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Abstract. For an inner function θ on the upper half-plane C+, we look at the
star-invariant subspace K

p
θ := Hp ∩ θ Hp of the Hardy space Hp. We characterize

those θ for which the differentiation operator f 7→ f ′ provides an isomorphism
between K

p
θ and a closed subspace of Hp, with 1 < p < ∞. Namely, we show that

such θ’s are precisely the Blaschke products whose zero-set lies in some horizontal
strip {a < Iz < b}, with 0 < a < b < ∞, and splits into finitely many separated
sequences. We also describe the case of a single separated sequence in terms of the
left inverse to the differentiation map; the description involves coanalytic Toeplitz
operators. While our main result provides a criterion for the Hp-norms ‖f‖p and
‖f ′‖p to be equivalent (written as ‖f‖p ≍ ‖f ′‖p), where f ranges over a certain
family of meromorphic functions with fixed poles, some other spaces Y that admit
a similar estimate ‖f‖Y ≍ ‖f ′‖Y under similar conditions are also pointed out.

1. Introduction and results

Suppose E is a subset of the half-plane C+ := {z ∈ C : Iz > 0} and m : E → N is
a function, to be thought of as ‘multiplicity’. Further, let RE,m be the set of rational
functions whose poles (if any) are in Ē := {λ̄ : λ ∈ E} and, for each λ ∈ E, the pole
at λ̄ has multiplicity at most m(λ). We shall address the following question: When
is it true that every f ∈ RE,m ∩ Lp(R) satisfies f ′ ∈ Lp(R) and, moreover,

(1.1) C−1‖f‖p ≤ ‖f ′‖p ≤ C‖f‖p

for all such f and some fixed C = C(p, E,m)?
Here and below, ‖ ·‖p is the usual Lp-norm over R, and p is restricted to the range

1 < p < ∞ (except in Section 2). In particular, the assumption p > 1 guarantees
that RE,m∩L

p(R) contains non-null functions whenever E is nonempty, while letting
p <∞ one rules out the case f ≡ 1, an obvious counterexample to (1.1) for p = ∞.

We shall often abbreviate (1.1) as ‖f‖p ≍ ‖f ′‖p. In general, we shall write A ≍ B
to mean that the ratio A/B lies between two positive constants.

Now let us observe that the pair (E,m) must satisfy the Blaschke condition
∑

λ∈E

m(λ)
Iλ

1 + |λ|2
<∞

2000 Mathematics Subject Classification. 30D45, 30D50, 30D55.
Key words and phrases. Inner functions, star-invariant subspaces, differentiation, reverse Bern-

stein inequality, Toeplitz operators.
Supported in part by grants MTM2005-08984-C02-02, MTM2006-26627-E and HF2006-0211

from El Ministerio de Educación y Ciencia (Spain), and by grant 2005-SGR-00611 from DURSI
(Generalitat de Catalunya).

1



2 KONSTANTIN M. DYAKONOV

as soon as (1.1) holds true for f in RE,m ∩ Lp(R). Otherwise, this last set would
be dense in the Hardy space Hp = Hp(C+) (see [14, Chapter II]) and (1.1) would
extend to all f ∈ Hp, which it does not. Consequently, we can form the Blaschke
product

B(z) = BE,m(z) :=
∏

λ∈E

{

α(λ)
z − λ

z − λ̄

}m(λ)

,

where α(λ) are suitable ‘convergence factors’ of modulus 1; when i /∈ E, one takes
α(λ) = |λ2 + 1|/(λ2 + 1), cf. [14, p. 55]. This done, the closure of RE,m in Lp(R)
can be identified as

Hp ∩BHp =: Kp
B,

where the Hardy space Hp is viewed as a subspace of Lp(R) and the bar denotes
complex conjugation. The estimate (1.1) is then inherited by the elements of Kp

B;
these are Hp-functions on C+ that admit a meromorphic pseudocontinuation (see
[5, 6]) into C− := C\(C+∪R) whose poles, counted with multiplicities, are contained
among those of B. Note that all functions in Kp

B will be meromorphic in C whenever
B is.

