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Abstract. In this paper we prove that any Riemannian surface, with no restriction of curvature at all, can
be decomposed into blocks belonging just to some of these types: generalized Y-pieces, generalized funnels
and halfplanes.
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1. Introduction.

The Classification Theorem of compact surfaces says that every orientable compact topological surface is
homeomorphic either to a sphere or to a “torus” of genus g ≥ 1 (see e.g. [9]).

We say that the closure of a three-holed sphere (which is a bordered compact topological surface whose
border is the union of three pairwise disjoint simple closed curves) is a topological Y-piece. A Y-piece
can be visualized as a tubing with the shape of the letter Y. A cylinder is a bordered topological surface
homeomorphic to S1 × [0,∞), where S1 is the unit circle.

We refer to the next section for precise definitions and background.
The Classification Theorem of compact surfaces says, in other words, that every orientable compact

topological surface except for the sphere and the torus (of genus 1) can be obtained by gluing topological
Y-pieces along their boundaries.

In [1], the Classification Theorem is generalized to noncompact surfaces in the following way:

Theorem 1.1. ([1, Theorem 1.1]) Every complete orientable topological surface which is homeomorphic
neither to the sphere nor to the plane nor to the torus is the union (with pairwise disjoint interiors) of
topological Y-pieces and cylinders.

The following result is the most important in [1] and is a geometric version of the theorem above for
complete surfaces with constant negative curvature. In this case we have more information about the basic
blocks of the surface: the surface can be decomposed in such a way that the boundary of the blocks is the
union of at most three simple closed geodesics. Since the Riemannian structure is more restrictive than the
topological one, an additional piece is necessary in order to achieve the decomposition: the halfplane.

We state now this result for Riemannian surfaces.

Theorem 1.2. ([1, Theorem 1.2]) Every complete orientable Riemannian surface with constant curvature
K = −1, which is not the punctured disk, is the union (with pairwise disjoint interiors) of generalized
Y-pieces, funnels and halfplanes.

In the applications of Theorem 1.2, it is a crucial fact that the boundaries of the generalized Y-pieces are
simple closed geodesics. There is a clear reason for this: it is very easy to cut and paste surfaces along such
kind of curves.
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Furthermore, closed geodesics in a Riemannian surface S are geometrical objects interesting by themselves.
Since they are the periodic orbits of the dynamical system associated to S on its unit tangent bundle, they
provide tools to study the geodesic flow, just like the fixed points of an automorphism helps to study it.
Lastly, the closed geodesics are becoming more and more important in the study of heat and wave equations,
and of the spectrum of S. The lengths of all closed geodesics determine largely the spectrum. Conversely,
the spectrum determines completely the lengths of the closed geodesics (see [4], [8], [5]).

In this paper we prove the conclusion of Theorem 1.2 with no restriction of curvature at all (see Theorem
4.3 forward). In our context, we require that the boundaries of the generalized Y-pieces are minimizing
simple closed geodesics (in its free homotopy class). Although if K = −1 the property of minimization ever
holds (see e.g. Theorem 3.7 and Lemma 3.9), this is obviously false for arbitrary curvature.

Theorem 4.8 is a sharp version of Theorem 4.3 for Riemannian surfaces with curvature K ≤ −c2 < 0.
Finally, Theorems 4.10 and 4.11 are versions, respectively, of Theorems 4.3 and 4.8 in the context of

bordered Riemannian surfaces.
J. L. Fernández and M. V. Melián (see [7]) proved the following result which helps to understand the

behavior of geodesics in surfaces with curvature K = −1.

Theorem 1.3. ([7, Theorem 1]) Let S be a complete orientable Riemannian surface with curvature K = −1.
There are three possibilities:

(i) S has finite area. Then for every p ∈ S there is exactly a countable collection of directions in E(p).
(ii) S is transient. Then for every p ∈ S, E(p) has full measure.
(iii) S is recurrent and of infinite area. Then for every p ∈ S, E(p) has zero length but its Hausdorff

dimension is 1.

A surface is said to be transient (respectively, recurrent) if Brownian motion of S is transient (respectively,
recurrent). Also, we define E(p) as the set of unitary directions v in the tangent plane of S at p such that
the unit speed geodesic emanating from p in the direction of v, escapes to infinity.

