, sim—g =1, 27

. . n
tn—1,im=1,-,2

o Ao (XQ)QCQO .

Since by hypothesis the space L%(ZC;Q) is normed, we obtain from the above
decomposition that

H()\QXQ)QCQOHL%(ZC%Q)
= Z Az i ™ /\Q;’{j},imil)||(XQ§””1',.,.,im)HL%(l§ :
01,00 i, =1, 27 2
> Agr=1 = Agm== | <xQz,ﬁ,im_k) emos ptas
1,y im—1=1,+-,27 Lk g A
o > Agr—= . =Agrs I (XQ;;_@%’Q) econs Nugas
po a2 im=1,- 2" Q
4+ 4 >\Qo ”(XQ)QCQO ||L%(I§Q)'
Since (2.8) holds, we have that the above is bounded by
¢ Z Pem i, — Agri Q.. i)
01, i =01, ,27 1 tm—1
-1
- 2 Agr-r = Agpz (@7, )
i1,y im—1=1,-+,27 Lrotm—d ’ vtm—2
+ Z (AQ:YL72 i o AQ;n7‘5 i )V(Q;ZL:“277;77L72) + -+ )\QOV(QO)
i1, bm_o=1,--- 2" 1o oim—2 1o vim—3
=C Z )\Q;;g,_,imu( ir i) = Cll sup (Aox@) L @)
11, im QCQo
which gives (2.3). -

2.2. The case p < ¢ and s < p. If we renormalize (2.3) by sustituting A, by Aq,
and denote p = £ and ¢ = £, the estimate can be rewritten in an equivalent way as

s

Q=

q

e | [ X dachxa| du| < ClswO0xo)lsa,
" \Qep Q€D
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Lemma 2.1 gives that the above is equivalent to

Q-

q

(2.12) /n > VEZ)XQ/Qde du [ < Cllflleaw)-

QeD

But if we define the discrete operator Tp by

To(fdv) = 3 - xa /Q fdv,

QeD

the above estimate (2.12) can be rewritten as

Q=

(2.13) ([ 2otraryi@in)" < Cliflosan,
Theorem 3.2 in [SWZ], gives then

Theorem 2.3 ([SWZ)). If p < q, the estimate (2.13) holds if and only if there
ezists C' > 0 such that for any Q € D, the following two conditions are satisfied:

@ ([ TD(XQW@)% < Cv(@Q)}

o) ([ Tolxed” a)

As an immediate consequence we have

*d\z‘H

< Cp(Q)7 .

Theorem 2.4. If p < q, and s < p, the discrete multiplier problem (2.12) (and
consequently (2.3)) holds if and only if there exists C > 0 such that for any cube
Q@ € D the following two conditions are satisfied:

Q=

a

(a) > Ca, v(@Q NQ)xg | du| <Cv(Q)r.
/ N\ gz @)
(b) / > Ca/, HQNQxg | dv| <Cu@7v.
" \Qep ,LL(Q )

In fact, in [SWZ] it is proved that provided we assume some extra mild condition
on integrability, in conditions (a) and (b) of Theorem 2.3 it is enough to integrate on

Q|
QT
2.4 is reduced to the trivial test condition on cubes: there exists C' > 0 such that
for any Q € D, u(Q) < C|Q[» ).

We observe that the techniques used in the previous subsection, allows to give
a simple characterization of (2.3) for the particular case where p = ¢, s = 1 and
1 = v which does not use the proof given by [SWZ], and that we think has interest
by its own.

the cube Q). In particular, if dv = dz and cqg = condition (a) in Theorem

Theorem 2.5. Let 1 < p < 400, and p a positive Borel measure on R™. Then the
following assertions are equivalent:
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(a) There exists C > 0 such that for any sequence of monnegative numbers
(AQ)e

p

(2.14) / Y dacoxe | du| < Cllsup Aoxo)llLe(an-
" \Gep QeD

(b) There exists C > 0 such that for any sequence of nonnegative numbers
(AQ)a: (9Q)q -

1
7

(2.15) Y cou(@Aqog < C </Rn SSP(AQXQ)pd#>; (/Rn SgP(UQXQ)p,dM> "

QeD

(¢) There exists C > 0 such that for any Q € D,

(2.16) > con(@) < CuQ).
Qce

Proof of Theorem 2.5. Duality gives that (a) is equivalent to the discrete bilinear
multiplier problem (b). The fact that (b) implies (c) is immediate, if we just
consider for any fixed cube @) € D, the sequence (Ag/)gr such that Ao = ogr =1,
for any Q' C @Q and zero elsewhere.