In fact, we shall deal with the following, somewhat more general, problem. Sup-
pose θ is an inner function on C+; that is, θ ∈ H∞(C+) and limy→0+ |θ(x+ iy)| = 1
for almost all x ∈ R. For 1 < p <∞, consider the star-invariant subspace

(1.2) Kp
θ := Hp ∩ θ Hp

that θ generates in Hp. When do we have (1.1) for all f ∈ Kp
θ ?

The term “star-invariant”, as used above, means invariant under the semigroup
of backward shifts {S∗

a : a > 0}, where S∗
a is the adjoint of the forward shift Sa given

by
(Saf)(x) := eiaxf(x) (f ∈ Hq, p−1 + q−1 = 1).

It is a well-known consequence of the Beurling–Lax theorem on Sa-invariant sub-
spaces (cf. [16, Lecture XI]) that the general form of a nontrivial star-invariant
subspace in Hp is actually provided by (1.2), with θ inner; see also [5, 6]. Our
star-invariant subspaces are also known as model subspaces, especially when p = 2.
We refer, once again, to [16] for an explanation of this terminology.

Going back to our problem, we now remark that ‘half’ of it is solved by our
previous result from [8]; see also [11] for an alternative proof. This result, cited
as Theorem A below, describes the θ’s with the property that Kp

θ -functions are all
(locally) absolutely continuous on R and the differentiation operator d

dx
: f 7→ f ′ is

a continuous mapping from Kp
θ to Lp(R).

Theorem A. Let 1 < p < ∞, and let θ be an inner function in C+. In order
that d

dx
be a bounded operator from Kp

θ to Lp(R), it is necessary and sufficient that
θ′ ∈ L∞(R). Moreover, the norm of this operator is bounded by Cp‖θ

′‖∞, where Cp
is a suitable constant depending only on p.

The condition θ′ ∈ L∞(R), understood in any natural sense, is actually equivalent
to θ′ ∈ H∞ and also to the requirement that

(1.3) inf{|θ(z)| : 0 < Iz < δ} > 0
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for some δ > 0 (see, e. g., [11, Lemma 2]). It follows that the singular factor of such
a θ can only be of the form eiaz, with a ≥ 0, while the associated Blaschke product
B = B{zk} is meromorphic in C (and analytic on R): its zeros zk = xk + iyk must
satisfy infk yk > 0, so they can only cluster at ∞. The inner functions θ occurring
in Theorem A are thus given by θ = eiazB{zk}, with

(1.4) |θ′(x)| = a + 2
∑

k

yk
|x− zk|2

, x ∈ R,

being bounded on the real line. In connection with (1.4), we refer to [1] for similar
(and more general) formulas involving derivatives of inner functions on the boundary;
see also [10, Lemma 3] for the case of a meromorphic Blaschke product.

The inequality

(1.5) ‖f ′‖p ≤ Cp‖θ
′‖∞‖f‖p, f ∈ Kp

θ ,

coming from Theorem A, should be viewed – and actually arose – as a generalization
of the classical Bernstein inequality for entire functions. The latter reads

‖f ′‖p ≤ a‖f‖p,

where f is an entire function of exponential type ≤ a, and can be essentially recov-
ered from (1.5) by taking θ(z) = eiaz (except that (1.5) does not give Cp = 1). This
time, our plan is to couple (1.5) with the ‘reverse Bernstein inequality’

‖f ′‖p ≥ const · ‖f‖p,

a property which entire functions generally fail to possess. It is chiefly this reverse
estimate that interests us now in the framework of Kp

θ spaces.
We mention in passing that Theorem A remains true for the endpoint exponent

p = ∞, as does the sufficiency part for p = 1 (see [8]), the definitions of K1
θ and K∞

θ

being similar to (1.2). On the other hand, the necessity fails for p = 1, as was recently
shown by Baranov [4]. Also, there are various ‘weighted’ versions and extensions
of the Bernstein-type inequality (1.5); for these, see [2, 3] and [9, Sections 10–11].
Finally, let us mention our recent study of some further properties (compactness,
membership in the Schatten–von Neumann ideals) of the differentiation operator on
Kp
θ , as carried out in [11, 12]. In particular, it was proved in [11] that d

dx
: Kp

θ →
Lp(R) is a compact operator if and only if θ′ ∈ C0(R).

