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In this paper we consider extensions of bounded vector-valued holomorphic (or harmonic or pluriharmonic)
functions defined on subsets of an open set Ω ⊂ RN . The results are based on the description of vector-valued
functions as operators. As an application we prove a vector-valued version of Blaschke’s theorem.
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1 Introduction

If H (Ω) is a function space on an open set Ω ⊂ RN and E is a Banach space (or, more generally, a locally
complete locally convex Hausdorff space) one can use L. Schwartz’ ε-product Y εE = L(Y ′

co, E) – the space
of all continuous linear operators from the dual Y ′ endowed with the topology of uniform convergence on all
convex compact sets into E – to define a space of vector-valued functions

H (Ω, E) := {x 7→ T (δx) : T ∈ H (Ω)εE}.
Here δx denotes the evaluation at x ∈ Ω and H (Ω) is endowed with a natural topology.

This abstract definition, which is consistent with the usual definitions of vector-valued continuous, holomor-
phic, or harmonic functions (see [14, 15, 10]), is the key observation to study in a unified way properties and
extension problems for vector-valued functions by using duality theory combined with compactness arguments.

This approach allowed J. Bonet and the two first named authors of the present article to give in [4] a unified
treatment with improved results and very transparent proofs of questions considered e.g. by Horvath [9], Bog-
danowicz [3], Große-Erdmann [8], Arendt-Nikolski [1], and Bierstedt and Holtmanns [2]. The general question
can be described as follows:

Let A ⊆ Ω, H ⊆ E′, and f : A → E such that for every u ∈ H the function u ◦ f : A → C has an
extension in H (Ω). When does this imply that there is an extension F ∈ H (Ω, E) of f?

For A = Ω this includes questions about properties of vector-valued functions. For instance, the case H = E′

for the space of holomorphic functions describes Grothendieck’s theorem about weakly holomorphic functions.
In this article we consider the corresponding question for bounded extensions in H ∞(Ω, E), i.e. the space of

f ∈ H (Ω, E) such that f(Ω) = T ({δx : x ∈ Ω}) is bounded in E.

Let us now describe more precisely the setting of our work. We always assume that H (Ω) is a space of
complex valued infinitely differentiable functions on an open set Ω ⊆ RN which is closed in the space C (Ω) of
all continuous functions endowed with the Fréchet space topology of uniform convergence on all compact sets.
This covers the cases of holomorphic, harmonic and pluriharmonic functions as well as, more generally, spaces
of zero solutions of elliptic (or even hypoelliptic) partial differential operators.

The closed graph theorem implies that the topology of C (Ω) coincides on H (Ω) with that of C∞(Ω) so that
H (Ω) is a Fréchet-Schwartz space by the Arzelà-Ascoli theorem.
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We denote by H ∞(Ω) the subspace of all bounded functions in H (Ω). Endowed with the supremum norm
this is a Banach space continuously embedded in H (Ω) and its closed unit ball is compact there. For a locally
complete locally convex Hausdorff space E we use the definitions H (Ω, E) and H ∞(Ω, E) introduced above.
Our notation for locally convex spaces is standard, we refer to [10, 11, 12, 13].

It is clear from the formulation of the general question that one has to balance requirements on A ⊆ Ω and
H ⊆ E′. In the second section we consider small sets A and rather restrictive conditions on H , which will be
relaxed in section 3.

2 Extensions from thin sets

A ⊂ Ω is called a set of uniqueness for H ∞(Ω) if each function f ∈ H ∞(Ω) which vanishes on A vanishes
on the whole Ω. For the case of one variable holomorphic functions it is clearly enough to have an accumulation
point in Ω. For the unit disc Ω = D it is a classical result that a sequence A = {zn : n ∈ N} is a set of uniqueness
for all bounded holomorphic functions iff it satisfies the Blaschke condition

∑
n∈N(1− |zn|) = ∞.