If we substitute cg u(Q') by cg/, and use the same reductions of Theorem 2.2
we are left to show the following: Assume that there exists C' > 0 such that for any
Q e D?

(2.17) D g < Cu@).

Q'CQ
Then there exists C' > 0 such that for any sequence (Ag)q of nonnegative num-
bers with a finite number of nonzero terms corresponding to a fixed cube Q° and

its descendents, and any sequence (og)¢g of nonnegative numbers, such that both
sequences satisfy the monotone condition given in Step 3, we have

1
7

218 Y crese = ([ sup@Qm)Pdu); ([ swplooxoran)”.

QeD v Q Q

In order to simplify the notations, we will just give the proof for sequences
(Ao')qr, (0gr)qr, with nonzero terms corresponding to a cube, and its first and

second generation of decendents, which we will denote by Q°, Q;,, iy = 1,---,2"
and Q;, i,, 11,72 = 1,- -+, 2", respectively, and satisfying the monotone condition.
We have that (2.17) gives that the following estimates are satisfied:

Z CQiy in + €Qi, + cqo <C Z M(Qihiz) = :U’(Qo)a

i1,89=1,,2 i1=1,---,2" 11,12

Z €Qiy iy T CQiy <OwQi), iy =1,---,2"
ig=1,--- 27

CQiy iy < C/L(Qil,ifz)a i1,02 =1, ;2"
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We have that

Z CQil)iz )\Qilﬂé O-Qilai2 + Z Qi )\Qil JQil + CQO)\QOUQO

i1,i2=1,---,27 i1=1,---,2m

= Z Z ()\Qil,iQ 0Qi,,ig — /\Qil UQil) CQi iy

1= 2n =1

+ > (Aa,oq, —Aogo) | cq., + Z Qi ia
i1

=1, 27 in=1,-

+ Agoogo Z €Qi, 1y + Z CQn + cqo

’il,iQ:l,"' 2n 11 1

S C Z Z ()\Qi1,i2 O—Qil,ig - )\Qzl JQzl) M(Q’H 77;2)

i1=1,---,27 ig=1,--- ,27

+ Z (/\Q'il Qi ~ /\QOOQO) Z :U’(Qihlé)

ia=1,- 27

+ )‘QOUQO Z /“I/(Qilai2) =C Z )\Qil,izaQil,Q/’[‘(Qilﬂé)
i1,ia=1,.. 27 i1,iz=1,- 2"

S C Z Q” in (Qh,lz) Z Qll Jio (Qzl,zg)

11,82=1,--,27 11,82=1,--,27

3=
ke~

The general case is proved anagously to Theorem 2.2. O

The version of the above theorem for general pairs of measures p and v does not
hold in general. The condition (c¢) which corresponds to the general case is now
given by: There exists C' > 0 such that for any @ € D,

1 1
(2.19) D con(@) < Cp@)r (@)
Q'CQ
The following example gives that (2.19) is not, in general, sufficient in order that
the discrete bilinear problem holds.

Proposition 2.6. There exists a pair of positive measures u # v on R™ and a
sequence (cq)q of nonnegative numbers satisfying condition (2.19) with C' =1 but
where the estimate

(220) ) cou(@)Aqoq < </m Sgp()\QXQ)Qd.U>% (/R Slql)p(aczxc;))QdV)é

Q€eD
does not hold for every sequences (Ag)g, (0g)¢g of nonnegative numbers.

Proof of Proposition 2.6. We fix a cube Q° € D, and consider the first generation of
its descendents, that we denote by @;, i =1,--- ,2™. We will construct a sequence
of non negative numbers (cq)qg satisfying that cp = 0 for any cube P different
from Q° and its first generation of descendents. In such situation, condition (2.19)
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reduces to

ZcQ 1(Qy) + coop(Q°) < u(Q%)2u(Q)%,

cai(Qi) < Q) Fv(Q)E, i=1,---,2"

On the other hand, estimate (2.20) for nonnegative numbers satisfying Ag, > Ago,
0Q, = 0go, i =1,---,2", can be rewritten as