Just like Theorem 1.2 played an important role in the proof of Theorem 1.3, we are sure that Theorems
4.3 and 4.8 will be crucial in order to generalize this latest result to surfaces with curvature K ≤ −c2 < 0.

The argument in the proof of Theorem 4.3 is quite alike to the one in the proof of Theorem 1.2. Unfortu-
nately, every standard fact used in the proof of Theorem 1.2 is false when there is no restriction of curvature.
Hence, it was unavoidable both to state definitions for the new objects appearing in our current context and
to prove alternate results valid for arbitrary curvature. This work has provided some results with intrinsic
interest, as Theorems 3.7 and 3.11.

One can think that in the decomposition of Theorem 4.3 we might not need halfplanes. There is an
example in [1] which shows that, even with curvature K = −1, we do need them. The necessity of halfplanes
is, in fact, one of the most difficult parts in the proof of this theorem.

The outline of the paper is as follows. Section 2 presents some definitions and technical results which
we will need. We prove some additional technical results in Section 3. Section 4 is dedicated to the main
results.
Notations. We denote by LM (γ) the length of a curve γ in a Riemannian manifold M . If there is no
possible confusion, we usually write L(γ).
Acknowledgements. We would like to thank Professor Jesús Gonzalo his proof of Theorem 3.11.

2. Background in Riemannian manifolds.

Definition 2.1. Any divergent curve σ : [0,∞) −→ Y , where Y is a noncompact Hausdorff space, determines
an end E of Y . Given a compact set F of Y , one defines E(F ) to be the arc component of Y \F that contains
a terminal segment σ([a,∞)) of σ. A set U ⊂ Y is a neighborhood of an end E if U contains E(F ) for
some compact set F of Y . An end E in a surface S is collared if E has a neighborhood homeomorphic to
(0,∞)× S1. A neighborhood U of E will be called Riemannian collared if there exists a C1 diffeomorphism
X : (0,∞) × S1 −→ U such that the metric in U relative to the coordinate system X is written ds2 =
dr2 + G(r, θ)2dθ2, where G is a positive continuous function. A sequence of curves {Cn} converges to E if
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for any neighborhood U of E we have Cn ⊂ U for sufficiently large n. We say that a closed curve γ bounds
a collared end E in S if some arc component of S \ γ is a neighborhood U of E.

It follows directly from the metric expression ds2 = dr2+G(r, θ)2dθ2 of a Riemannian collared parametriza-
tion that the r-parameter curves have unit speed and minimize the distance between any two of their points.
Consequently the r-parameter curves are geodesics of S. If the curvature K satisfies K ≤ 0, then G is a C∞

function of r for each fixed θ and satisfies the Jacobi equation

∂2G

∂r2
(r, θ) + K(r, θ)G(r, θ) = 0 ,

where K(r, θ) is the curvature of S at X(r, θ) ([6, p. 17]).

Every manifold is connected, C∞ and satisfy the second axiom of countability (has a countable basis for
its topology). In a Riemannian surface we always assume that the Riemannian metric is C∞ unless perhaps
in some simple closed geodesics, each of them bounding a collared end, where we allow the metric to be
C1 and piecewise C∞, with the “singularities” along these geodesics. Then the curvature is a (possibly
discontinuous) function along these geodesics.

Geodesic always means local geodesic (unless we say explicitly something else).

Definition 2.2. Given a Riemannian surface S, a geodesic γ in S, and a continuous unit vector field ξ
along γ, orthogonal to γ, we define the Fermi coordinates based on γ as the map Y (r, θ) := expγ(θ) rξ(θ).

It is well known that the Riemannian metric can be expressed in Fermi coordinates as ds2 = dr2 +
G(r, θ)2 dθ2, where G(r, θ) is the solution of the scalar equation

∂2G

∂r2
(r, θ) + K(r, θ)G(r, θ) = 0 , G(0, θ) = 1 ,

∂G

∂r
(0, θ) = 0 ,

(see e.g. [3, p. 247]).
We will need the following three results.

Theorem 2.3. ([6, Theorem 4.2]) Let S be a complete Riemannian surface with K ≤ 0 and E an end of S.
Then the following are equivalent:

(1) E is a collared end.
(2) E is a Riemannian collared end.
(3) There exists a sequence {Cn} of continuous piecewise smooth closed curves converging to E such that

{Cn} belongs to a single nontrivial free homotopy class.