By standard duality arguments, A is a set of uniqueness if and only if the linear span of {δx : x ∈ A} is
σ(H (Ω)′, H ∞(Ω))-dense in H (Ω).

To formulate our first abstract bounded extension result we say that H ⊆ E′ determines boundedness if every
subset B of E on which all elements of H are bounded is bounded in E. Obviously, the linear span of such sets
is σ(E′, E)-dense.

Proposition 2.1 Let Z be a Banach space whose closed unit ball BZ is a compact subset of a locally convex
Hausdorff space Y . Let X ⊆ Y ′ be a σ(Y ′, Z)-dense subspace, let E be a locally complete space and let
H ⊆ E′ be a subspace determining boundedness. If T : X → E is a σ(X,Z)-σ(E, H) continuous linear
mapping, then there exists a unique extension T̂ ∈ Y εE such that T̂ (B◦Y ′

Z ) is bounded in E.

P r o o f. We take all polars with respect to the dual system 〈Y, Y ′〉 if nothing else is specified. Denote by ÊH

the completion of E for the σ(E, H)-topology. First we obtain an extension T̂ : Y ′ → ÊH which is σ(Y ′, Z)-
σ(ÊH ,H) continuous. It satisfies that T̂ (B◦

Z) is σ(ÊH , H)-bounded and T̂ (X) ⊂ E. Since the span of B◦
Z is

Y ′, we can find a Banach space V continuously embedded in ÊH such that T̂ (Y ′) ⊂ V , T̂ (B◦
Z) is bounded in

V and T̂ is σ(Y ′, Z)-σ(V, H) continuous. Since B◦
Z is a 0-neighbourhood in Y ′

co and T̂ (B◦
Z) is bounded in V ,

we have T̂ ∈ Y εV , and, for each v ∈ V ′, v ◦ T̂ belongs to the span of B◦Y ′◦Y ′′
Z = BZ because of the theorem

of bipolars and the compactness of BZ . Therefore T̂ is σ(Y ′, Z)-σ(V, V ′) continuous. Since H determines
boundedness, (E, σ(E, H)) is locally complete, hence E is a locally closed subspace of (ÊH , σ(ÊH ,H)). Thus,
E ∩ V is closed in V for the norm topology and then E ∩ V is σ(V, V ′)-closed. Since X is σ(Y ′, Z)-dense and
T̂ (X) ⊂ E ∩ V it follows that T̂ (Y ′) ⊂ E. Again, by the hypothesis on H , BV ∩ E is bounded in E, so the
topology on E ∩ V inherited from E is weaker than the norm-topology on V ∩ E, hence the boundedness of
T̂ (B◦

Z) in V implies that T̂ (B◦
Z) is bounded in E and this shows T̂ ∈ Y εE.

The uniqueness also follows from the above arguments, since each continuous linear mapping S : Y ′ → E
such that S(B◦

Z) is bounded in E is σ(Y ′, Z)-σ(E, E′) continuous and hence such an S is determined by its
restriction to X .

Theorem 2.2 Let A be a set of uniqueness for H ∞(Ω), let E be a locally complete space and let H ⊂ E′ be
a subspace which determines boundedness in E. If f : A → E is a function such that u ◦ f admits an extension
gu ∈ H ∞(Ω) for each u ∈ H , then f admits a unique extension g ∈ H ∞(Ω, E).

P r o o f. Take Y := H (Ω), Z := H ∞(Ω), X = span{δx : x ∈ A} and T : X → E,
∑n

k=1 λkδxk
7→∑n

k=1 λkf(xk). In particular, H is separating, so that T is well-defined. Moreover, T satisfies the assumptions
of Proposition 1 and hence there exists a unique continuous extension T̂ ∈ Y εE such that T̂ (B◦Y ′

Z ) is bounded
in E. We set g(x) := T̂ (δx), x ∈ Ω. Then g ∈ H (Ω, E) and {δx : x ∈ Ω} ⊂ B◦

Z implies that g is bounded.