Z /\QiUQiCQiH(Qi) + )‘QOUQOCQOM(QO)

" vl )’

We define the sequence (cg)q in terms of the measures p and v (to be constructed)
as follows:

[N

(@) = v(Q)* (@), i=1,-,2"
con(Q”) = n(Q")>v(Q%)2 — 3 v(Q:)> u(Q:)*.

i

[N

Observe that by Holder’s inequality, cg > 0.
With that choice, and for the particular case where Ago = ogo = 1, (2.21)
reduces to

1 1 1
ZAQlle )2 Qi) ((Q“ Q%) — Zu
for any Ag, > 1,09, > 1,i=1,---,2" But the above can be written as

S(Z%m(@)) <Zoéiu(@->> )
<Zu<Qi>> (chz») = DM@ (@)

%

= (Z N iV(QD) (Z 1o, 1(Qi) ) ZAQloQ, )2 u(Qy)*.
If we consider the vectors in R?" given by
W= @(Q)F, - v(Qa)F), wh = Q)7 u(Qen)?)
UK = ()‘Qﬂj(Ql)%a T 7)‘Q2HV(Q2")%)7 Ug = (O—Qlﬂ(Ql)%7 T 0Qon (QZ")%)

this last inequality reduces to

m\»a

-

[u”ll2llv"]l2 = u” - " < JuX|2llvg ]l — uX - 0",
for any A\, > 1,09, > 1,i=1,---,2" Now, we just need to define the measures v
and g such that the vectors u” and v are close to be "orthogonal”, and Ag, > 1,
0g, > 1,i=1,---,2" such that the vectors u5§ and v¥ are equals to finish with
the construction. For instance, if 0 < & < 1, consider

ut = (175,"' ,1,5)), u’ = (5,1,~~~ 7571))
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and )\Q%Jrl =1, )\sz = %, k = 07 ,2”71 — 1, OQops1 = %7 0Qoy, = 1, k =
0,---,2" ' — 1. Then

(n—1)
2

(1+e%)3 — 2%,

o —u¥ - vh, = 0. (]

[[w”[[2llv*[lo = u” -

whereas [|uf][2v4 ||

2.3. The case ¢ < p and s < p. As in the case p < g and s < p, if in (2.3) we

substitute A3, by Ag, and put p = £ and ¢ = £, and we obtain that the estimate

can be rewritten as

Q=

q
[ S ractxe | du| <l swoxe) s
n QED QGD

where now 0 < ¢ < p and p > 1. Using again Lemma 2.1 we have that the above
is equivalent to

(2.22) / )

This inequality has been studied in [COV3]. In order to write down the char-
acterization, we need to introduce some more notations.

If K:D— RT, and v is a positive Borel measure on R", we define the gener-
alizad Riesz dyadic operator TZ given by

TRV = Y v(QK(Q)xq-

QeD

Q=

q

/fducQXQ dp | < Clfll e (aw)-
Seb QL

We also define the function F(Q)( ) supported on @ given by

K(Q)() |Q| > K(QW(Q)xq ().
Y Qce
We say that the pair (K, v) satisfies the so-called dyadic logarithmic bounded os-
cillation condition (DLBO):

(2.23) sup K(Q)(z) < A inf K(Q)(x),
T€EQ €Q

where A does not depend on @ € D. Assume K is a radially nonincreasing kernel
and dv = dz or K(Q) = rgfo‘, 0 < a < n and v satisfies a dyadic reverse con-
dition, i.e. there exists C' > 0 and v > n — « such that for any j > 0, @ € D,
v(27Q) > C 277 v(Q), where 27Q is the unique dyadic cube in D such that Q C 27Q
and 735 = 2/rg. Then in any of these cases we obtain that the pair (K, v) satisfies
the (DLBO) condition (see [COV2] for more details).

For (K,v) € (DLBO), we set K(Q) = inf,cqo K(Q)(z), Q € D, if v(Q) # 0, and
K(Q) =0 if v(Q) = 0. The generalized Wolff potential of a measure o introduced
in [COV2] can be defined when the pair (K, v) satisfies the DLBO condition in an
equivalent way by:

224)  WR ol(@) =Y K(@Q (@) '(Q) xo(w).