It is clear that (2) can be deduced from (1) since S verifies K ≤ 0. However, since (1) and (3) are
topological conditions, we have the following result without conditions on K.

Theorem 2.4. Let S be a complete Riemannian surface and E an end of S. Then E is a collared end if
and only if there exists a sequence {Cn} of continuous piecewise smooth closed curves converging to E such
that {Cn} belongs to a single nontrivial free homotopy class.

Theorem 2.5. ([2, Theorem (5.16)]) Giving a sequence of rectifiable curves {αk} contained in a compact
set of a Riemannian manifold M with {L(αk)} a bounded sequence, there exists a subsequence of curves
(which we also call {αk} for simplicity), a rectifiable curve α, and parametrizations xk : [0, 1] −→ X of αk

and x : [0, 1] −→ X of α, such that {xk} converges uniformly to x in [0, 1] and

L(α) ≤ lim inf
k→∞

L(αk) .

In fact, Theorem (5.16) in [2] is stronger than Theorem 2.5, but this statement is general enough for our
purposes.

Definition 2.6. Given a n-dimensional Riemannian manifold M and a closed curve α in M , we define the
length of the freely homotopy class [α] as

L([α]) := inf
{
L(σ) : σ ∈ [α]

}
.

The curve α is minimizing if L(α) = L([α]).
A minimizing sequence for α is a sequence of closed curves {αk} ⊂ [α] such that limk→∞ L(αk) = L([α]).
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Definition 2.7. A halfplane is a bordered Riemannian surface which is simply connected and whose border
is a unique nonclosed simple geodesic.

A generalized funnel is a bordered Riemannian surface which is a neighborhood of a collared end and
whose border is a minimizing simple closed geodesic. A funnel is a generalized funnel such that there does
not exist another simple closed geodesic freely homotopic to the border of the funnel.

(a) Generalized funnel (b) Generalized funnel (c) Funnel

A generalized puncture is a collared end whose fundamental group is generated by a simple closed curve σ
and there is no minimizing closed geodesic γ ∈ [σ]. A puncture is a generalized puncture such that L([σ]) = 0
and there is no closed geodesic in [σ].

(d)Generalized puncture (e) Generalized puncture (f) Puncture

A bordered or nonbordered surface is doubly connected if its fundamental group is isomorphic to Z. Every
generalized funnel and every generalized puncture are doubly connected surfaces.

A geodesic domain G is a bordered Riemannian surface (which is neither simply nor doubly connected)
with finitely generated fundamental group and such that ∂G consists of finitely many minimizing simple
closed geodesics, and it may contain generalized punctures but not generalized funnels.

A Y-piece is a compact bordered Riemannian surface which is topologically a sphere without three open
disks and whose boundary curves are minimizing simple closed geodesics. They are a standard tool to con-
struct Riemannian surfaces. A clear description of these Y-pieces and their use is given in [3, chapter
X.3].

A generalized Y-piece is a bordered or nonbordered Riemannian surface which is topologically a sphere
without three open disks, such that there exist integers n,m ≥ 0 with n + m = 3, so that the border are n
minimizing simple closed geodesics and there are m generalized punctures.

Notice that a generalized Y-piece is topologically the union of a Y-piece and m cylinders, with 0 ≤ m ≤ 3.
It is clear that every generalized Y-piece is a geodesic domain (unless m = 3, in which case it has no border).
Furthermore, every geodesic domain is a finite union (with pairwise disjoint interiors) of generalized Y-pieces
(see Proposition 4.1 below).
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We say that the set A is exhausted by {An} if An ⊆ An+1 for every n and A = ∪nAn.
We say that a bordered Riemannian surface S is simple if the border of S is a (finite or infinite) union

of pairwise disjoint simple closed geodesics.

3. Technical results.

Lemma 3.1. Let us consider a n-dimensional complete Riemannian manifold M and an homotopically
nontrivial closed curve α in M . If there exists a minimizing sequence {αk} for α contained in a compact
set, then there exists a minimizing closed geodesic γ ∈ [α].

Proof. Since {L(αk)} is convergent, it is a bounded sequence. By Theorem 2.5, there exists a subsequence of
curves (which we also call {αk} for simplicity), a rectifiable curve γ, and parametrizations xk : [0, 1] −→ M
of αk and x : [0, 1] −→ M of γ, such that {xk} converges uniformly to x in [0, 1] and

L(γ) ≤ lim inf
k→∞

L(αk) = L([α]) .