As a corollary we obtain the following uniqueness result.
Corollary 2.3 Let A be a set of uniqueness for H ∞(Ω), let E be a locally complete space and let F ⊂ E be

a locally closed subspace of E. If f ∈ H ∞(Ω, E) is a function such that f(A) ⊂ F , then f(Ω) ⊂ F .
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P r o o f. The restriction of f to A clearly satisfies the hypothesis of Theorem 2.2 with range space F . Then
there exists g ∈ H ∞(Ω, F ) which agrees with f in A. Now, for each u ∈ E′, u ◦ f and u ◦ g are functions with
belong to H ∞(Ω) and they coincide on A. This yields u ◦ f(z) = u ◦ g(z) for each z ∈ Ω and for each u ∈ E′,
hence f = g.

Corollary 2.4 Let A ⊆ Ω be a set of uniqueness for H ∞(Ω), let E be a Fréchet space and let (Bn)n ⊂ E′

be a sequence of bounded subsets such that (B◦
n)n is a fundamental system of zero neighbourhoods of E. If

f : A → E is a function such that u◦f admits an extension gu ∈ H ∞(Ω) for each u ∈ ∪nBn and {gu : u ∈ Bn}
is bounded in H ∞(Ω) for each n ∈ N, then f admits an extension g ∈ H ∞(Ω, E).

P r o o f. From the hypothesis it follows that for each n ∈ N, α ∈ l1 and (uk)k∈N ∈ Bn, (
∑

k∈N αkuk) ◦ f
admits an extension in H ∞(Ω). The result is a consequence of Theorem 2 together with the fact that the span of
these functionals determines boundedness in E (see [6, Proposition 7]).

If E is Banach and B ⊂ E′ is a bounded set such that B◦ defines an equivalent norm in E (i.e. if B◦ is
bounded), B is called an almost norming subset. If B ⊂ E′ is not almost norming, as a consequence of [6,
Proposition 5], if Ω ⊂ C is a relatively compact domain then there exists a non-continuous function such that
u ◦ f ∈ H ∞(Ω) for each u ∈ B and {u ◦ f : u ∈ B} is bounded in H ∞(Ω). The assumptions of Corollary 4
thus cannot be relaxed.

3 Extensions from fat sets

Now we study the problem of extending functions which admit extensions for functionals in a subspace H of E′

which we only assume to be σ(E′, E)-dense. In this case we will require that A (the set on which the function
is defined) is quite large. This is symmetric with the problem studied by Gramsch [7], Große-Erdmann [8], and
Bonet and the first two authors [4, 6] in the non-bounded case.

A set A ⊆ Ω is said to be sampling for H ∞(Ω) if there exists C ≥ 1 such that

sup
z∈Ω

|f(z)| ≤ C sup
z∈A

|f(z)|

for each f ∈ H ∞(Ω).
For M := {δx : x ∈ A} ⊂ H (Ω)′ this definition precisely states that the Minkowski gauge of M◦ defines an

equivalent norm on H ∞(Ω).
In the one variable holomorphic case on the unit disc a theorem of Brown, Shields, and Zeller [5] states that a

set A is sampling if and only if almost every boundary point is a non-tangential limit of a sequence contained in
A.

Again we formulate our result first in terms of operators.

Proposition 3.1 Let Z be a Banach space, whose closed unit ball BZ is a compact subset of a locally convex
Hausdorff space Y . Let M ⊂ B◦Y ′

Z such that M◦Z is bounded in Z. If T : spanM → E is a linear map with
values in a locally complete space E, bounded on M , such that there is a σ(E′, E)-dense subspace H of E′ with
u ◦ T ∈ Z for all u ∈ H , then there is a unique extension T̂ ∈ Y εE of T such that T̂ (B◦Y ′

Z ) is bounded in E.

