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Abstract. We characterize the set of functions which can be approximated by smooth functions and by
polynomials with the norm

‖f‖W k,∞(w) :=
kX

j=0

f (j)


L∞(wj)
,

for a wide range of (even non-bounded) weights wj ’s. We allow a great deal of independence among the
weights wj ’s.
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1. Introduction.

If I is any compact interval, Weierstrass’ Theorem says that C(I) is the largest set of functions which
can be approximated by polynomials in the norm L∞(I), if we identify, as usual, functions which are equal
almost everywhere. There are many generalizations of this theorem (see e.g. the monographs [18], [23], and
the references therein).

In [28] and [24] we study the same problem with the norm L∞(w) defined by

(1) ‖f‖L∞(w) := ess supx∈R|f(x)|w(x) ,

where w is a weight, i.e. a non-negative measurable function and we use the convention 0 ·∞ = 0. In [24] we
improve the theorems in [28], obtaining sharp results for a large class of weights (see Theorem 2.1 below).
Notice that (1) is not the usual definition of the L∞ norm in the context of measure theory, although it is
the correct one when working with weights (see e.g. [3] and [6]).

Considering weighted norms L∞(w) has been proved to be interesting mainly because of two reasons: first,
it allows to wider the set of approximable functions (since the functions in L∞(w) can have singularities
where the weight tends to zero); and, second, it is possible to find functions which approximate f whose
qualitative behaviour is similar to the one of f at those points where the weight tends to infinity.

If w = (w0, . . . , wk) is a vectorial weight, we study this approximation problem with the Sobolev norm
W k,∞(w) defined by

(2) ‖f‖W k,∞(w) :=
k∑

j=0

∥∥∥f (j)
∥∥∥

L∞(wj)
.

Weighted Sobolev spaces are an interesting topic in many fields of Mathematics, as Approximation Theory,
Partial Differential Equations (with or without Numerical Methods), and Quasiconformal and Quasiregular
maps (see e.g. [11], [12], [13], [14], [15], [16] and [17]). In particular, in [12] and [13], the authors showed
that the expansions with Sobolev orthogonal polynomials can avoid the Gibbs phenomenon which appears
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with classical orthogonal series in L2. In [8], [7] and [9] the authors study some interesting examples of
Sobolev spaces for p = 2 with respect to general measures instead of weights, in relation with Ordinary
Differential Equations and Sobolev Orthogonal Polynomials. The papers [26], [27], [28], [29] and [30] are
the beginning of a theory of Sobolev spaces with respect to general measures for 1 ≤ p ≤ ∞. This theory
plays an important role in the location of the zeroes of the Sobolev orthogonal polynomials (see [19], [20],
[27] and [29]). The location of these zeroes allows to prove results on the asymptotic behaviour of Sobolev
orthogonal polynomials (see [19]). The papers [1], [2], [4], [10], [20] and [31] deal with Sobolev spaces on
curves and more general subsets of the complex plane.

One of the authors studied the problem of approximation with the Sobolev norm (2) in [28], for bounded
weights. We also study this problem in [25] for k = 1. In the current paper we obtain several results for any
k; in most cases, the theorems are new, even for k = 1; besides, we manage with general unbounded weights,
and we allow a great deal of independence among the weights.

If w is not bounded, then the polynomials are not in W k,∞(w), in general. Therefore, it is natural to
bear in mind the problem of approximation by functions in Ck(R) or C∞(R).

The main results of this paper guarantee that a function f belongs to the closure of the space of polynomials
(respectively, smooth functions) in the norm W k,∞(w) if and only if f (j) belongs to the closure of smooth
functions in the norm L∞(wj), for every 0 ≤ j ≤ k. See Section 3 (respectively, sections 4 and 5) for the
precise statement of the theorems.

The results of this paper are more valuable thanks to Theorem 5.3 (see Section 5) which allows to deal
with weights which can be obtained by “gluing” simpler ones.

The analogue of Weierstrass’ Theorem with the norms W k,p(µ) (with 1 ≤ p < ∞ and µ a vectorial
measure) can be founded in [27] and [30] on the real line, and in [1] and [31] on curves in the complex plane.

The main difference between W k,p(w) (with 1 ≤ p < ∞) and W k,∞(w) is that the closure of any set of
smooth functions in W k,p(w) usually is the whole space W k,p(w); however, the closure of any set of smooth
functions in W k,∞(w) usually is a proper subset of W k,∞(w) (if w is the Lebesgue measure in a compact
interval I, then the closure of Ck(I), C∞(I), and P in W k,∞(w) are Ck(I)).

The outline of the paper is as follows. Section 2 is dedicated to the definitions and theorems for the case
k = 0, which are proved in [24]; we also include in this section the definition of weighted Sobolev space
and a version of Muckenhoupt inequality which will be useful. We prove the theorems on approximation by
polynomials in Section 3. Section 4 presents most interesting results on approximation by smooth functions.
Some complementary results, which require more background can be founded in Section 5.

Now we present the notation we use.
Notation. If A is a Borel set, |A|, χA and A denote, respectively, the Lebesgue measure, the characteristic

function and the closure of A. By f (j) we mean the j-th distributional derivative of f . P denotes the set
of polynomials. We say that an n-dimensional vector satisfies a one-dimensional property if each coordinate
satisfies this property. Finally, the constants in the formulae can vary from line to line and even in the same
line.

Acknowledgements. We would like to thank the referee for his/her careful reading of the manuscript
and for some helpful suggestions.

2. Previous Results.

It is clear that our approximation results in W k,∞(w0, . . . , wk) must be based on approximation results
in L∞(wj): if f can be approximated by polynomials in W k,∞(w0, . . . , wk), then f (j) can be approximated
by polynomials in L∞(wj) for each 0 ≤ j ≤ k. We describe here the very general approximation results in
L∞(w), which appear in [24] and [25].

Let us start with some definitions.

Definition 2.1. A weight w is a measurable function w : R −→ [0,∞]. If w is only defined on A ⊂ R, then
we set w := 0 in R \A.
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Definition 2.2. Given a measurable set A ⊂ R and a weight w, we define the space L∞(A,w) as the space
of equivalence classes of measurable functions f : A −→ R with respect to the norm

‖f‖L∞(A,w) := ess supx∈A|f(x)|w(x) .

The theorems in this paper can be applied to functions f with complex values, splitting f into its real
and imaginary parts. From now on, if we do not specify the set A, then we are assuming that A = R;
analogously, if we do not make explicit the weight w, we are assuming that w ≡ 1.

Let A be a measurable subset of R; we always consider the space L1(A), with respect to the restriction
of the Lebesgue measure on A.

Definition 2.3. Given a measurable set A, we define the essential closure of A as the set

ess clA := {x ∈ R : |A ∩ (x− δ, x + δ)| > 0, ∀ δ > 0} ,

where |E| denotes the Lebesgue measure of E.

Definition 2.4. If A is a measurable set, f is a function defined on A with real values and a ∈ ess clA,
we say that ess limx∈A, x→af(x) = l ∈ R if for every ε > 0 there exists δ > 0 such that |f(x) − l| < ε
for almost every x ∈ A ∩ (a − δ, a + δ). In a similar way we can define ess limx∈A, x→af(x) = ∞ and
ess limx∈A, x→af(x) = −∞. We define the essential superior limit and the essential inferior limit on A as
follows:

ess lim supx∈A, x→af(x) := inf
δ>0

ess supx∈A∩(a−δ,a+δ)f(x) ,

ess lim infx∈A, x→af(x) := sup
δ>0

ess infx∈A∩(a−δ,a+δ)f(x) .

Remark 2.1.
1. The essential superior (or inferior) limit of a function f does not change if we modify f on a set of

zero Lebesgue measure.
2. When we say that there exists a essential limit (or essential superior limit or essential inferior limit),

we are assuming that it is finite.
3. It is well known that

ess lim supx∈A, x→af(x) ≥ ess lim infx∈A, x→af(x) ,

ess limx∈A, x→af(x) = l if and only if ess lim supx∈A, x→af(x) = ess lim infx∈A, x→af(x) = l .

4. We impose the condition a ∈ ess clA in order to have the uniqueness of the essential limit. If
a /∈ ess clA, then every real number is an essential limit for any function f .

Definition 2.5. Given a weight w, the support of w, denoted by supp w, is the complement of the largest
open set G ⊂ R with w = 0 a.e. on G.

Definition 2.6. Given a weight w we say that a ∈ suppw is a singularity of w if

ess lim infx∈suppw, x→aw(x) = 0 .

We denote by S(w) the set of singularities of w.
We say that a ∈ S+(w) (respectively, a ∈ S−(w)) if ess lim infx∈suppw, x→a+w(x) = 0 (respectively,

ess lim infx∈suppw, x→a−w(x) = 0).

Definition 2.7. Given a weight w, we define the right regular and left regular points of w, respectively, as

R+(w) :=
{
a ∈ supp w : ess lim infx∈suppw, x→a+w(x) > 0

}
,

R−(w) :=
{
a ∈ supp w : ess lim infx∈suppw, x→a−w(x) > 0

}
.

We say that a is a regular point of w if a ∈ R(w) := R+(w) ∩R−(w).
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It is easy to check that R(w) is an open set.
We collect here some useful technical results which were proved in [24] and [25].