The curve γ is closed since each αk is a closed curve and x(0) = limk→∞ xk(0) = limk→∞ xk(1) = x(1).
Then, in order to finish the proof of the lemma, it is enough to show that γ ∈ [α], since then γ attains the
minimum length in its homotopy class, and it must be a geodesic.

We can assume that xk and x are 1-periodic functions in R. For each t ∈ [0, 1] let us consider rt > 0 small
enough to guarantee that the ball B(x(t), rt) in M is simply connected. For each t ∈ [0, 1], let us denote
by Jt the connected component of γ ∩ B(x(t), rt) which contains x(t). Since γ is a compact topological
space and {Jt}t∈[0,1] is an open covering of γ, there exist 0 ≤ t1 < t2 < · · · < tm−1 < tm ≤ 1 such that
γ ⊂ ∪m

j=1Jtj . Choosing a subset of {t1, t2, . . . , tm} if it is necessary, without loss of generality we can assume
that the subcovering {Jtj}m

j=1 is minimal in the following sense: each y ∈ γ belongs at most to two sets of
{Jtj}m

j=1.
Let us consider 0 ≤ s1 < · · · < sm−1 < 1 and sm ∈ (sm−1, s1 + 1) such that

x(s1) ∈ Jt1 ∩ Jt2 , . . . , x(sm−1) ∈ Jtm−1 ∩ Jtm , x(sm) ∈ Jtm ∩ Jt1 .

Hence,

x(sm), x(s1) ∈ B(x(t1), rt1), x(s1), x(s2) ∈ B(x(t2), rt2), . . . , x(sm−1), x(sm) ∈ B(x(tm), rtm).

Since {xk} converges uniformly to x in R, there exists k0 such that

xk([sm, s1]) ⊂ B(x(t1), rt1), xk([s1, s2]) ⊂ B(x(t2), rt2), . . . , xk([sm−1, sm]) ⊂ B(x(tm), rtm),

for every k ≥ k0.
This proves that γ ∈ [αk] for every k ≥ k0 (since each ball B(x(t), rt) is simply connected), and then

γ ∈ [α]. This finishes the proof of the lemma. ¤

Proposition 3.2. Let us consider a complete Riemannian surface S and an homotopically nontrivial closed
curve α in S. Then, one and only one of the two following possibilities holds:

(1) There exists a minimizing closed geodesic γ ∈ [α].
(2) The curve α bounds a generalized puncture E in S. Furthermore, if S is not doubly connected, then

any minimizing sequence for α converges to E.

Proof. If there exists a minimizing sequence {αk} for α contained in a compact set, then Lemma 3.1 gives
(1).

Otherwise, every minimizing sequence {αk} for α escapes from any compact set. Hence, there not exists
any minimizing closed geodesic in [α].

If S is doubly connected, then α bounds a collared end E (in fact, α bounds exactly two collared ends).
This collared end E is a generalized puncture since there not exists any minimizing closed geodesic in [α].

If S is not doubly connected, then any minimizing sequence {αk} for α converges to an end E. Since the
curves {αk} belong to a single nontrivial free homotopy class, Theorem 2.4 gives that E is a collared end in
S. Hence, α bounds a collared end in S, which must be a generalized puncture since there not exists any
minimizing closed geodesic in [α]. ¤
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In order to deal with bordered surfaces, we need the following results.

Lemma 3.3. Any simple complete bordered Riemannian surface S is a subset of a complete Riemannian
surface R, which can be obtained by attaching a neighborhood of a collared end to each simple closed geodesic
γ ⊆ ∂S, with the following properties:

(1) If σ is a closed curve in R which is not contained in S, then there exists σ0 ⊆ (S ∩ σ) ∪ ∂S ⊂ S with
σ0 ∈ [σ] and L(σ0) < L(σ).

(2) A closed geodesic is minimizing in R if and only if it is minimizing in S (in particular, it is contained
in S).

(3) If σ is a closed curve in S, then LS([σ]) = LR([σ]).
(4) If σ is a closed curve in S, and {σk} is a minimizing sequence for σ verifying {σk} ⊆ (R \ S) ∪K,

with K a compact subset of S, then there exists a minimizing closed geodesic in [σ].
(5) The curvature satisfies K = −1 in R \ S.
(6) The fundamental group of R is isomorphic to the fundamental group of S.
(7) If S is not doubly connected, then there exists a minimizing simple closed geodesic in [γ0] for each

simple closed geodesic γ0 ⊆ ∂S.