P r o o f. We take all the polars in the dual system 〈Y, Y ′〉. Without loss of generality we may assume that E is
a Banach space and that M is absolutely convex. So, we equip spanM with the seminorm induced by M . Since
there is C ≥ 1 such that Z ∩M◦ ⊂ CBZ = CB◦◦

Z ⊂ CM◦, the linear map Z → spanM ′, z 7→ z|spanM , is
injective, open onto its range and continuous, hence we may consider Z as a topological subspace of spanM ′.
Let W := {u ∈ E′ : u ◦ T ∈ Z} ⊃ H and let (uι)ι∈I be a net in W ∩ BE′ which σ(E′, E)-converges to some
u ∈ BE′ . Since T (M) is bounded in E and since Z ∩M◦ bounded in Z, we obtain that there is K ≥ 1 such
that uι ◦ T ⊂ KBZ for all ι ∈ I . Now KBZ is σ(Z, spanM)-compact, hence there is a subnet (uτ(κ) ◦ T )κ∈J

converging pointwise on spanM to some v ∈ KBZ . On the other hand (uτ(κ) ◦ T )κ∈J converges pointwise on
spanM to u ◦ T , so u ◦ T ∈ Z, i.e. u ∈ W . The Krein-S̆mulyan theorem implies that W is σ(E′, E)-closed,
and since it is dense, we have W = E′. But this means that T is σ(spanM, Z)-σ(E,E′) continuous. Applying
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Proposition 1 to X := spanM (which is σ(Y ′, Z)-dense) and H̃ := E′ we obtain an extension T̂ ∈ Y εE such
that T̂ (B◦

Z) is bounded in E.
Let S ∈ Y εE be another extension of T with S(B◦

Z) bounded. Then u ◦ S ∈ B◦◦
Z ⊂ Z for all u ∈ E′, hence

S is also σ(Y ′, Z)-σ(E, E′) continuous and it coincides with T̂ on the σ(Y ′, Z)-dense subspace spanM . This
implies S = T̂ .

Theorem 3.2 Let A be a sampling set for H ∞(Ω), let E be a locally complete space and let H be a σ(E′, E)-
dense subspace of E′. If f : A → E is a bounded function such that u ◦ f admits an extension gu ∈ H ∞(Ω)
for each u ∈ H then there exists a unique extension g ∈ H ∞(Ω, E) of f .

P r o o f. This is a consequence of Proposition 3.1 applied to Y = H (Ω), Z = H ∞(Ω), M = {δz : z ∈ A},
and T : spanM → E defined by T (

∑n
k=1 λkδzk

) :=
∑n

k=1 λkf(zk).

Proposition 3.1 also gives a Wolff type description of the dual of H (Ω).

Theorem 3.3 Let (zν)ν∈N ⊂ Ω be sampling for H ∞(Ω). Then there is 0 < λ ∈ `1 such that for every
bounded B ⊂ H (Ω)′ there exists C ≥ 1 with

{µ|H ∞(Ω) : µ ∈ B} ⊂ {
∞∑

ν=1

ανδzν
∈ H ∞(Ω)′ : |α| ≤ Cλ}.

P r o o f. We consider M := {δzν : ν ∈ N} ⊂ H (Ω)′, and we set E := {∑∞
ν=1 ανδzν ∈ H ∞(Ω)′ : α ∈ `1}.

Let T : spanM → E denote the restriction to H ∞(Ω). We apply Proposition 3.1 to obtain a continuous linear
extension T̂ : H (Ω)′ → E of T and C ≥ 1 such that

T̂ ({µ : ‖µ|H ∞(Ω)‖H ∞(Ω)′ ≤ 1}) ⊂ CBE .

Obviously, we have T̂ (µ) = µ|H ∞(Ω). Let B be an absolutely convex, closed, and bounded subset of H (Ω)′.
LetX := spanB be endowed with the Minkowski functional of B. The Fréchet space H (Ω) is nuclear, hence
there exist an absolutely convex, closed, and bounded subset S of H (Ω)′, (x′k)k∈N ⊂ BX′ , (µk)k∈N ⊂ S, and
0 ≤ γ ∈ `1 such that

µ =
∞∑

k=1

γkx′k(µ)µk, µ ∈ B.