Our current topic, the two-sided estimate ‖f‖p ≍ ‖f ′‖p on Kp
θ , can be viewed as a

certain “anti-compactness” feature of the differentiation operator d
dx

: Kp
θ → Lp(R).

Precisely speaking, we now want this operator to be an isomorphism onto its range.
Equivalently, we want it to be both bounded and left-invertible (or bounded from
below). Yet another reformulation of the same condition is that d

dx
: Kp

θ → Lp(R)

be a bounded operator with closed range; to see why, note that the kernel of d
dx

in
Kp
θ is trivial and apply the open mapping theorem.
Our first result, Theorem 1.1 below, will provide a criterion for all this to happen.

Before stating it, let us recall that a sequence of points {zj} ⊂ C+ is called an
interpolating sequence if the restriction map f 7→ {f(zj)}, going from H∞ to ℓ∞,
is surjective. (Sometimes we shall view {zj} as a set and speak of interpolating
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sets.) By Carleson’s interpolation theorem [14, Chapter VII], {zj} is an interpolating
sequence if and only if

inf
j

∏

k: k 6=j

ρ(zj , zk) > 0,

where ρ(·, ·) is the noneuclidean metric on C+ given by ρ(z, w) := |z − w|/|z − w̄|.
Finally, an interpolating Blaschke product is, by definition, a Blaschke product whose
zeros are simple and form an interpolating sequence.

Theorem 1.1. Let 1 < p < ∞ and let θ be an inner function. The following are
equivalent.

(i.1) The operator d
dx

: Kp
θ → Lp(R) is an isomorphism onto its range.

(ii.1) θ′ ∈ L∞(R) and infφ ‖φ
′‖∞ > 0, where φ ranges over the nonconstant inner

divisors of θ.

(iii.1) θ is a finite product of interpolating Blaschke products, and

(1.6) 0 < inf{Iz : z ∈ θ−1(0)} ≤ sup{Iz : z ∈ θ−1(0)} <∞.

Remarks. (1) It should be noted that if {zj} is a sequence lying in some horizontal
strip

(1.7) {z : a < Iz < b}, with 0 < a < b <∞,

then {zj} is an interpolating sequence if and only if it is separated, in the sense that
infj 6=k ρ(zj , zk) > 0, or equivalently, infj 6=k |zj−zk| > 0; see [16, pp. 259–260]. There-
fore, the ‘interpolating Blaschke products’ in Theorem 1.1 (and those in Theorem
1.3 below) can be replaced by ‘Blaschke products with separated zeros’.

(2) We also observe, for future reference, that if θ is an interpolating Blaschke
product whose zeros {zj} are bounded away from R, so that Izj ≥ c > 0, then
θ satisfies (1.3) with δ = c/2 (because the ρ-distance between {zj} and the strip
{0 < Iz < c/2} is positive), and hence θ′ ∈ L∞(R). Of course, a similar fact is true
for finite products θ = θ1 . . . θn, where each θk is an interpolating Blaschke product
with inf{Iz : z ∈ θ−1

k (0)} > 0.