Theorem 2.1. ([25], Theorem 2.1) Let w be any weight and

H0 :=





f ∈ L∞(w) : f is continuous to the right at every point of R+(w),
f is continuous to the left at every point of R−(w),
for each a ∈ S+(w), ess limx→a+ |f(x)− f(a)|w(x) = 0,
for each a ∈ S−(w), ess limx→a− |f(x)− f(a)|w(x) = 0





.

Then:
(a) The closure of C(R) ∩ L∞(w) in L∞(w) is H0.
(b) If w ∈ L∞loc(R), then the closure of C∞(R) ∩ L∞(w) in L∞(w) is also H0.
(c) If supp w is compact and w ∈ L∞(R), then the closure of the space of polynomials is H0 as well.

Remark 2.2.
1. Recall that we identify functions which are equal almost everywhere.
2. Let us fix x1, . . . , xm ∈ R(w). The proof of this theorem allows to get approximating functions to f

coinciding with f in some neighborhood of {x1, . . . , xm}.
Theorem 2.1 has the following direct consequence.

Corollary 2.1. Let us consider α1 < · · · < αn and any weight w in [α1, αn]. Then, f belongs to the closure
of C([α1, αn])∩L∞([α1, αn], w) in L∞([α1, αn], w) if and only if f belongs to the closure of C([αm, αm+1])∩
L∞([αm, αm+1], w) in L∞([αm, αm+1], w) for every 1 ≤ m < n.

Definition 2.8. Given a weight w with compact support, a polynomial p ∈ L∞(w) is said to be a minimal
polynomial for w if every polynomial in L∞(w) is a multiple of p. A minimal polynomial for w is said to be
the minimal polynomial for w (and we denote it by pw) if it is 0 or it is monic.

It is clear that there always exists a minimal polynomial for w (although it can be 0): it is sufficient to con-
sider a polynomial in L∞(w) of minimal degree. Minimal polynomials for w are unique unless multiplication
by constants; this fact allows to define pw.

Let us remark that pw = 0 if and only if the unique polynomial in L∞(w) is 0.
Theorem 2.1 and the following result characterize the closure of the space of polynomials in L∞(w), if w

has compact support, since then |pw|w ∈ L∞(R).

Theorem 2.2. ([24], Theorem 2.2) Let us consider a weight w with compact support. If pw ≡ 0, then the
closure of the space of polynomials in L∞(w) is {0}. If pw is not identically 0, then the closure of the space
of polynomials in L∞(w) is the set of functions f such that f/pw is in the closure of the space of polynomials
in L∞(|pw|w).

We deal now with the definition of the Sobolev space W k,∞(w), for a vectorial weight w = (w0, . . . , wk).
We follow the approach in [16]. First of all, notice that the distributional derivative of a function f in Ω

is a function belonging to L1
loc(Ω). If f ′ ∈ L∞(Ω, w1), in order to get the inclusion

L∞(Ω, w1) ⊆ L1
loc(Ω) ,

a sufficient condition is that the weight w1 satisfies 1/w1 ∈ L1
loc(Ω) (see e.g. the proof of Theorem 4.1 below).

Consequently, f ∈ ACloc(Ω), i.e. f is an absolutely continuous function on every compact interval contained
in Ω.

Given a vectorial weight w = (w0, . . . , wk), let us denote by Ωj , for 0 < j ≤ k, the largest set (which
is a union of intervals) such that 1/wj ∈ L1

loc(Ωj). We always require that supp wj = Ωj , for 0 < j ≤ k.
We define the Sobolev space W k,∞(w), as the set of all (equivalence classes of) functions f defined in
supp w0 ∪ Ω1 ∪ · · · ∪ Ωk, such that the weak derivative f (j−1) belongs to ACloc(Ωj), for 0 < j ≤ k, and f (j)

belongs to L∞(wj), for 0 ≤ j ≤ k.
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With this definition, the weighted Sobolev space W k,∞(w) is a Banach space (see [16], Section 3). In
general, this is not true without our hypotheses (see some examples in [16]).

3. Approximation by polynomials.

Lemma 3.1. Let us fix an interval [α, β], a positive integer s, a function p0 belonging to L∞([α, β]) with
p0 6= 0 a.e. in [α, β], and {gi}s

i=1 a linearly independent subset of functions of L2([α, β]) \ {0}.
For each continuous functions h1, . . . , hs, let c1, . . . , cs, be real numbers satisfying the following system of

linear equations on {cm}s
m=1

(3)
s∑

m=1

cm

∫ β

α

p0gihm = 0, ∀ 1 ≤ i ≤ s.

Then there exist polynomials h1, . . . , hs, such that the determinant ∆s of the coefficient matrix of the linear
system (3) on c1, . . . , cs is not zero.

Remark 3.1.
1. Since ∆s 6= 0, none of the polynomials h1, . . . , hs can be identically zero.
2. When talking about linear independence, we consider the functions as equivalence classes in L2, that

is to say, a function is linearly dependent of some others when it is equal to a linear combination of
them almost everywhere.

Proof. Let us prove the lemma by induction on m. We will show that for every 1 ≤ m < s, there exists
a polynomial hm+1 such that, together with the polynomials h1, . . . , hm chosen in the previous steps, the
minor ∆m+1 consisting of the m + 1 first rows and columns of the coefficient matrix of (3), is not zero.

If m = 1, since g1 ∈ L2([α, β]) \ {0}, and p0 6= 0 a.e. in [α, β], the functional Λ1(F ) :=
∫ β

α
F p0g1 is not

identically zero in L2([α, β]) (Λ1 is well defined on L2([α, β]) since p0 ∈ L∞([α, β]) and g1 ∈ L2([α, β]));
hence, as the polynomials are dense in L2([α, β]), there exists a polynomial h1 with Λ1(h1) =

∫ β

α
p0g1h1 6= 0.

If m = 2, we must show that there exists a polynomial h2 such that

∆2 :=

∣∣∣∣∣
∫ β

α
p0g1h1

∫ β

α
p0g1h2∫ β

α
p0g2h1

∫ β

α
p0g2h2

∣∣∣∣∣ 6= 0,

that is to say,

∆2 = A12

∫ β

α

p0g1h2 + A22

∫ β

α

p0g2h2 6= 0,

where A12 = − ∫ β

α
p0g2h1 and A22 =

∫ β

α
p0g1h1 6= 0.

Let us define the function

u2(x) := A12p0(x)g1(x) + A22p0(x)g2(x), ∀ x ∈ [α, β],

which is not zero at a positive measured subset of [α, β], since A22 6= 0, g2 is linearly independent of g1, and
p0 6= 0 a.e. in [α, β]. We can define as well

Λ2(F ) :=
∫ β

α

Fu2, ∀ F ∈ L2([α, β]),

since p0 ∈ L∞([α, β]) and gi ∈ L2([α, β]) imply u2 ∈ L2([α, β]). As Λ2 is not identically zero in L2([α, β])
and the polynomials are dense in L2([α, β]), there exists a polynomial h2 with ∆2 = Λ2(h2) 6= 0.

Let us assume the result to be true for m and let us prove it for m + 1. Then,

∆m+1 =
m+1∑

i=1

Ai,m+1

∫ β

α

p0gihm+1,
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where Ai,m+1 (1 ≤ i ≤ m+1) are the minors corresponding to the expansion of ∆m+1 along the last column
(with the proper sign in each case). Notice that Am+1,m+1 6= 0, by induction hypothesis.

Now, let us define the function um+1 on the interval [α, β] and the linear functional Λm+1 on L2([α, β])
similarly to the previous case:

um+1(x) :=
m+1∑

i=1

Ai,m+1p0(x)gi(x)

and

Λm+1(F ) :=
∫ β

α

Fum+1, ∀ F ∈ L2([α, β]).

The function um+1 is not 0 at a positive measured subset of [α, β], since Am+1,m+1 6= 0, gm+1 is linearly
independent of {g1, . . . , gm}, and p0 6= 0 a.e. in [α, β]; therefore Λm+1 is not identically zero on L2([α, β])
and it follows that there exists a polynomial hm+1 such that ∆m+1 = Λm+1(hm+1) 6= 0.

¤

We also need the following elementary result.

Lemma 3.2. Let us consider a, b, u1, . . . , ur ∈ [α, β] and f ∈ L1([α, β]). Then,
∫ b

a

∫ x1

u1

· · ·
∫ xr

ur

f(xr+1) dxr+1 · · · dx2 dx1 =
∫ b

a

f(x)
(b− x)r

r!
dx

+
∑

h

kr−1
h (r)

∫

Jr−1
h (r)

f(x) xr−1 dx + · · ·+
∑

h

k0
h(r)

∫

J0
h(r)

f(x) dx ,

where every sum is finite, kj
h(r) are real numbers, and Jj

h(r) are subintervals of [α, β], whose endpoints belong
to the set {a, u1, . . . , ur}.

In order to control a function by means of its derivative, we are going to need the following version (a
proof can be found in [26], Lemma 3.2) of Muckenhoupt’s inequality (see [22] or [21], p. 44).

Lemma 3.3. Let w0, w1 be weights on [α, β] and a ∈ [α, β]. Then, there exists a positive constant c such
that ∥∥∥∥

∫ x

a

g(t) dt

∥∥∥∥
L∞([α,β],w0)

≤ c ‖g‖L∞([α,β],w1),

for every function g on [α, β], if and only if

ess supα<x<β w0(x)
∣∣∣
∫ x

a

1/w1

∣∣∣ < ∞ .