Proof. The border of S is a (finite or infinite) union of pairwise disjoint simple closed geodesics. Let us fix a
closed geodesic γ0 ⊆ ∂S with length l. We can consider the Fermi coordinates based on γ0. The Riemannian
metric can be expressed in Fermi coordinates as ds2 = dr2 + G(r, θ)2 dθ2, with G(r, θ) a l-periodic function
in θ defined in [−r0, 0]×R, for some r0 > 0. We have G(0, θ) = 1 and ∂G/∂r(0, θ) = 0 for every θ ∈ R. If we
define G(r, θ) := cosh r in (0,∞)×R, then it is C1 (and even piecewise C∞) in [−r0,∞)×R, and l-periodic
in θ. These coordinates (r, θ) ∈ [−r0,∞)× R, with the Riemannian metric ds2 = dr2 + G(r, θ)2 dθ2, attach
a neighborhood of a collared end F to γ0; by this way we get a C∞ surface. We have that K(r, θ) = −1 in
(0,∞)× R. We also have the following properties:

(a) Any homotopically nontrivial closed curve σ in F verifies L(γ0) < L(σ):
Without loss of generality we can assume that σ can be parametrized in Fermi coordinates based on γ0

as σ(θ) = (r(θ), θ), with θ ∈ [0, l]. Then,

L(σ) =
∫ l

0

√
r′(θ)2 + cosh2r(θ) dθ ≥

∫ l

0

cosh r(θ) dθ >

∫ l

0

dθ = l = L(γ0) .

(b) Given any closed curve σ intersecting S and the interior of F , there exists σ0 ∈ [σ] contained in S
verifying L(σ0) < L(σ):

We can construct this curve in the following way: given any subarc a of σ contained in F and joining two
points p, q ∈ γ0, we replace it by the subarc of γ0 joining p, q, which is homotopic to a. The argument above
gives L(σ0) < L(σ).

We define R as the surface obtained by attaching this neighborhood of a collared end to each closed
geodesic in ∂S.

Properties (a) and (b) give that if σ is a closed curve in R which is not contained in S, then there exists
σ0 ⊆ (S ∩ σ) ∪ ∂S ⊂ S with σ0 ∈ [σ] and L(σ0) < L(σ). This finishes the proof of (1), (5) and (6).

Now, the statements (2) and (3) are direct consequences of (1).
We prove now (4). If σ is a closed curve in S, and {σk} is a minimizing sequence for σ verifying

{σk} ⊆ (R \ S) ∪ K, with K a compact subset of S, by (1) there exists {σ0
k} ⊆ K with σ0

k ∈ [σ] and
L(σ0

k) ≤ L(σk). Then {σ0
k} is a minimizing sequence for σ contained in a compact set and Lemma 3.1 gives

that there exists a minimizing closed geodesic in [σ].
In order to prove (7), fix a simple closed geodesic γ0 ⊆ ∂S. Let us call F the neighborhood of a collared

end in R with ∂F = γ0. Seeking for a contradiction, assume that there not exists a minimizing closed
geodesic in [γ0]. Since R is not doubly connected, by Proposition 3.2 γ0 bounds a generalized puncture E in
R and any minimizing sequence for α converges to E. Since R is not doubly connected, F is a neighborhood
of E, and for any minimizing sequence {αk} for [γ0] there exists N with αk ⊂ F for every k ≥ N . By (a)
we have L(γ0) < L(αk) for every k ≥ N , which is the required contradiction. ¤

Using Lemma 3.3, Proposition 3.2 can be generalized to simple bordered Riemannian surfaces.



STRUCTURE THEOREM FOR RIEMANNIAN SURFACES WITH ARBITRARY CURVATURE 7

Proposition 3.4. Let us consider a simple complete bordered Riemannian surface S and an homotopically
nontrivial closed curve α in S. Then, one and only one of the two following possibilities holds:

(1) There exists a minimizing closed geodesic γ ∈ [α].
(2) The curve α bounds a generalized puncture E in S and any minimizing sequence for α converges to

E.