As a byproduct of our proof of Theorem 1.1, we are able to point out some other
spaces Y , in addition to Y = Hp (1 < p < ∞), where the estimate ‖f ′‖Y ≍
‖f‖Y holds, under the same conditions, in the appropriate classes of meromorphic
functions with fixed poles. Below, we state such a result for Y = BMOA and Y =
Aα, with 0 < α < ∞. Here, BMOA is the analytic subspace of BMO := BMO(R),
the space of functions that have bounded mean oscillation on R, endowed with
the usual BMO-norm ‖ · ‖∗ (see [14, Chapter VI]). By Aα we denote the analytic
Lipschitz–Zygmund spaces on C+. An analytic function f is thus in Aα if and only
if

f (n)(z) = O
(

(Iz)α−n
)

, z ∈ C+,

for some, or any, integer n > α; the (semi)norm ‖f‖Aα is then taken to be the best
constant in this O-condition, say with n = [α] + 1.
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Proposition 1.2. Under condition (iii.1), we have

‖f ′‖∗ ≍ ‖f‖∗

and
‖f ′‖Aα ≍ ‖f‖Aα (0 < α <∞)

for every rational function f ∈ K2
θ .

Of course, it is understood that the constants in these equivalence relations are
independent of f , so the estimates extend to the appropriate closed subspaces of
BMOA and Aα (the ones spanned by the rational functions in question).

While Theorem 1.1 tells us that the existence of a left inverse to the (bounded)
operator d

dx
: Kp

θ → Lp(R) is equivalent to the fact that θ is a finite product of
interpolating Blaschke products with zeros in some strip (1.7), our next result shows
that the case of a single interpolating Blaschke product is also describable in terms
of the left inverse to the differentiation operator. Namely, this is precisely the case
when the left inverse can be realized as a coanalytic Toeplitz operator, to be defined
in a moment.

Recalling the M. Riesz decomposition Lp(R) = Hp ⊕ Hp for 1 < p < ∞, we
write P+ : Lp(R) → Hp for the canonical projection that arises, and then define the
Toeplitz operator Tϕ with symbol ϕ ∈ L∞(R) by the formula

Tϕf := P+(ϕf), f ∈ Hp.

When ϕ ∈ H∞, we say that Tϕ is a coanalytic Toeplitz operator.

Theorem 1.3. Let 1 < p < ∞ and let θ be an inner function. The following are
equivalent.

(i.2) The operator d
dx

: Kp
θ → Lp(R) is bounded, and there exists a function

ψ ∈ H∞ such that Tψ̄
d
dx

= I on Kp
θ (here I is the identity map).

(ii.2) θ is an interpolating Blaschke product satisfying (1.6).

Remark. A close look at the proof will reveal that Theorem 1.3 remains valid if the
Toeplitz operator Tψ̄ : f 7→ P+(ψ̄f) in (i.2) gets replaced by its ‘restricted version’

f 7→ Pθ(ψ̄f), where Pθ is the canonical projection onto Kp
θ given by Pθ = P+−θP+θ̄.

This answers a question raised by the referee.

In conclusion, we supplement Theorem 1.3 with a weighted norm estimate for Kp
θ

functions and their derivatives. The weight w will satisfy the Muckenhoupt (Ap)
condition on R, to be written as w ∈ (Ap); see [13, Chapter 3] or [14, Chapter VI]
for the definition and discussion of (Ap) weights. The corresponding Lpw-norm will
be denoted by ‖ · ‖p,w, so that

‖f‖p,w :=

(
∫

R

|f |pw dx

)1/p

.

Proposition 1.4. If 1 < p <∞ and w ∈ (Ap), and if θ satisfies (ii.2), then

‖f ′‖p,w ≍ ‖f‖p,w

for all rational functions f in K2
θ .
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The rest of the paper contains some preliminary material, collected in Section 2,
and the proofs of our results, given in Sections 3 and 4.

I thank Anton Baranov for helpful correspondence, especially for supplying a
copy of [17] at my request. Also, the referee’s valuable comments and suggestions
are gratefully acknowledged.

2. Preliminaries on finite unions of interpolating sets

The proofs in the next section will rely on an explicit characterization, due to
Tolokonnikov [17, Theorem 2], of the trace space Hp

∣

∣

E
, where E is a finite union

of interpolating sets (FUIS, for short) in C+. Strictly speaking, [17] deals with
Hp-spaces of the disk, but the case of a half-plane is similar.