Theorem 3.1. Let w = (w0, . . . , wk) be a vectorial weight on [α, β] satisfying:

(i)
∫ β

α
1/wk < ∞.

(ii) wj ∈ L∞loc([α, β] \ {aj
1, . . . , a

j
mj
}), for every 0 ≤ j < k.

(iii) wj(x)
∣∣∣
∫ x

aj
i
1/(1 + wj+1)

∣∣∣ ≤ c, a.e. in some neighborhood of aj
i , for every 1 ≤ i ≤ mj, 0 ≤ j ≤ k − 2,

and wk−1(x)
∣∣∣
∫ x

ak−1
i

1/wk

∣∣∣ ≤ c, a.e. in some neighborhood of ak−1
i , for every 1 ≤ i ≤ mk−1.

Then the closure of the space of polynomials in W k,∞(w) is

H1 :=
{

f ∈ W k,∞(w) : f (k) ∈ P ∩ L∞(wk)
L∞(wk)

}
.

Remark 3.2.
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1. Hypothesis (ii) is not restrictive at all, since if ess lim supx→awj(x) = ∞ for an infinite number of
points a ∈ R, for some 0 ≤ j < k, then 0 is the only polynomial in L∞(wj), and it is trivial to find
the closure of the space of polynomials in W k,∞(w).

2. Hypothesis (iii) appears frequently in the applications: It is usual to consider weights wj(x) = |x−a|αj

in a neighborhood of a (this is the case of the Jacobi weights or the weights in Part One of [15]). In
this case, hypothesis (iii) at a is equivalent to αj ≥ −1 if αj+1 ≥ 0, αj ≥ αj+1 − 1 if αj+1 < 0, for
0 ≤ j ≤ k − 2, and αk−1 ≥ αk − 1. In fact, it is usual to have αj = αj+1 − 1 if 0 ≤ j < k.

3. Notice that hypothesis (iii) is much weaker than wj(x)
∣∣∣
∫ x

aj
i
1/wj+1

∣∣∣ ≤ c, appearing in Lemma 3.3,
since some wj+1 are allowed to be 0.

4. The possibility of some wj to be bounded is, naturally, allowed. That is to say, {aj
1, . . . , a

j
mj
} might

be the empty set.

Proof. Whether 0 is the only polynomial in L∞(wk), the result is obvious (if f (k) = 0, then f is a polynomial).
Therefore, without loss of generality, we can assume that there exists in L∞(wk) a non trivial polynomial.

It is obvious that the closure of the space of polynomials in W k,∞(w) is contained in H1.
Then, it suffices to prove that every function in H1 can be approximated by polynomials in the norm

W k,∞(w). Let us consider then, f ∈ H1 and {pn}n a sequence of polynomials converging to f (k) in the
norm L∞(wk). From the sequence {pn}n we will construct another one of polynomials converging to f in
the norm W k,∞(w).

The key idea in order to carry out such a process, is to find, from pn, a polynomial qn,k in M , where M
is the space of polynomials which have a primitive of order k in W k,∞(w). If P were a Hilbert space and
M a closed subspace, it would suffice to take as qn,k the orthogonal projection of pn on M . However, since
our norms do not come from an inner product, the problem is much more complicated; fortunately, thanks
to the three previous lemmas, we will find a finite set of polynomials B in L∞(wk), such that qn,k can be
expressed as a linear combination of pn and elements of B.

Without loss of generality, we can assume that ess lim supx→aj
i
wj(x) = ∞, for every 1 ≤ i ≤ mj , 0 ≤ j < k,

since if ess lim supx→aj
i
wj(x) < ∞, for some aj

i , it is enough to remove it from the list {aj
i : 1 ≤ i ≤ mj , 0 ≤

j < k}. Analogously, such points can be assumed to be ordered, that is to say, that aj
1 < · · · < aj

mj
, for

every 0 ≤ j < k with mj ≥ 2.
Since 1/wk ∈ L1([α, β]), for every function g ∈ W k,∞(w) it follows that

∫ β

α

|g(k)| =
∫ β

α

|g(k)|wk

wk
≤ ‖g(k)‖L∞(wk)

∫ β

α

1
wk

< ∞,

and therefore g(k−1) ∈ AC([α, β]), and g ∈ Ck−1([α, β]).
On the other hand, ess lim supx→aj

i
wj(x) = ∞, for every 1 ≤ i ≤ mj , 0 ≤ j < k and g(j) ∈ L∞(wj),

imply that g(j)(aj
i ) = 0, for every 1 ≤ i ≤ mj , 0 ≤ j < k (it makes sense to talk about the value

of g(j) at aj
i since g(j) is a continuous function). As a consequence of the above remarks, we have that

∫ aj
i+1

aj
i

g(j+1) = g(j)(aj
i+1) − g(j)(aj

i ) = 0, for every 1 ≤ i < mj , 0 ≤ j < k, with mj ≥ 2 and every

g ∈ W k,∞(w).
If wj ∈ L∞([α, β]), for some 0 ≤ j < k, we define aj

1 := α. First, we will construct (from {pn}n) a
sequence of polynomials {qn,k}n which converges to f (k) in the norm L∞(wk), with the additional property

(4)
∫ aj

i+1

aj
i

qn,j+1 = 0, ∀ 1 ≤ i < mj , 0 ≤ j < k,

where

qn,j(x) := f (j)(aj
1) +

∫ x

aj
1

qn,j+1, ∀ 0 ≤ j < k.
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Later we will prove that the sequence of polynomials {qn,j}n converges to f (j) in the norm L∞(wj); the
property (4) will exactly guarantee that qn,j is in L∞(wj). This will be the major advantage of qn,k over pn.

Obviously, in (4) we will only bear in mind the equations related to those j with mj ≥ 2. These equations
could be rewrited as

(5)
∫ aj

i+1

aj
i

∫ xj+1

aj+1
1

· · ·
∫ xk−1

ak−1
1

qn,k(xk) dxk · · · dxj+2 dxj+1 + Hj(f) = 0,

where Hj is a linear operator like Hj(f) =
∑k−1

i=j αj
i f

(i)(ai
1), with αj

i real numbers just depending on
{aj

i , a
j
i+1, a

j+1
1 , . . . , ak−1

1 }.
Now we will use the lemmas 3.1 and 3.2 to prove that it is possible to construct the sequence {qn,k}k

verifying (4). Let us consider p0 := pwk
, the minimal polynomial of L∞(wk) (pwk

is not identically zero, since
L∞(wk) contains non trivial polynomials), the intervals Ij

i := [aj
i , a

j
i+1] when mj ≥ 2, and s :=

∑k−1
j=0 mj−k

(if wj ∈ L∞([α, β]), we define mj := 1, so that s is the total number of intervals Ij
i considered). As

aj
1 < · · · < aj

mj
, for every 0 ≤ j < k with mj ≥ 2, it follows that the intervals Ij

1 , . . . , Ij
mj−1, have disjoint

interior, for every 0 ≤ j < k with mj ≥ 2.
Let us define now functions gj

i if mj ≥ 2. Lemma 3.2 allows us to assure that
∫ aj

i+1

aj
i

∫ x1

aj+1
1

· · ·
∫ xk−j−1

ak−1
1

F (xk−j) dxk−j · · · dx2 dx1 =
∫ aj

i+1

aj
i

F (t)
(aj

i+1 − t)k−j−1

(k − j − 1)!
dt

+
∑

h

kk−j−2
h (i, j)

∫

Jk−j−2
h (i,j)

F (t) tk−j−2 dt + · · ·

+
∑

h

k0
h(i, j)

∫

J0
h(i,j)

F (t) dt,

for every F ∈ L1([α, β]), where every sum is finite. For every 1 ≤ i < mj , 0 ≤ j < k, with mj ≥ 2, we define

gj
i (t) :=

(aj
i+1 − t)k−j−1

(k − j − 1)!
χIj

i
(t)

+
∑

h

kk−j−2
h (i, j) tk−j−1 χJk−j−2

h (i,j)(t) + · · ·+
∑

h

k0
h(i, j)χJ0

h(i,j)(t).

Then, for every F ∈ L1([α, β]),

(6)
∫ aj

i+1

aj
i

∫ x1

aj+1
1

· · ·
∫ xk−j−1

ak−1
1

F (xk−j) dxk−j · · · dx2 dx1 =
∫ β

α

Fgj
i .

Changing F by qn,k in this equality, we get that (5) (and therefore (4)) can be equivalently rewritten as

(7)
∫ β

α

qn,k gj
i + Hj(f) = 0.