QeD
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Theorem 2.7 (Thm 2.1 [COV3|). Let K : D — R", 0 < ¢ < p < +oo, and
1 < p < +4oco. Let u and o be nonnegative Borel measures on R™. Suppose that
(K,v) € (DLBO). Then there exists a constant C > 0 such that the trace inequality

(2.25) | Tiald@)* d < C iy f € DA,
holds if and only if

a(p—1)
(226) WR, (1] € Lv= (dp).

Given (cq)g a sequence of nonnegative real numbers, we define

Co@Q)(@) = Y chxq(a).
Q'CQ
We will say that the pair ((cf,)q,v) satisfies the DLBO condition if the pair (K, v)

S

c _
satisfies DLBO condition, where K(Q) = T(;QQ) In that case we define Cg s =
infcq Cs(Q)(z), which by hypothesis is equivalent to sup,cq Cs(Q)(x). The Wolff-
type potential is now

R vlol(@) = S [Cp /9" =1 weQ) (p/5)' -1 i
WK,V[ ]( ) Q;) Q[CQ7S] (V(Q)) XQ( ).

‘We can now state the characterization.

Theorem 2.8. Let 1 < p < +00, g < p and s < p, and let p,v be two nonneg-
ative Borel measures on R". Assume that the pair ((cg))q,v) satisfies the DLBO
condition. We then have that (2.22) (and consequently (2.3)) holds if and only if:

(2.27) 3 (’V‘Eg;) " ChIvg € LG (dp). D
QeD

2.4. The case g < p and p < s. With the same substitution of the previous case,
we have that the estimate (2.3) can be rewritten as

q q
(2.28) [ S ractxe | du| <l sw0oxa)lusw
n QeD QeD
where now 0 < g <p < 1.

Theorem 2.9. Let g < p andp < s, and let u, v be two nonnegative Borel measures
on R". Assume that the pair ((c;)q,v) satisfies the DLBO condition. We then
have that (2.28) (and consequently (2.3)) holds if and only if:

(2.29) /R sup <<ZQ’CQ cxQ) Q)

v(Q)

Proof of Theorem 2.9. We begin with the proof of the necessity. If Q) € D, take
AQ = 2. gcq P Since p < 1, we have that

) dp < +oo0.

p p

dore | S| D ke | <D ry

QCQ’ Q' €D Q€D
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On the other hand,
D Aachxa =) ch D paxe= D pa ) coxe:
QeD QeD QCQ’ Q'eD QCQ’
Consequently if (2.28) is satisfied, we obtain that

Q=

q

/7 Z PQ Z coxq | dp| = </R (AQcaxQ)adu)

Q'eD QCQ’

Q=

< Cll(sup (Aox@)llzo(an) = Cll(sup (Y porx@)lpoan)

sup
QED QED Qco

[

= Clsup (S paxa Ifsgany < CIL S vl = | 32 (@)

QEP ocqr Q€D Q'eD
So we have shown that if (2.28) holds, then

~ 1
q q

/ > e Cosxe | du| <C| D (@)

Q'eD Q'eD

B

Applying Theorem 3.d in [Vel] (since ¢ < p < 1), we have that the above holds

if and only if
/ sup ((CQsXQ)SM(Q)) < 1o,
R z€Q V(Q)

which is what we wanted to prove.
Conversely, we have that if we apply Holder’s inequality with exponent
we obtain:

SHSH

> 1,

q

/n Z Ageoxq | du

QeD

kSTT

P

(2.30) < /Rn 3™ Aochvals) dufg)

ol
QeD SUPze@ “Q,s 1(Q)

([, ()™ )

The second term on the right is finite since we are assuming that (2.29) holds.
For the estimate of the first term on the right, we will use that by Theorem 2.2,
(2.31)

B

p

s du(z
> Aecoxal@) L) < Cf sup (Aox@)llLo(av),
n P p(Q) D
R™ \ Qep suPreq Cq.s (o) Qe
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if and only if

P
1 / s du(z)
sup Z coXq () — oy < oo
QED V(Q) Q Q' cQ superl 02/75 ng,g
But
p
) du(x) L du()
/ > cyxe (@) — wQ = / (CQ,sXQ)pT#(Q) =v(Q),
Q QCQ suprQ CQ,S (Q) Q CQ,S Q)
and hence (2.31) holds. Plugging this in (2.30), we deduce that
q
[ X racte | o<l sw oxo)lis,
“\& 0ep (dv)
and that finishes the proof of the theorem.
O
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