Suppose E is a FUIS in C+, and fix a number δ ∈ (0, 1). Then, for some n ∈ N,
there is a numbering

E = {zjk : j = 1, 2, . . . , 1 ≤ k ≤ kj}

such that
• kj ≤ n for all j,
• for j = 1, 2, . . . , the noneuclidean diameters of the sets Ej := {zjk : 1 ≤ k ≤ kj}

are all bounded by δ,
• for k = 1, . . . , n, each of the sets E(k) := {zjk : j satisfies kj ≥ k} is an

interpolating set.
Further, given a pair of indices (j, k) and a function w : E → C, we put Rjk(z) :=

∏k−1
l=1 (z−zjl) and let Pw

jk stand for the polynomial of degree ≤ k−2 that interpolates
w on the set {zjl : 1 ≤ l ≤ k − 1}. It is understood that Pw

j1 ≡ 0 and Rj1 ≡ 1.
Finally, following [17], we write Xp(E) for the set of functions w : E → C with

∑

j,k

∣

∣

∣

∣

w − Pw
jk

Rjk
(zjk)

∣

∣

∣

∣

p

y
(k−1)p+1
j1 <∞,

where yjk := Izjk; when p = ∞, the sum gets replaced by the corresponding supre-
mum. (To keep on the safe side, let us observe that yjk ≍ yj1 for j ≥ 1 and
1 ≤ k ≤ kj.) Tolokonnikov’s theorem now states that

(2.1) Hp
∣

∣

E
= Xp(E), 0 < p ≤ ∞.

Although derivatives of Hp-functions are not explicitly mentioned in [17], while
the points zjk above are (tacitly) assumed to be pairwise distinct, it is not hard to
see what happens to (2.1) when some of the points are allowed to “merge together”.
In this case, one deals with a multiple interpolation problem, so that the values
f(λ), f ′(λ), . . . , f (s−1)(λ) should be considered for a point λ ∈ E of multiplicity
s (i.e., for one which is included in s copies). The admissible multiplicities s are,
of course, uniformly bounded (by n). The trace space that arises is then obtained
from Xp(E) by means of a limiting argument.

In this way, (2.1) yields a description of the trace space (Hp)′
∣

∣

E
, where (Hp)′ :=

{f ′ : f ∈ Hp} and E = {zjk} is again a FUIS. Namely, it turns out that the operator
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JE given by

(2.2) (JEf)(zjk) = yj1f
′(zjk) (j = 1, 2, . . . , 1 ≤ k ≤ kj)

maps Hp onto Xp(E); thus

(2.3) JE (Hp) = Xp(E), 0 < p ≤ ∞.

In particular, comparing (2.1) and (2.3), we arrive at the following result.

Theorem B. Let 0 < p ≤ ∞, and suppose E is a FUIS contained in some strip
{z : a < Iz < b} with 0 < a < b <∞. Then Hp

∣

∣

E
= (Hp)′

∣

∣

E
.

Indeed, the factors yj1 appearing in (2.2) are in this case harmless and can be
safely dropped, so the two trace spaces coincide with Xp(E). In fact, under the
hypotheses of Theorem B, one also has (Hp)(l)

∣

∣

E
= Xp(E), where l ∈ N and (Hp)(l)

is formed by the lth order derivatives of Hp-functions.
Finally, we remark that the identity between the two trace spaces in Theorem B is

accompanied by an equivalence relation between their respective norms (quasinorms,
when 0 < p < 1). These are defined, for a function w : E → C, as

inf
{

‖f‖p : f ∈ Hp, f
∣

∣

E
= w

}

and

inf
{

‖f‖p : f ∈ Hp, f ′
∣

∣

E
= w

}

,

so the two quantities are comparable to each other and to the (quasi)norm ‖w‖Xp(E),
defined in the natural way. Moreover, the constants in the corresponding inequalities
can be taken to depend only on a, b, p and on the Carleson norm of the measure µE
given by

(2.4) µE(σ) :=
∑

z∈σ∩E

Iz, σ ⊂ C+.