Let us define the functions {g1, . . . , gs} as the functions in the list

{gk−1
1 , gk−1

2 , . . . , gk−1
mk−1−1, . . . , g

1
1 , g1

2 , . . . , g1
m1−1, g

0
1 , g0

2 , . . . , g0
m0−1},

in that precise order.
It is obvious that these functions satisfy the hypothesis of Lemma 3.1: gj

i ∈ L2([α, β]) \ {0}; besides, for
every pair i0, j0, the function gj0

i0
is linearly independent of

{gk−1
1 , gk−1

2 , . . . , gk−1
mk−1−1, . . . , g

j0+1
1 , gj0+1

2 , . . . , gj0+1
mj0+1−1, g

j0
1 , gj0

2 , . . . , gj0
i0−1},
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since gj0
i0

is equal to χ
I

j0
i0

multiplied by a polynomial of degree k−j0−1 plus a finite number of characteristic

functions multiplied by polynomials whose degree is lesser than k − j0 − 1, gj
i (with j0 < j < k) is a finite

linear combination of characteristic functions multiplied by polynomials whose degree is lesser or equal than
k − j − 1 < k − j0 − 1, and every interval Ij0

i with i 6= i0 intersects Ij0
i0

at an only point at most.
Therefore, Lemma 3.1 implies that there exist polynomials h1, . . . , hs, such that the determinant ∆s of

the coefficient matrix of the following linear system on c1, . . . , cs is not zero:

(8)
s∑

m=1

cm

∫ β

α

pwk
hmgj

i = 0, ∀ 1 ≤ i < mj , 0 ≤ j < k.

Let us define now
qn,k := pn − c1

n pwk
h1 − c2

n pwk
h2 − · · · − cs

n pwk
hs,

where c1
n, c2

n, . . . , cs
n, must verify (7): These coefficients can be chosen as the only solution of the linear

system
s∑

m=1

cm
n

∫ β

α

pwk
hmgj

i =
∫ β

α

pngj
i + Hj(f), ∀ 1 ≤ i < mj , 0 ≤ j < k,

since the coefficient matrix is the same as the one of the the system (8). Hence, those qn,k so defined verify
(4).

Notice that our argument allows us to construct qn,k as a linear combination of pn, pwk
h1, . . . , pwk

hs,
so that the dependence on n of qn,k is just shown through pn and the coefficients of pwk

h1, . . . , pwk
hs.

Therefore, the functions pwk
h1, . . . , pwk

hs, play the same role in our normed space than the one that a basis
of the orthogonal space to M would play in a Hilbert space. That is the thorough reason why the effort to
guarantee their existence is worth it.

At sight of (iii), it turns out to be natural to define the weights vj := 1 + wj for 0 ≤ j < k and vk := wk.
These weights have an advantage over wj since they verify:

(i’)
∫ β

α
1/vj < ∞, for every 0 ≤ j ≤ k.

(iii’) vj(x)
∣∣∣
∫ x

aj
i
1/vj+1

∣∣∣ ≤ c′, a.e. in some neighborhood of aj
i , for every 1 ≤ i ≤ mj , 0 ≤ j < k.

Let us show that the polynomials {qn,0}n converge to f in the norm W k,∞(v0, . . . , vk) and, therefore,
they converge to f in the norm W k,∞(w).

Let us define En,j := f (j) − qn,j for every 0 ≤ j ≤ k. Thus

(9) En,j(x) = f (j)(x)− qn,j(x) =
∫ x

aj
1

(f (j+1) − qn,j+1) =
∫ x

aj
1

En,j+1, ∀ 0 ≤ j < k.

Since
∫ aj

i+1

aj
i

f (j+1) = f (j)(aj
i+1)− f (j)(aj

i ) = 0, and
∫ aj

i+1

aj
i

qn,j+1 = 0 from the definition of qn,k it follows that

(10)
∫ aj

i+1

aj
i

En,j+1 = 0.

In particular En,j(a
j
i ) = 0, for every 1 ≤ i < mj , 0 ≤ j < k, since En,j(a

j
1) = 0.

The equalities (6), (9) and (10) allow to deduce
∫ β

α
En,kgj

i = 0, for every 1 ≤ i < mj , 0 ≤ j < k, and thus
the coefficients {c1

n, . . . , cs
n} are themselves the only solution of the linear system

s∑
m=1

cm
n

∫ β

α

pwk
hmgj

i =
∫ β

α

(pn − f (k))gj
i , ∀ 1 ≤ i < mj , 0 ≤ j < k.

As the right terms of this system verify∣∣∣∣∣
∫ β

α

(pn − f (k))gj
i

∣∣∣∣∣ ≤
∥∥∥gj

i

∥∥∥
L∞([α,β])

∥∥∥pn − f (k)
∥∥∥

L1([α,β])
≤

∥∥∥gj
i

∥∥∥
L∞([α,β])

∥∥∥pn − f (k)
∥∥∥

L∞(wk)

∫ β

α

1
wk

−→ 0,
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as n tends to infinity, and the coefficient matrix is independent of n, then, applying Cramer’s rule limn→∞ cm
n = 0,

for every 1 ≤ m ≤ s. Therefore,

(11) ‖En,k‖L∞(wk) =
∥∥∥f (k) − qn,k

∥∥∥
L∞(wk)

≤
∥∥∥f (k) − pn

∥∥∥
L∞(wk)

+
s∑

m=1

|cm
n | ‖pwk

hm‖L∞(wk) −→ 0,

as n tends to infinity. Hence, {qn,k}n converges to f (k) in L∞(vk). Let us see now that {qn,0}n converges to
f in W k,∞(v0, . . . , vk).

Next, let us see that

‖En,j‖L∞(vj)
≤ cj ‖En,j+1‖L∞(vj+1)

, ∀ 0 ≤ j < k.

This inequality and (11) give that {qn,0}n converges to f in W k,∞(v0, . . . , vk), which finishes the proof of
the theorem.

First, let us assume that wj /∈ L∞([α, β]). Let us choose a partition of [α, β] by means of mj compact
intervals Hj

1 , . . . ,Hj
mj

, such that aj
i belongs just to Hj

i , for 1 ≤ i ≤ mj . The hypotheses (i’), (ii) and (iii’)
guarantee that vj(x)

∣∣ ∫ x

aj
i
1/vj+1

∣∣ ≤ c1
j for almost every x ∈ Hj

i , for every 1 ≤ i ≤ mj .

If wj ∈ L∞([α, β]), then we define Hj
1 := [α, β] (remember that aj

1 := α). The hypothesis (i’) and
wj ∈ L∞([α, β]) guarantee as well that vj(x)

∣∣ ∫ x

aj
1
1/vj+1

∣∣ ≤ c1
j for almost every x ∈ Hj

1 .
Therefore, whether or not wj is bounded, Lemma 3.3 implies that

‖En,j‖L∞(Hj
i ,vj)

≤ cj‖En,j+1‖L∞(Hj
i ,vj+1)

,

since En,j(a
j
i ) = 0 for every 1 ≤ i ≤ mj . Then

‖En,j‖L∞(vj)
≤ cj ‖En,j+1‖L∞(vj+1)

, ∀ 0 ≤ j < k.

This finishes the proof.
¤

4. Approximation by smooth functions.

Definition 4.1. We say that a vectorial weight w = (w0, . . . , wk) in [a, b] is of type 1 if 1/wk ∈ L1([a, b])
and w0, . . . , wk−1 ∈ L∞([a, b]).

We say that u, v are comparable functions in the set A if there exists a positive constant c such that
c−1u ≤ v ≤ cu a.e. in A. It is clear that L∞(u) and L∞(v) are the same space and have equivalent norms

if u and v are comparable weights.

Definition 4.2. We say that a vectorial weight w = (w0, . . . , wk) in [a, b] is of type 2 if there exist real
numbers a ≤ a1 < a2 < a3 < a4 ≤ b such that

(1) 1/wk ∈ L1([a1, a4]), and w0, . . . , wk−1 ∈ L∞([a, b]),
(2) if a < a1, then wj is comparable to a finite non-decreasing weight in [a, a2], for 0 ≤ j ≤ k,
(3) if a4 < b, then wj is comparable to a finite non-increasing weight in [a3, b], for 0 ≤ j ≤ k.

Observe that the weights of type 1 are also of type 2.
In the following theorems we describe the closure of smooth functions in Sobolev spaces with weights of

types 1 and 2 in compact intervals.

Theorem 4.1. Let us consider a vectorial weight w = (w0, . . . , wk) of type 1 in a compact interval I = [a, b].
Then the closure of P ∩ W k,∞(I, w), C∞(R) ∩ W k,∞(I, w), and Ck(R) ∩ W k,∞(I, w) in W k,∞(I, w) are,
respectively,
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H1 :=
{

f ∈ W k,∞(I, w) : f (k) ∈ P ∩ L∞(I, wk)
L∞(I,wk)

}
,

H2 :=
{

f ∈ W k,∞(I, w) : f (k) ∈ C∞(I) ∩ L∞(I, wk)
L∞(I,wk)

}
,

H3 :=
{

f ∈ W k,∞(I, w) : f (k) ∈ C(I) ∩ L∞(I, wk)
L∞(I,wk)

}
.

Remark 4.1.
1. Let us observe that Theorem 4.1 characterizes the closure of Ck(R)∩W k,∞(I, w), C∞(R)∩W k,∞(I, w),

and P ∩W k,∞(I, w) in W k,∞(I, w), in terms of the similar problem in L∞(I, wk). This question is
completely solved by Theorems 2.1 and 2.2 for the closure of C(R) ∩ L∞(I, wk) and P ∩ L∞(I, wk).
Theorem 2.3 in [24] also characterizes the closure of C∞(R) ∩ L∞(I, wk), for many weights wk.

2. If wk ∈ L∞(I), then the closure of Ck(R), P, and C∞(R) are the same. This is a consequence
of Bernstein’s proof of Weierstrass’ Theorem (see e.g. [5], p. 113), which gives a sequence of
polynomials converging uniformly up to the k-th derivative for any function in Ck(I).