Proof. By Lemma 3.3, S is a subset of a complete Riemannian surface R.
Assume first that S is not doubly connected (then R is not doubly connected).
By Lemma 3.3 (2), if there exists a minimizing closed geodesic γ ∈ [α] in R, then γ ∈ S.
If there not exist such minimizing geodesic, by Proposition 3.2 the curve α bounds a generalized puncture

E in R and any minimizing sequence for α converges to E. By Lemma 3.3 (7), α can not be freely homotopic
to any closed geodesic in ∂S, and therefore E ⊂ S.

Assume now that S is doubly connected (then R is also doubly connected). The curve α bounds exactly
two collared ends in R.

Since S is doubly connected, ∂S can be either a simple closed geodesic or two simple closed geodesics.
Assume first that ∂S is a simple closed geodesic γ0. Then α bounds the unique collared end E in S.

Consider a minimizing sequence {αn} for [α] in R. If (2) does not hold, then either α does not bound a
generalized puncture (and then (1) holds) or there exists a neighborhood U of E and a subsequence {αnk

}
with αnk

* U for every k. Since {L(αn)} is a bounded sequence, without loss of generality we can assume
that αnk

∩ U = ∅ for every k. Since S is doubly connected, R = S ∪ F with ∂F = ∂S = γ0, and the
complement of U in R is F ∪K, where K is a compact set in S. Therefore, αnk

⊂ F ∪K for every k and
by Lemma 3.3 (4) there exists a minimizing closed geodesic in [α]. Then (1) also holds.

Assume now that ∂S is the union of two simple closed geodesics γ1, γ2. Then, R = S ∪ F1 ∪ F2 with
∂Fj = γj (j = 1, 2) and S is compact. Consider a minimizing sequence {αn} for [α] in R. By Lemma 3.3
(1), there exists a minimizing sequence {α0

n} ⊂ S for [α]. Since S is compact, Lemma 3.1 gives that there
exists a minimizing closed geodesic γ ∈ [α]. ¤

Lemma 3.5. Let us consider a positive constant c and two functions y0, y, satisfying respectively y′′0 = c2y0,
y0(t0) > 0, y′0(t0) > 0, and 




y′′(t) ≥ c2y(t) > 0 , if t ≥ t0 ,
y(t0) = y0(t0) ,
y′(t0) ≥ y′0(t0) .

Then, y(t) ≥ y0(t) for every t ≥ t0.

Proof. Since y′′(t) > 0 if t ≥ t0, then y′ is an increasing function in [t0,∞). This fact and y′(t0) ≥ y′0(t0) > 0
give y′(t) ≥ y′(t0) > 0 for every t ≥ t0. Then, for every t ≥ t0, we can deduce

y′′(t) ≥ c2y(t) ,

y′′(t)y′(t) ≥ c2y(t)y′(t) ,

y′(t)2 − y′(t0)2 ≥ c2
(
y(t)2 − y(t0)2

)
,

y′(t) ≥
√

c2
(
y(t)2 − y(t0)2

)
+ y′(t0)2 .

For each fixed ε ∈ (0, y′0(t0)), we define the function yε as the unique solution of



y′′ε (t) = c2yε(t) , if t ≥ t0 ,
yε(t0) = y0(t0) ,
y′ε(t0) = y′0(t0)− ε > 0 .

Then y′(t0) > y′ε(t0) > 0. Using the same argument above in the case of yε (with equality instead of
inequality) we obtain that y′ε(t) ≥ y′ε(t0) > 0 for every t ≥ t0 and

y′ε(t) =
√

c2
(
yε(t)2 − yε(t0)2

)
+ y′ε(t0)2 .

We prove now that y(t) ≥ yε(t) for every t ≥ t0. Seeking for a contradiction, suppose that y(t) < yε(t)
for some t > t0. Then, we can define t1 := min{t > t0 : y(t) = yε(t)}; this minimum is attained since
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y(t0) = yε(t0) and y′(t0) > y′ε(t0); consequently, y(t) > yε(t) > 0 for every t ∈ (t0, t1), and

yε(t1)− yε(t0) =
∫ t1

t0

y′ε(t) dt =
∫ t1

t0

√
c2

(
yε(t)2 − yε(t0)2

)
+ y′ε(t0)2 dt

<

∫ t1

t0

√
c2

(
y(t)2 − y(t0)2

)
+ y′(t0)2 dt ≤

∫ t1

t0

y′(t) dt = y(t1)− y(t0) = yε(t1)− yε(t0) .