T̂ (S) is bounded in E, hence there is a bounded sequence (β(k))k∈N ∈ `1 with

µk|H ∞(Ω) =
∞∑

ν=1

β(k)
ν δzν , k ∈ N.

We set ρν :=
∑∞

k=1 γk|β(k)
ν |, ν ∈ N. Then ρ := (ρν)ν∈N ∈ `1 and for all µ ∈ B there is |α| ≤ ρ with

µ|H ∞(Ω) =
∞∑

ν=1

ανδzν . (1)

Let now (Bl)l be a fundamental sequence of the bounded subsets of H (Ω)′. For each l ∈ N we obtain 0 ≤
ρ(l) ∈ `1 with (1). Choose 0 < λ ∈ `1 such that each ρ(l) is componentwise smaller than a multiple of λ.

Corollary 3.4 Let (zν)ν∈N ⊂ Ω be sampling for H ∞(Ω). Then there is a decreasing zero sequence (εν)ν∈N
such that for all compact K ⊂ Ω there is C ≥ 1 with

sup
K
|f | ≤ C sup

ν∈N
|f(zν)|εν , f ∈ H ∞(Ω).
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P r o o f. We choose (λν)ν∈N ∈ `1 according to the previous Theorem and a decreasing zero sequence (εν)ν∈N
such that (λν

εν
)ν∈N is still in `1. If K ⊂ Ω is compact, there is a bounded B ⊂ H (Ω)′ with T̂ (B)◦ ⊂ {f ∈

H ∞(Ω) : supK |f | ≤ 1}. Hence there is C ≥ 1 such that

sup
K
|f | ≤ sup

µ∈B
| < T̂ (µ), f > | ≤ C sup

|α|≤λ

|
∞∑

ν=1

ανf(zν)|

≤ C‖(λν

εν
)ν‖1 sup

ν∈N
|f(zν)|εν

for all f ∈ H ∞(Ω).

Remark 3.5 If we assume, in addition, that (zν)ν≥n is sampling for all n ∈ N then we obtain that there is a
decreasing zero sequence (εν)ν∈N such that for all K ⊂ Ω compact and n ∈ N there is C ≥ 1 with

sup
K
|f | ≤ C sup

ν≥n
|f(zν)|εν , f ∈ H ∞(Ω).

Indeed, applying the previous corollary to each member Kn of a fundamental sequence of compacts (Kn)n∈N
and (zν)ν≥n we obtain decreasing zero sequences (ε(n)

ν )ν≥n. Choose now a decreasing zero sequence (εν)ν∈N
such that each (ε(n)

ν )ν≥n is componentwise smaller then a multiple of (εν)ν∈N.

4 A vector-valued Blaschke theorem

As an application of our results we want to prove a vector-valued analogue of the classical Blaschke theorem in
the spirit of [1, 2.4, 2.5]. The Blaschke theorem asserts that if (zk)k∈N is a sequence in the unit disc D ⊂ C such
that

∑∞
k=1(1− |zk|) = ∞ and if (fn)n∈N is a sequence of uniformly bounded holomorphic functions on D such

that (fn(zk))n converges for each k ∈ N, then there exists a holomorphic function f , bounded on D, such that
(fn)n∈N converges to f for the compact open topology. In this section we prove a vector-valued version of this
theorem also valid in the general situation considered here.

To prove the next proposition we need the following observation of Arendt and Nikolski [1]: For a Banach
space E and a directed index set I let

`∞(I, E) := {(yι)ι∈I ∈ EI : sup
ι∈I

‖(yι)‖ < ∞}.