Proof. First of all, let us prove that H3 = Ck(R) ∩W k,∞(I, w)
W k,∞(I,w)

. The inclusion

Ck(R) ∩W k,∞(I, w)
W k,∞(I,w) ⊆ H3

is obvious. Let us consider now a function f ∈ H3, and let us show that it can be approximated by functions
in Ck(R) ∩W k,∞(I, w) with the norm of W k,∞(I, w).

Let g ∈ C(R) be a function which approximates f (k) in L∞(I, wk) norm. We consider the function

h(x) :=
k−1∑

j=0

f (j)(a)
(x− a)j

j!
+

∫ x

a

g(t)
(x− t)k−1

(k − 1)!
dt .

Obviously we have that

f (j)(x)− h(j)(x) =
∫ x

a

(
f (k)(t)− g(t)

) (x− t)k−j−1

(k − j − 1)!
dt , for j = 0, . . . , k − 1.

This gives the inequalities
∣∣∣f (j)(x)− h(j)(x)

∣∣∣ ≤
∫ x

a

∣∣∣f (k)(t)− g(t)
∣∣∣ |x− t|k−j−1

(k − j − 1)!
dt

≤ c1

∫ b

a

∣∣∣f (k)(t)− g(t)
∣∣∣ wk(t)
wk(t)

dt ≤ c1

∥∥1/wk

∥∥
L1(I)

∥∥∥f (k) − g
∥∥∥

L∞(I,wk)
,

for j = 0, . . . , k − 1, since 1/wk ∈ L1(I).
Consequently,

‖f − h‖W k,∞(I,w) ≤ c2

∥∥∥f (k) − g
∥∥∥

L∞(I,wk)
, with h ∈ Ck(R) .

In the other cases the proof is similar. Notice that the nature of the function h depends on the choice
of the function g, that is to say, if g ∈ C∞(R) (respectively, g ∈ P) approximates f in L∞(I, wk), then
h ∈ C∞(R) (respectively, h ∈ P).

¤

Cut and paste functions is a useful method to decompose complicated functions in several simpler ones. In
order to do this the partitions of unity are natural tools. The following result guarantees that this technical
device preserves the Sobolev spaces. To state this result in an abstract and independent way will allows to
simplify the proofs of Theorems 4.2, 4.3 and 5.1.



12 ANA PORTILLA(1)(2), YAMILET QUINTANA, JOSE M. RODRIGUEZ(1)(2) AND EVA TOURIS(1)(3)

Proposition 4.1. Let us consider a vectorial weight w = (w0, . . . , wk). Assume that K is a finite union of
compact intervals J1, . . . , Jn and that for every Jm there is an integer 0 ≤ km ≤ k verifying 1/wkm

∈ L1(Jm),
if km > 0, and wj = 0 a.e. in Jm for km < j ≤ k, if km < k.

(a) If w1, . . . , wk ∈ L∞(K), then fg ∈ W k,∞(w) for every f ∈W k,∞(w) and g∈Ck(R) with supp g′⊆K.
(b) If furthermore f (km) belongs to the closure of C(Jm) ∩ L∞(Jm, wkm) in L∞(Jm, wkm) for some

1 ≤ m ≤ n, then (fg)(j) belongs to the closure of C(Jm) ∩ L∞(Jm, wj) in L∞(Jm, wj) for every
0 ≤ j ≤ km.

Proof. Let us fix f ∈ W k,∞(w) and g ∈ Ck(R) with supp g′ ⊆ K.
First, let us show that fg belongs to W k,∞(w). It is clear that fg belongs to L∞(w0), since g ∈ L∞(R):

it is constant in each connected component of R \ K and it is bounded in the compact set K. The same
argument allows to deduce that fg belongs to W k,∞(I, w) for each connected component I of R \K. Then
we only need to prove that fg belongs to W k,∞(Jm, w) for each m. If km = 0, we have the result, since
W k,∞(Jm, w) = L∞(Jm, w0).

Let us fix now m with km > 0. Then 1/wkm
∈ L1(Jm) and wj = 0 a.e. in Jm for km < j ≤ k, if km < k.

Since f ∈ W k,∞(Jm, w) = W km,∞(Jm, w0, . . . , wkm), the definition of weighted Sobolev space allows to
conclude that f and fg belongs to Ckm−1(Jm). Consequently, for each 0 < j ≤ km, we have that (fg)(j) is
the sum of a continuous function and f (j)g in Jm. Then, we conclude that (fg)(j) belongs to L∞(Jm, wj),
since wj , g ∈ L∞(Jm). This finishes the proof of (a).

Let us assume now that f (km) belongs to the closure of C(Jm) ∩ L∞(Jm, wkm) in L∞(Jm, wkm) for some
1 ≤ m ≤ n. We prove now that (fg)(j) belongs to the closure of C(Jm) ∩ L∞(Jm, wj) in L∞(Jm, wj) for
every 0 ≤ j ≤ km.

The result is direct if km = 0, using Theorem 2.1. Let us fix now m with km > 0.
As we have seen, (fg)(j) is continuous in Jm if 0 ≤ j < km. We also have that (fg)(km) is the sum

of a continuous function and f (km)g in Jm. Using Theorem 2.1, it is easy to check that (fg)(km) verifies
the properties that guarantee that it belongs to the closure of C(Jm) ∩ L∞(Jm, wkm) in L∞(Jm, wkm): the
continuity properties hold directly, and the limits are 0 since wkm , g ∈ L∞(Jm). This finishes the proof. ¤

Theorem 4.2. Let us consider a vectorial weight w = (w0, . . . , wk) of type 2 in a compact interval I = [a, b].
Then the closure of Ck(R) ∩W k,∞(I, w) in W k,∞(I, w) is

H4 :=
{

f ∈ W k,∞(I, w) : f (j) ∈ C(I) ∩ L∞(I, wj)
L∞(I,wj) for 0 ≤ j ≤ k

}
.

Proof. It is clear that the closure of Ck(R)∩W k,∞(I, w) in W k,∞(I, w) is contained in H4. Let us consider
now a function f ∈ H4; we want to see that it can be approximated by functions in Ck(R) ∩W k,∞(I, w)
with the norm of W k,∞(I, w).

Let us consider a partition of unity {ψ1, ψ2, ψ3} ⊆ C∞c (R) in I satisfying: ψ1 + ψ2 + ψ3 = 1 in I,
ψ1|[a,a1] ≡ 1, ψ2|[a4,b] ≡ 1, ψ3|[a2,a3] ≡ 1, suppψ1 ⊆ [a, a2− δ], supp ψ2 ⊆ [a3 + δ, b], supp ψ3 ⊆ [a1 + δ, a4− δ],
for some δ > 0. We consider also the functions fi = fψi for i = 1, 2, 3. If a = a1 and a4 < b (or a4 = b and
a < a1), we consider a partition of unity with only two functions. If a = a1 and a4 = b, then w is a weight
of type 1 in I, and we can apply Theorem 4.1. Then we only consider the case a < a1 and a4 < b, since the
other cases are easier.

Without loss of generality, we can assume that wj is a finite non-decreasing weight in [a, a2], and a finite
non-increasing weight in [a3, b], for 0 ≤ j ≤ k.

Observe that each fi belongs to W k,∞(I, w) by Proposition 4.1, since 1/wk ∈ L1([a1, a4]), supp ψ′i ⊆
[a1, a2] ∪ [a3, a4], and w1, . . . , wk ∈ L∞([a1, a2] ∪ [a3, a4]), because the weights wj are monotonic functions.

Since f (k) belongs to the closure of C([a1, a2] ∪ [a3, a4]) ∩ L∞([a1, a2] ∪ [a3, a4], wk) in L∞([a1, a2] ∪
[a3, a4], wk), then Proposition 4.1 also implies that f

(j)
i belongs to the closure of C([a1, a2] ∪ [a3, a4]) ∩

L∞([a1, a2] ∪ [a3, a4], wj) in L∞([a1, a2] ∪ [a3, a4], wj) for every 0 ≤ j ≤ k and 1 ≤ i ≤ 3.
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Let us observe that f
(j)
i is equal either to f (j) or to 0 in each interval [a, a1], [a2, a3], [a4, b], for any

0 ≤ j ≤ k. Then Corollary 2.1 allows to deduce that f
(j)
i belongs to the closure of C(I) ∩ L∞(I, wj) in

L∞(I, wj) for every 0 ≤ j ≤ k.
It is enough to show that each fi can be approximated in W k,∞(I, w) by functions belonging to Ck(I),

since f = f1 + f2 + f3 in I.
(1) Approximation of f1.
For fixed 0 ≤ j ≤ k, let us consider the functions gλ(x) := f

(j)
1 (x + λ) with 0 < λ < δ. It is clear that gλ

also belongs to L∞([a, b], wj), since wj |[a,a2] is non-decreasing for 0 ≤ j ≤ k and supp f
(j)
1 ⊆ [a, a2 − δ].

Next, we show that gλ tends to f
(j)
1 in L∞(I, wj) as λ → 0+. We need to estimate

J(λ) :=
∥∥∥f

(j)
1 − gλ

∥∥∥
L∞(I,wj)

= ess supx∈[a,a2]

∣∣∣f (j)
1 (x)− gλ(x)

∣∣∣ wj(x),

since f
(j)
1 (x) = gλ(x) = 0 for x ≥ a2 and 0 < λ < δ.