Here, the ‘Carleson norm’ of µE is understood as

sup
I

|I|−1µE(QI) =: ‖µE‖carl ,

where I ranges over the real intervals, |I| is the length of I, and QI denotes the
square I × (0, |I|). It is worth recalling at this point that a (generic) set E ⊂ C+

will be a FUIS if and only if µE is a Carleson measure (i. e., ‖µE‖carl <∞); see [14,
p. 314] or [16, p. 158].

Remark. There is an alternative characterization, involving the so-called divided
differences, of the trace space Hp

∣

∣

E
for E a FUIS. This was given by Vasyunin

[18, 19] in the case p = ∞ and subsequently extended by Hartmann [15] to the
range 1 < p ≤ ∞. For these values of p (but not for 0 < p ≤ 1) one can also arrive
at Theorem B via that alternative approach.
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3. Proofs of Theorem 1.1 and Proposition 1.2

Proof of Theorem 1.1. (i.1) =⇒ (ii.1). We know from Theorem A that θ′ ∈ L∞(R).
Now if φ is a nonconstant divisor of θ, then Kp

φ is a non-null subspace of Kp
θ , and

we have

c‖f‖p ≤ ‖f ′‖p ≤ C‖φ′‖∞‖f‖p for all f ∈ Kp
φ.

(Here, the former inequality is due to the hypothesis that d
dx

is bounded from below,
while the latter relies on Theorem A.) Consequently, ‖φ′‖∞ ≥ c/C, and we arrive
at (ii.1).

(ii.1) =⇒ (iii.1). First we observe that θ must be a Blaschke product. Indeed,
the only singular factors compatible with the condition θ′ ∈ L∞(R) are of the form
Sa(z) := eiaz , with a > 0. However, these are ruled out by the assumption that

(3.1) inf {‖φ′‖∞ : φ divides θ} > 0,

since Sa is divisible by Sε for 0 < ε < a, and ‖S ′
ε‖∞ = ε.

Now let {zj = xj + iyj} be the zeros of θ. We know that

m := inf
j
yj > 0

(this is guaranteed by the fact that θ′ ∈ L∞(R)) and we further claim that

(3.2) M := sup
j
yj <∞.

This, again, is a consequence of (3.1), since θ is divisible by

bj(z) :=
z − zj
z − z̄j

and ‖b′j‖∞ = 2/yj.
Finally, we use (3.2) and (1.4) (with a = 0) to obtain

∑

k

yjyk
|zj − z̄k|2

≤ M
∑

k

yk
|xj − zk|2

=
1

2
M |θ′(xj)| ≤

1

2
M‖θ′‖∞,

for every j. Thus,

sup
j

∑

k

yjyk
|zj − z̄k|2

<∞.

This in turn means (see, e. g., [16, p. 151]) that the measure

(3.3) µ{zj} :=
∑

j

yjδzj
,

where δzj
denotes the unit point mass at zj , is a Carleson measure. Equivalently

(see [16, p. 158]), the sequence {zj} splits into finitely many interpolating ones. We
have already seen that this sequence is contained in the strip {m ≤ Iz ≤ M}, so
(iii.1) is now established.
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(iii.1) =⇒ (i.1). Let θ−1(0) = {zj}, so that {zj} is a FUIS lying in some strip
(1.7), and assume for the sake of simplicity that θ has no multiple zeros. Consider
a rational function of the form

(3.4) f(z) =
∑

j

λj
z − z̄j

,

so that only finitely many λj ’s are nonzero. Further, put q = p/(p − 1), and let
g0 ∈ Hq be a function with ‖g0‖q = 1 such that

(3.5) I0 :=

∣

∣

∣

∣

∫

R

f̄ g0 dx

∣

∣

∣

∣

≥
1

2
sup

{
∣

∣

∣

∣

∫

R

f̄g dx

∣

∣

∣

∣

: g ∈ Hq, ‖g‖q = 1

}

.