Then `∞(I, E) is a Banach space and the subspace

c(I, E) := {(yι)ι∈I ∈ `∞(I, E) : lim
ι

yι exists }

is closed. Moreover,
`1(I, E′) := {(uι)ι∈I ∈ E′I :

∑

ι∈I

‖uι‖′ < ∞} ⊂ `∞(I, E)′

determines boundedness in `∞(I, E).
Proposition 4.1 Let Z be a Banach space, whose closed unit ball BZ is a compact subset of a locally convex

Hausdorff space Y , let E be a Banach space, and let I be a directed set and (Tι)ι∈I ⊂ Y εE a net such that

sup
ι∈I
{‖Tι(y)‖ : y ∈ B◦Y ′

Z } < ∞.

Assume further that there exists a σ(Y ′, Z)-dense subspace X ⊂ Y ′ such that limι Tι(x) exists for each x ∈ X .
Then there is T ∈ Y εE with T (B◦Y ′

Z ) bounded and limι Tι = T uniformly on the equicontinuous subsets of Y ′,
i.e. for all equicontinuous B ⊂ Y ′ and ε > 0 there exists κ ∈ I such that

sup
y∈B

‖Tι(y)− T (y)‖ < ε

for each ι ≥ κ.
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P r o o f. The map
S : Y ′ → `∞(I, E), y 7→ (Tι(y))ι∈I ,

belongs to Y ε`∞(I, E) since, by assumption, it maps B◦Y ′
Z into a bounded subset of `∞(I, E). If (uι)ι∈I ∈

`1(I, E′) then
∑

ι∈I uι ◦ Tι ∈ B◦◦
Z = BZ ⊂ Z, hence S is also σ(Y ′, Z)-σ(l∞(I, E), `1(I, E′)) continuous.

This shows that S|X : X → c(I, E) is σ(X, Z)-σ(c(I, E), `1(I, E′)) continuous. We can therefore apply
Proposition 1 to obtain an extension Ŝ|X ∈ Y ε c(I, E) of S|X with Ŝ|X(B◦Y ′

Z ) bounded. The uniqueness part
of Proposition 1 shows S = Ŝ|X and we have, in particular, S(Y ′) ⊂ c(I, E). Since the map R : c(I, E) → E,
(yι)ι∈I 7→ limι yι is linear and continuous we obtain that T := R ◦ S ∈ Y εE and limι Tι = T pointwise on Y ′.

The statement about the uniform convergence is obtained from the fact the equicontinuous subsets of Y ′ are
precompact with respect to the seminorm with unit ball B◦

Z which follows from the theorem of bipolars (or an
appropriate version of Schauder’s theorem about the transposed of compact operators, see e.g. [12, 15.3]).

We now obtain the above mentioned generalization of Blaschke’s theorem. The one variable holomorphic case
is due to Arendt and Nikolski [1, 2.5].

Corollary 4.2 Let E be a Banach space and let (fι)ι∈I ⊂ H ∞(Ω, E) be a bounded net. If A ⊂ Ω is a set
of uniqueness for H ∞(Ω), and if limι fι(z) exists for all z ∈ A, then there is f ∈ H ∞(Ω, E) such that (fι)ι∈I

converges locally uniformly to f .

P r o o f. Take Y := H (Ω), Z := H ∞(Ω), X := span{δx : x ∈ A}, and Tι : X → E defined by
Tι(δx) := fι(x), x ∈ A. Since the closed absolutely convex hull of {δx : x ∈ A} is B◦Y ′

Z we may apply
Proposition 4.1 and we get T ∈ Y εE with T (B◦Y ′

Z ) bounded and limι Tι = T uniformly on the equicontinuous
subsets of Y ′. If we set f(x) := T (δx), x ∈ Ω, then f ∈ H ∞(Ω, E) and limι supx∈K ‖fι(x) − f(x)‖ =
limι supx∈K ‖Tι(δx)− T (δx)‖ = 0 for all compact subsets K ⊂ Ω.
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