We define αj := max{x ∈ [a, b] : wj(t) = 0 for a.e.t ∈ [a, x]}.
If αj ≥ a2, we obtain J(λ) = 0.We deal now with the case αj < a2.
Theorem 2.1 guarantees that f (j) ∈ C((αj , a2]) and then f

(j)
1 ∈ C((αj , b]).

Let us assume that limx→α+
j

wj(x) > 0. Hence, Theorem 2.1 implies that f
(j)
1 ∈ C([αj , b]) and, conse-

quently, limλ→0+ J(λ) = 0, since f
(j)
1 is uniformly continuous in C([αj , b]) and wj ≤ wj(a2)χ[αj ,a2] in [a, a2].

If we do not have limx→α+
j

wj(x) > 0, then limx→α+
j

wj(x) = 0, since wj is a non-decreasing weight in [a, a2].

Since f
(j)
1 belongs to the closure of C(I) ∩ L∞(I, wj) in L∞(I, wj) and limx→α+

j
wj(x) = 0, Theorem 2.1

implies that ess limx→α+
j
f

(j)
1 (x)wj(x) = 0. In fact, we can deduce limx→α+

j
f

(j)
1 (x)wj(x) = 0, since wj is a

finite non-decreasing weight in [a, a2] and f
(j)
1 ∈ C((αj , b]). As a consequence, there exists 0 < δ1 ≤ δ such

that
∣∣∣f (j)

1 (x)
∣∣∣ wj(x) < ε/3, whenever x ∈ (αj , αj + 2δ1]. Then

∣∣∣f (j)
1 (x)− gλ(x)

∣∣∣ wj(x) ≤
∣∣∣f (j)

1 (x)wj(x)− gλ(x)wj(x + λ)
∣∣∣ + |gλ(x)wj(x + λ)− gλ(x)wj(x)| < ε,

for any x ∈ (αj , αj + δ1] and 0 < λ < δ1, since
∣∣∣f (j)

1 (x)wj(x)− gλ(x)wj(x + λ)
∣∣∣ ≤

∣∣∣f (j)
1 (x)

∣∣∣ wj(x) + |gλ(x)|wj(x + λ) <
2ε

3
,

and
|gλ(x)wj(x + λ)− gλ(x)wj(x)| ≤ |gλ(x)|wj(x + λ) <

ε

3
,

because the weight wj is non-decreasing.
Using the uniform continuity of f

(j)
1 in [αj + δ1, a2], there exists 0 < δ2 ≤ δ1 such that

∣∣∣f (j)
1 (x)− gλ(x)

∣∣∣ wj(x) ≤ wj(a2)
∣∣∣f (j)

1 (x)− gλ(x)
∣∣∣ < ε,

for every x ∈ [αj + δ1, a2] if 0 < λ < δ2; that is to say, J(λ) =
∥∥∥f

(j)
1 − gλ

∥∥∥
L∞([αj ,a2],wj)

≤ ε.

Then, it is enough to approximate (f1)λ(x) := f1(x + λ) in W k,∞(I, w) for λ > 0 small enough.
Without loss of generality, we can assume that a = minj αj , since in other case we can consider the

interval [minj αj , b] instead of [a, b]. Then, f is continuous in (a, a2] and, consequently, f1 is continuous in
(a, b].

Let {φt}t>0 be an usual approximation of the identity: φt(x) = t−1φ(t−1x) for all x ∈ R, t > 0, with
φ ∈ C∞c ((−1, 1)) verifying φ ≥ 0 and

∫
φ = 1. Set ut the convolution ut := (f1)λ∗φt, with 0 < t < λ/2 < δ/2.

Then ut ∈ C∞(I), since (f1)λ ∈ C([a−λ/2, b]) ⊂ L1([a−λ/2, b]). We have to use (f1)λ instead of f1 because
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of this good property. We define vt := u
(j)
t = gλ ∗ φt for some fixed 0 ≤ j ≤ k. We only need to check that

vt approximates gλ in L∞(I, wj) as t → 0+. But

‖vt − gλ‖L∞(I,wj) = ess supx∈I

∣∣∣∣
∫ t

−t

gλ(x− y)φt(y) dy −
∫ t

−t

gλ(x)φt(y) dy

∣∣∣∣ wj(x)

≤
∫ t

−t

ess supx∈I |gλ(x− y)− gλ(x)|wj(x)φt(y) dy

≤ sup
|y|≤t

{
ess supx∈I

∣∣∣f (j)
1 (x)− gλ(x− y)

∣∣∣ wj(x) + ess supx∈I

∣∣∣f (j)
1 (x)− gλ(x)

∣∣∣ wj(x)
} ∫ t

−t

φt(y) dy

= sup
|y|≤t

{J(λ− y) + J(λ)} ≤ 2 sup
0<s<2λ

J(s),

and this last term tends to zero since J(λ) → 0 as λ → 0+. Therefore, given ε > 0, there is a function
f1,ε ∈ C∞(I) such that ‖f1 − f1,ε‖W k,∞(I,w) < ε.

(2) Approximation of f2.
We obtain the result applying a symmetric argument to (1).
(3) Approximation of f3.
It is a consequence of Theorem 4.1:
We define w∗k := wk + χ[a,a1+δ]∪[a4−δ,b] and w∗ := (w0, . . . , wk−1, w

∗
k); since 1/w∗k ∈ L1(I), we have that

w∗ is a weight of type 1 in I. Let us observe that f3 ∈ W k,∞(I, w∗), since supp f3 ⊆ [a1 + δ, a4 − δ]. Then
f

(k)
3 belongs to the closure of C(I)∩L∞(w∗k) in L∞(w∗k) by Corollary 2.1: we have seen that f

(k)
3 belongs to

the closure of C([a1 +δ, a4−δ])∩L∞([a1 +δ, a4−δ], w∗k) in L∞([a1 +δ, a4−δ], w∗k) = L∞([a1 +δ, a4−δ], wk),
and f

(k)
3 = 0 in [a, a1 + δ] ∪ [a4 − δ, b].

Hence, Theorem 4.1 implies that f3 can be approximated by functions in Ck(R) ∩W k,∞(I, w∗) with the
norm of W k,∞(I, w∗). Therefore, f3 can be approximated by functions in Ck(R) ∩ W k,∞(I, w) with the
norm of W k,∞(I, w), since wj ≤ w∗j for every 0 ≤ j ≤ k.

¤

The following result allows to deal with weights which can be obtained by “gluing” simpler ones.

Theorem 4.3. Let us consider strictly increasing sequences of real numbers {an}, {bn} (n belonging to a
finite set, to Z, Z+ or Z−) with bn−1 < an+1 < bn for every n. Let w = (w0, . . . , wk) be a vectorial weight
in the interval I := ∪n[an, bn]. Let us assume also that for each n we have either w is of type 1 in [an, bn],
or 1/wk ∈ L∞([an, bn]). Then the closure of Ck(I) ∩W k,∞(I, w) in W k,∞(I, w) is

H3 :=
{

f ∈ W k,∞(I, w) : f (k) ∈ C(I) ∩ L∞(I, wk)
L∞(I,wk)

}
.

Remark 4.2.
1. The hypothesis 1/wk ∈ L∞([an, bn]) is stronger than 1/wk ∈ L1([an, bn]); however, here we do not

have the hypothesis w0, . . . , wk−1 ∈ L∞([an, bn]) which is required for weights of type 1.
2. The hypothesis 1/wk ∈ L∞([an, bn]) is very restrictive, but we only need it in a subset of the interval

I. Notice that we are considering also weights of type 1 in other subintervals, so in this way Theorem
4.3 gives a general enough criterion.

3. Let us observe that we do not require any technical hypothesis which are usual in this kind of theorems
(see, for example, Theorem 5.3).

Proof. We prove the non-trivial implication. Given any fixed f ∈ H3, we will find functions in Ck([an, bn])∩
W k,∞([an, bn], w) approximating f ; next, we will paste them in an appropriate way.

Without loss of generality we can assume that w0 ≥ cn > 0 in [an, bn], since in other case we can change
w0 by w∗0 := w0 +

∑
n cnχ[an,bn], where {cn}n are chosen such that (cn−1 + cn + cn+1)‖f‖L∞([an,bn]) ≤ 1

(recall that f (k) ∈ L1([an, bn]), since 1/wk ∈ L1([an, bn]), and hence f ∈ C([an, bn])). Then f ∈ W k,∞(I, w∗)
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if w∗j := wj for 1 ≤ j ≤ k, since ‖f‖W k,∞(I,w∗) ≤ ‖f‖W k,∞(I,w) + 1. It is clear that it is more difficult to
approximate f in W k,∞(I, w∗) than in W k,∞(I, w).

If for some n we have 1/wk ∈ L∞([an, bn]), then there is no singularity of wk in [an, bn]; consequently,
f (k) ∈ C([an, bn]) by Theorem 2.1, and therefore f ∈ Ck([an, bn]). Hence, we can choose f as its own
approximating function in this interval.