We now notice that

I0 = 2π

∣

∣

∣

∣

∣

∑

j

λ̄jg0(zj)

∣

∣

∣

∣

∣

(by Cauchy’s formula) and then invoke Theorem B, or rather the part that says
Hq

∣

∣

{zj}
⊂ (Hq)′

∣

∣

{zj}
, to find a function h0 ∈ Hq with the properties that

h′0(zj) = g0(zj) (j = 1, 2, . . . ) and ‖h0‖q ≤ C.

This last constant C depends only on p, on the Carleson norm of the measure (3.3),
on infj yj and supj yj (recall the discussion following Theorem B). We have then

I0 = 2π

∣

∣

∣

∣

∣

∑

j

λ̄jh
′
0(zj)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

f̄ ′h0 dx

∣

∣

∣

∣

≤ C sup

{
∣

∣

∣

∣

∫

R

f̄ ′h dx

∣

∣

∣

∣

: h ∈ Hq, ‖h‖q = 1

}

.

The latter supremum is comparable to ‖f ′‖p, while the one in (3.5) is comparable
to ‖f‖p, so we conclude that

‖f‖p ≤ const · ‖f ′‖p.

To prove the reverse inequality

‖f ′‖p ≤ const · ‖f‖p,

we may either proceed in a similar fashion, using this time the inclusion (Hq)′
∣

∣

{zj}
⊂

Hq
∣

∣

{zj}
from Theorem B, or apply Theorem A instead. (It does apply because (iii.1)

guarantees that θ′ ∈ L∞(R); see Remark (2) following the statement of Theorem
1.1.) The two estimates actually hold on all of Kp

θ , since the rational functions with
poles in {z̄j} are dense therein.

Finally, in the case that θ has multiple zeros, one needs to introduce some routine
changes to the argument above. In particular, the denominators in (3.4) should
be raised to suitable powers, so as to allow for multiple poles, and the appropriate
“higher order” version of Theorem B should be employed. We omit the details. �

Remark. Alternatively, once the ‘simple zeros’ case is established, the remaining
step towards the general case could be replaced by an approximation argument.
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That would involve passing from a generic rational function f ∈ Kp
θ to a new rational

function fε, with simple poles only, that satisfies ‖f − fε‖p < ε, ‖f ′ − f ′
ε‖p < ε and

‖f ′
ε‖p ≍ ‖fε‖p. (A suitable perturbation of the original function’s poles would do

the job.) I owe this observation to the referee.

Proof of Proposition 1.2. This is similar to what we did in the final part of the
preceding proof. In fact, the BMO-estimate is derived by duality from the p = 1
case of Theorem B, while the Aα-estimate corresponds to the range 0 < p < 1 (in
view of the duality relation (Hp)∗ = Aα, with α = p−1 − 1; see [7]). �

4. Proofs of Theorem 1.3 and Proposition 1.4

Proof of Theorem 1.3. (i.2) =⇒ (ii.2). Since d
dx

: Kp
θ → Lp(R) is bounded and

left-invertible, we know from Theorem 1.1 that θ is a Blaschke product whose zeros,
say {zk}, satisfy

(4.1) 0 < c < yk < C <∞;

here yk := Izk and c, C are suitable constants.
The functions

(4.2) fk(x) := (x− z̄k)
−1 (k = 1, 2, . . . )

are in Kp
θ , and so (i.2) yields

(4.3) Tψ̄f
′
k = fk.

In order to compute Tψ̄f
′
k, we first note that

(4.4) ψ(x)f ′
k(x) = −

ψ(x)

(x− z̄k)2
= −gk(x) − hk(x), x ∈ R,

where

gk(x) :=
ψ(x) − ψ(zk) − ψ′(zk) · (x− zk)

(x− zk)2

and

hk(x) :=
ψ(zk) + ψ′(zk) · (x− z̄k)

(x− z̄k)2
.

Since gk ∈ Hp and hk ∈ Hp, it follows from (4.4) that

Tψ̄f
′
k = P+

(

ψf ′
k

)

= −hk = ψ(zk) · f
′
k − ψ′(zk) · fk.

By (4.3), we therefore have

ψ(zk) · f
′
k − ψ′(zk) · fk = fk,

and this implies that

(4.5) ψ(zk) = 0, k = 1, 2, . . . ,

and

(4.6) ψ′(zk) = −1, k = 1, 2, . . .

(because fk and f ′
k are linearly independent).



MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES 11

Our next step will be to check that θ has no multiple zeros. Assume to the
contrary that θ has a zero of multiplicity ≥ 2 at zk, for some k. The function

Fk(x) := (x− z̄k)
−2

is then in Kp
θ , and (i.2) tells us that

(4.7) Tψ̄F
′
k = Fk.

Proceeding in the same spirit as above, we find that

(4.8) ψ(x)F ′
k(x) = −2

ψ(x)

(x− z̄k)3
= −2

{

Gk(x) +Hk(x)
}

, x ∈ R,

where

Gk(x) :=
1

(x− zk)3

{

ψ(x) − ψ(zk) − ψ′(zk) · (x− zk) −
1

2
ψ′′(zk) · (x− zk)

2

}

and

Hk(x) :=
1

(x− z̄k)3

{

ψ(zk) + ψ′(zk) · (x− z̄k) +
1

2
ψ′′(zk) · (x− z̄k)

2

}

.

Since Gk and Hk are both in Hp, it follows from (4.8) that

Tψ̄F
′
k = P+

(

ψF ′
k

)

= −2Hk

= −2ψ(zk) · (x− z̄k)
−3 − 2ψ′(zk) · (x− z̄k)

−2 − ψ′′(zk) · (x− z̄k)
−1.

By (4.7), the latter expression must be identical to (x− z̄k)
−2, which yields

(4.9) ψ′(zk) = −
1

2
and

ψ(zk) = ψ′′(zk) = 0.

And since (4.9) contradicts (4.6), we see that each zk is necessarily a simple zero for
θ, as claimed. Thus θ is a Blaschke product with simple zeros.

Recalling (4.5), we now deduce that ψ = θϕ for some ϕ ∈ H∞. Consequently,
(4.6) takes the form

θ′(zk)ϕ(zk) = −1, k = 1, 2, . . . ,

whence
|θ′(zk)| · ‖ϕ‖∞ ≥ 1, k = 1, 2, . . . .

Combining this with (4.1), we finally conclude that

(4.10) inf
k
yk|θ

′(zk)| > 0,

which means (see [14, p. 314]) that θ is an interpolating Blaschke product.

(ii.2) =⇒ (i.2). Now we have (4.10) and (4.1) at our disposal. (As before, we
write {zk} for the zero sequence of θ, and yk for Izk.) First of all, these conditions
imply θ′ ∈ L∞(R), and so d

dx
maps Kp

θ boundedly into Lp(R). Furthermore, the two
conditions yield

sup
k

|θ′(zk)|
−1 <∞,
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and we can solve the interpolation problem

ϕ(zk) = −1/θ′(zk), k = 1, 2, . . . ,

with a function ϕ ∈ H∞. Putting ψ := θϕ, we arrive at (4.5) and (4.6), and hence
also at (4.3), where fk is again defined by (4.2). Indeed, the passage from (4.3) to
(4.5) and (4.6) can be reversed.

Finally, since Kp
θ is spanned by the fk’s, (4.3) actually gives

(4.11) Tψ̄f
′ = f for all f ∈ Kp

θ ,

and we are done. �

Proof of Proposition 1.4. The estimate

‖f ′‖p,w ≤ const · ‖f‖p,w, f ∈ Kp
θ ,

valid when θ′ ∈ L∞(R) and w ∈ (Ap), can be found in [8, Section 4]. To verify the
reverse inequality

‖f‖p,w ≤ const · ‖f ′‖p,w,

one uses (4.11), with ψ as above, in conjunction with the fact that the Riesz pro-
jection P+ (and hence the Toeplitz operator Tψ̄) acts boundedly on Lpw(R); see [13,
Chapter 3] or [14, Chapter VI]. �
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