We consider now an interval [an, bn] with w of type 1 in [an, bn]. Next, we prove that if ess lim supt→xwk(t) =
∞ for every x ∈ [an, bn−1]∪ [an+1, bn], then we can choose approximating functions to f in W k,∞([an, bn], w)
which are equal to f in [an, bn−1] ∪ [an+1, bn]:

If ess lim supt→xwk(t) = ∞ for every x ∈ [an, bn], then any continuous function in L∞([an, bn], wk) is zero
in this interval. Consequently, f (k) = 0 in [an, bn], since f ∈ H3. Hence, f is a polynomial in this interval
and we can choose f as its own approximating function in [an, bn].

If ess lim supt→x0
wk(t) < ∞ for some x0 ∈ [bn−1, an+1], we can choose some interval Jn with x0 ∈ Jn ⊂

[bn−1, an+1] and wk ∈ L∞(Jn). Let us consider approximating functions {fl}l to f (k) in L∞([an, bn], wk).
Let us choose a function p0 ∈ Cc(Jn) such that p0 > 0 in the interior of Jn. Since wk ∈ L∞(Jn), we

deduce that p0 ∈ L∞(wk). We define

vl := fl − c1
l p0h1 − · · · − ck

l p0hk ,

where the functions h1, . . . , hk, and the constants c1
l , . . . , c

k
l , are chosen as follows: If gi(t) := (bn − t)i−1 for

1 ≤ i ≤ k, Lemma 3.1 guarantees that there exist polynomials h1, . . . , hk, such that the determinant of the
coefficient matrix of the following linear system on {cm

l }1≤m≤k is not zero (since suppp0 = Jn, the interval
[an, bn] in the left hand side of (12) can be substituted by Jn in order to apply Lemma 3.1):

(12)
k∑

m=1

cm
l

∫ bn

an

p0gihm =
∫ bn

an

(fl − f (k))gi , ∀ 1 ≤ i ≤ k .

Hence, we can compute {cm
l }1≤m≤k verifying this linear system, using the Cramer’s rule. We consider

the functions {vl}l with this choice of h1, . . . , hk, and c1
l , . . . , c

k
l . It is clear that {vl}l ⊂ C([an, bn]) ∩

L∞([an, bn], wk), since p0 ∈ C([an, bn]) ∩ L∞([an, bn], wk).
Therefore,

∫ bn

an
vlgi =

∫ bn

an
f (k)gi for all 1 ≤ i ≤ k. Let us define

Vl(x) :=
k−1∑

i=0

f (i)(an)
i!

(x− an)i +
∫ x

an

vl(t)
(x− t)k−1

(k − 1)!
dt .

It is clear that V
(j)
l (an) = f (j)(an), for all 0 ≤ j < k. Since ess lim supt→xwk(t) = ∞ for every x ∈ [an, bn−1],

we have vl = f (k) = 0 in [an, bn−1], and consequently Vl = f in [an, bn−1].
We have, for 0 ≤ j < k,

V
(j)
l (bn) =

k−1∑

i=j

f (i)(an)
(i− j)!

(bn − an)i−j +
∫ bn

an

vl(t)
(bn − t)k−j−1

(k − j − 1)!
dt

=
k−1∑

i=j

f (i)(an)
(i− j)!

(bn − an)i−j +
∫ bn

an

f (k)(t)
(bn − t)k−j−1

(k − j − 1)!
dt = f (j)(bn) .

Since ess lim supt→xwk(t) = ∞ for every x ∈ [an+1, bn], we have vl = f (k) = 0 in this interval, and conse-
quently Vl = f in [an+1, bn].

In order to see that Vl converges to f in W k,∞([an, bn], w), we prove first that vl converges to f (k) in
L∞([an, bn], wk) and in L1([an, bn]). We get

∥∥∥f (k) − fl

∥∥∥
L1([an,bn])

=
∫ bn

an

∣∣∣f (k) − fl

∣∣∣ wk

wk
≤

∥∥∥f (k) − fl

∥∥∥
L∞([an,bn],wk)

∫ bn

an

1
wk

−→ 0 ,
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as l tends to infinity. Since fl converges to f (k) in L1([an, bn]), we deduce that the right hand side of (12)
tends to zero when l tends to infinity. Since the coefficient matrix of (12) does not depend on l, this fact
implies that liml→∞ cm

l = 0, for all 1 ≤ m ≤ k. Consequently, vl converges to f (k) in L∞([an, bn], wk) and
in L1([an, bn]), since fl converges to f (k) in L∞([an, bn], wk) and in L1([an, bn]).

Then, for any 0 ≤ j < k and x ∈ [an, bn], we deduce
∣∣∣f (j)(x)− V

(j)
l (x)

∣∣∣ =
∣∣∣∣
∫ x

an

(
f (k)(t)− vl(t)

) (x− t)k−j−1

(k − j − 1)!
dt

∣∣∣∣

≤
∫ bn

an

∣∣∣f (k)(t)− vl(t)
∣∣∣ |x− t|k−j−1

(k − j − 1)!
dt

≤ c1

∥∥∥f (k) − vl

∥∥∥
L1([an,bn])

≤ c2

∥∥∥f (k) − vl

∥∥∥
L∞([an,bn],wk)

.

Since w0, . . . , wk−1 ∈ L∞([an, bn]) (recall that w is of type 1 in [an, bn]), Vl converges to f in W k,∞([an, bn], w),
and this fact finishes this part of the proof.

In a similar way, a simpler argument shows the following: If w is of type 1 in [an, bn] and ess lim supt→xwk(t) =
∞ for every x ∈ [an, bn−1] (respectively [an+1, bn]), then we can choose approximating functions to f in
W k,∞([an, bn], w) which are equal to f in [an, bn−1] (respectively [an+1, bn]).

We have described how to choose the approximating functions to f in W k,∞([an, bn], w) for each n.
Now we proceed to paste them. If we have either (a) 1/wk ∈ L∞([an, bn]) and 1/wk ∈ L∞([an+1, bn+1]),
or (b) ess lim supt→xwk(t) = ∞ for every x ∈ [an+1, bn], it is trivial to paste the approximations to f in
W k,∞([an, bn], w) and in W k,∞([an+1, bn+1], w), since both are equal to f in [an+1, bn].

Therefore, we only need to paste functions on [an+1, bn] with w of type 1 in [an+1, bn] such that wk ∈
L∞(In) for some interval In ⊂ [an+1, bn]. Then we have w ∈ L∞(In),

∫
In

w0 > 0 and 1/wk ∈ L1(In).
Without loss of generality we can assume that this fact holds for every n, since if we have either (a) or (b),
we can join [an, bn] and [an+1, bn+1] in a single interval. Then the statement follows from Theorems 4.1 and
5.3 (the intervals {In}n satisfy the technical hypotheses of Theorem 5.3, by the remark to Theorem 5.3).

¤
We can deduce the following consequence.

Theorem 4.4. Let us consider a vectorial weight w = (w0, . . . , wk) in the interval I, with w0, . . . , wk−1 ∈
L∞loc(I) and 1/wk ∈ L1

loc(I). Then the closure of C∞(I)∩W k,∞(I, w) and Ck(I)∩W k,∞(I, w) in W k,∞(I, w)
are, respectively,

H2 :=
{

f ∈ W k,∞(I, w) : f (k) ∈ C∞(I) ∩ L∞(I, wk)
L∞(I,wk)

}
,

H3 :=
{

f ∈ W k,∞(I, w) : f (k) ∈ C(I) ∩ L∞(I, wk)
L∞(I,wk)

}
.

Proof. The second equality is a direct consequence of Theorem 4.3. It is enough to split I as a union of
compact intervals [an, bn] (n belonging to a finite set, to Z, Z+ or Z−), with bn−1 < an+1 < bn for every n.
We have that w is of type 1 in each [an, bn], since w ∈ L∞([an, bn]) and 1/wk ∈ L1([an, bn]) for every n.

The first equality is similar. We only need to change C and Ck by C∞ everywhere in the proof of Theorem
4.3 (in this case, w is of type 1 in every interval).

¤

5. Some more technical results.

We collect in this section some complementary results, which require more background. We refer to [28]
for the precise definitions that we need; we do not explain these definitions in a rigorous way here since it
would require several pages with many technical details, and the results in this section are not the main
theorems of the paper. However, we present here an heuristic explanation of the more important concepts
that we need.
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A point a ∈ I is right (respectively, left) m-regular if every function f in W k,∞(I, w) verifies that f (m) is
absolutely continuous in a right (respectively, left) neighborhood of a (it can be granted by the iterated use
of Muckenhoupt inequality). A point is m-regular if it is right m-regular and left m-regular. We denote by
Ω(m) the set of m-regular points (or half-points). (If [a, b] ⊆ Ω(m), then f (m) ∈ AC([a, b]) for every function
f ∈ W k,∞(I, w).) It is clear that Ωm+1 ∪ · · · ∪ Ωk ⊆ Ω(m) (see the definition of Ωj at the end of Section 2).

We denote by K(I, w) the set of functions f in W k,∞(I, w) with ‖f‖W k,∞(I,w) = 0. It is convenient that
K(I, w) = {0}, but there are vectorial weights, as (w0, w1) = (0, 1), that do not satisfy this property. The

condition (I, w) ∈ C0 is a technical requirement a little stronger than K(I, w) = {0}; it is satisfied if, for
example, K(I, w) = {0} and Ω(0) \ (Ω1 ∪ · · · ∪ Ωk) has only a finite number of points in each connected
component of Ω(0) (see Remark 1 to Definition 3.10 in [28], or the proof of [26], Theorem 4.3). This is a
weak condition, since Ωm+1 ∪ · · · ∪ Ωk ⊆ Ω(m) ⊆ Ωm+1 ∪ · · · ∪ Ωk (see the remark before Definition 3.7 in
[28] or the remark before Definition 7 in [26]).

If (I, wm, . . . , wk) ∈ C0 and J is a compact interval contained in Ω(m−1), we have that there exists a
constant c = c(J,wm, . . . , wk) with

‖f (m)‖L1(J) ≤ c ‖f (m)‖W k−m,∞(I,wm,...,wk) ,

for every f ∈ W k−m,∞(I, wm, . . . , wk) which can be approximated by functions in Ck−m(I)∩W k−m,∞(I, wm, . . . , wk)
with the norm of W k−m,∞(I, wm, . . . , wk) (see Corollary B in [28] or Corollary 4.3 in [26]). In fact, these
corollaries are stronger, but this statement is good enough for our applications in this section.

We need a specific definition.

Definition 5.1. We say that a vectorial weight w = (w0, . . . , wk) in [a, b] is of type 3 if there exist real
numbers a ≤ a1 < a2 < a3 < a4 ≤ b and integers k1, k2 ≥ 0 such that

(1) 1/wk ∈ L1([a1, a4]), and w0, . . . , wk−1 ∈ L∞([a, b]),
(2) if a < a1, then wj is comparable to a finite non-decreasing weight in [a, a2], for k1 ≤ j ≤ k, and a is

right (k1 − 1)-regular if k1 > 0,
(3) if a4 < b, then wj is comparable to a finite non-increasing weight in [a3, b], for k2 ≤ j ≤ k, and b is

left (k2 − 1)-regular if k2 > 0.

Observe that the weights of type 1 or 2 are also of type 3.

Theorem 5.1. Let us consider a vectorial weight w = (w0, . . . , wk) of type 3 in a compact interval I = [a, b].
Then the closure of Ck(R) ∩W k,∞(I, w) in W k,∞(I, w) is

H4 :=
{

f ∈ W k,∞(I, w) : f (j) ∈ C(I) ∩ L∞(I, wj)
L∞(I,wj) for 0 ≤ j ≤ k

}
.

Proof. Consider f ∈ H4 and fi = fψi for i = 1, 2, 3, as in the proof of Theorem 4.2. It is enough to show
that each fi can be approximated by functions in Ck(R) ∩W k,∞(I, w) with the norm of W k,∞(I, w).

(1) Approximation of f1.
If k1 = 0, we can approximate f1 as in the case of weights of type 2. Assume now k1 > 0.
Let us define w̃j = wj + χ[a2,b] for 0 ≤ j ≤ k, and w̃ = (w̃0, w̃1, . . . , w̃k), which is also a weight of type

3. Then f1 belongs to W k,∞(I, w̃), since f1 = 0 in [a2, b]. It is obvious that it is more complicated to
approximate f1 in W k,∞(I, w̃) than in W k,∞(I, w). Let us observe that K(I, w̃k1 , . . . , w̃k) = {0}. We have
that [a, a1] ⊂ supp wk1 ∪ · · · ∪ supp wk, since wj is comparable to a finite non-decreasing weight in [a, a2], for
k1 ≤ j ≤ k, and a is right (k1 − 1)-regular. Then we conclude that (a, b] ⊆ Ωk1 ∪ · · · ∪Ωk. This implies that
(a, b] ⊆ Ω(k1−1) = [a, b] = I, since a is right (k1 − 1)-regular; consequently, Ω(k1−1) \ (Ωk1 ∪ · · · ∪ Ωk) ⊆ {a}.
This fact and K(I, w̃k1 , . . . , w̃k) = {0} allows to deduce that (I, w̃k1 , . . . , w̃k) ∈ C0.

Therefore, without loss of generality we can assume that (I, wk1 , . . . , wk) ∈ C0 in order to approximate
f1 by functions in Ck(I).

By Theorem 4.2, it is possible to approximate f
(k1)
1 by functions in Ck−k1(R) in the norm of

W k−k1,∞(I, wk1 , . . . , wk).
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If g ∈ Ck−k1(R) approximates f
(k1)
1 in W k−k1,∞(I, wk1 , . . . , wk), we can consider the function

h(x) :=
k1−1∑

j=0

f
(j)
1 (a)

(x− a)j

j!
+

∫ x

a

g(t)
(x− t)k1−1

(k1 − 1)!
dt ,

since there exists f
(k1−1)
1 (a), because a is right (k1 − 1)-regular. Then we have

f
(j)
1 (x)− h(j)(x) =

∫ x

a

(
f

(k1)
1 (t)− g(t)

) (x− t)k1−j−1

(k1 − j − 1)!
dt, for 0 ≤ j < k1 .

Now, by Corollary B in [28], we have for 0 ≤ j < k1,∥∥∥f
(j)
1 − h(j)

∥∥∥
L∞(I)

≤ c
∥∥∥f

(k1)
1 − g

∥∥∥
L1(I)

≤ c
∥∥∥f (k1) − g

∥∥∥
W k−k1,∞(I,wk1 ,...,wk)

,

since (I, wk1 , . . . , wk) ∈ C0 and I = Ω(k1−1). Hence, we have for 0 ≤ j < k1,∥∥∥f
(j)
1 − h(j)

∥∥∥
L∞(I,wj)

≤ c
∥∥∥f (k1) − g

∥∥∥
W k−k1,∞(I,wk1 ,...,wk)

,

since w0, . . . , wk1−1 ∈ L∞(I).
(2) Approximation of f2.
We use the same proof with the appropriate symmetry.
(3) Approximation of f3.
We proceed as in the proof of Theorem 4.2.
This finishes the proof of Theorem 5.1.

¤
The ideas in the proof of Theorem 5.1 can be generalized in order to obtain the following result, which re-

sults very useful, since in [25] there are theorems which characterize the closure of C1(R) in W 1,∞(I, w0, w1),
for very general weights w0, w1.

Theorem 5.2. Let us consider a vectorial weight w = (w0, . . . , wk) in a compact interval I = [a, b], verifying
I = Ω(m−1) and w0, . . . , wm−1 ∈ L∞(I), for some 0 < m ≤ k. Let us assume that (I, wm, . . . , wk) ∈ C0.
If the closure of Ck−m(R) ∩W k−m,∞(I, wm, . . . , wk) in W k−m,∞(I, wm, . . . , wk) is H, then the closure of
Ck(R) ∩W k,∞(I, w) in W k,∞(I, w) is

H5 :=
{

f ∈ W k,∞(I, w) : f (m) ∈ H
}

.

Proof. If g ∈ Ck−m(R) approximates f (m) in W k−m,∞(I, wm, . . . , wk), we can consider the function

h(x) :=
m−1∑

j=0

f (j)(a)
(x− a)j

j!
+

∫ x

a

g(t)
(x− t)m−1

(m− 1)!
dt ,

since there exists f (m−1)(a), because a ∈ I = Ω(m−1). Then we have

f (j)(x)− h(j)(x) =
∫ x

a

(
f (m)(t)− g(t)

) (x− t)m−j−1

(m− j − 1)!
dt, for 0 ≤ j < m .

Now, by Corollary B in [28], we have for 0 ≤ j < m,∥∥∥f (j) − h(j)
∥∥∥

L∞(I)
≤ c

∥∥∥f (m) − g
∥∥∥

L1(I)
≤ c

∥∥∥f (m) − g
∥∥∥

W k−m,∞(I,wm,...,wk)
,

since I = Ω(m−1), and (I, wm, . . . , wk) ∈ C0. Hence, we have for 0 ≤ j < m,∥∥∥f (j) − h(j)
∥∥∥

L∞(I,wj)
≤ c

∥∥∥f (m) − g
∥∥∥

W k−m,∞(I,wm,...,wk)
,

since w0, . . . , wm−1 ∈ L∞(I).
¤



WEIERSTRASS’ THEOREM IN WEIGHTED SOBOLEV SPACES WITH k DERIVATIVES 19

The results of this paper are more valuable thanks to the following theorem. It allows to deal with
weights which can be obtained by “gluing” simpler ones. Consequently, the theorems in this paper can be
used together with the results in [28] and [25].

Theorem 5.3. ([28], Theorem 5.2) Let us consider strictly increasing sequences of real numbers {an}, {bn}
(n belonging to a finite set, to Z, Z+ or Z−) with an+1 < bn for every n. Let w = (w0, . . . , wk) be a vectorial
weight in the interval I := ∪n[an, bn]. Assume that for each n there exists an interval In ⊂ [an+1, bn] with
w ∈ L∞(In) and (In, w) ∈ C0. Then f can be approximated by functions of C∞(I) in W k,∞(I, w) if and
only if it can be approximated by functions of C∞([an, bn]) in W k,∞([an, bn], w) for each n. The same result
is true if we replace C∞ by Ck in both cases.

Remark 5.1. Condition (In, w) ∈ C0 is satisfied in many cases; it holds, for example, if
∫

In
w0 > 0 and

1/wk ∈ L1(In).
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[29] J. M. Rodŕıguez, The multiplication operator in Sobolev spaces with respect to measures, J. Approx. Theory 109 (2001),

157-197.
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