This is a contradiction and we have proved that y(t) ≥ yε(t) for every t ≥ t0. It is easy to check that

yε(t) = y0(t0) cosh c(t− t0) +
y′0(t0)− ε

c
sinh c(t− t0) ,

for every t, ε ∈ R. Hence

y(t) ≥ y0(t0) cosh c(t− t0) +
y′0(t0)− ε

c
sinh c(t− t0) ,

for every t ≥ t0 and ε ∈ (0, y′0(t0)). If ε → 0, we obtain

y(t) ≥ y0(t0) cosh c(t− t0) +
y′0(t0)

c
sinh c(t− t0) = y0(t) ,

for every t ≥ t0. This finishes the proof of the lemma. ¤
Lemma 3.5 has the following direct consequence.

Corollary 3.6. Let us consider a positive constant c and a function y satisfying y′′(t) ≥ c2y(t) > 0 and
y′(t0) > 0. Then

y(t) ≥ y(t0) cosh c(t− t0) ,

for every t ≥ t0.

Proof. Let us consider the function y0 with



y′′0 (t) = c2y0(t) , if t ≥ t0 ,
y0(t0) = y(t0) ,
y′0(t0) = y′(t0) .

The first inequality in the following expression is obtained by applying Lemma 3.5 and the first equality by
solving the above differential equation:

y(t) ≥ y0(t) = y0(t0) cosh c(t− t0) +
y′0(t0)

c
sinh c(t− t0)

≥ y0(t0) cosh c(t− t0) = y(t0) cosh c(t− t0) ,

for every t ≥ t0. ¤
The following result assures that if K ≤ −c2 < 0, there always exists a closed geodesic in every free

homotopy class, except for punctures, in which is impossible to have one.

Theorem 3.7. Let us consider a Riemannian surface S, which can be either simple bordered or without
border. Besides, S must be complete and with curvature K ≤ −c2 < 0. Fix an homotopically nontrivial
closed curve α in S. Then there exists a minimizing closed geodesic γ ∈ [α] if and only if L([α]) > 0.

Remark 3.8. The conclusion of this Theorem does not hold if we replace the hypothesis K ≤ −c2 < 0 by
the weaker one K < 0, as shows the revolution surface of the graph of f(x) = 1 + ex around the horizontal
axis (with the standard metric induced by the Euclidean metric in R3).

Proof. We deal first with nonbordered surfaces S.
If L([α]) = 0, it is clear that there does not exist a closed geodesic γ ∈ [α] with L(γ) = L([α]) = 0, since

α is an homotopically nontrivial closed curve in S.
Let us assume now that L([α]) > 0.
Assume first that S is not doubly connected. Seeking for a contradiction, suppose that there not exist a

closed geodesic γ ∈ [α]. Then, by Proposition 3.2, the curve α bounds a generalized puncture E in S. Since
the curvature satisfies K ≤ −c2 < 0, this end E is a Riemannian collared end, by Theorem 2.3.
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For each r0 we define gr0 as the closed curve {r = r0}. It is easy to check that l(r) := L(gr) =
∫ 2π

0
G(r, θ) dθ

satisfies l′′(r) ≥ c2l(r):
∂2G

∂r2
(r, θ) = −K(r, θ)G(r, θ) ≥ c2G(r, θ) > 0

implies

l′′(r) =
∫ 2π

0

∂2G

∂r2
(r, θ) dθ ≥

∫ 2π

0

c2G(r, θ) dθ = c2l(r) > 0 .

Since L([α]) > 0, there exist positive constants c0, r1 with l(r) ≥ c0 for every r ≥ r1. Hence, for every r ≥ r1,

l′(r) = l′(r1) +
∫ r

r1

l′′(t) dt ≥ l′(r1) +
∫ r

r1

c2c0 dt = l′(r1) + c2c0(r − r1) ,

and consequently limr→∞ l′(r) = ∞. Since

lim
r→∞

∫ 2π

0

∂G

∂r
(r, θ) dθ = lim

r→∞
l′(r) = ∞ ,

there exist r2 ≥ r1 and a set A ⊂ [0, 2π] with positive Lebesgue measure such that ∂G/∂r(r2, θ) > 0 for
every θ ∈ A. Since ∂2G/∂r2(r, θ) > 0, the function ∂G/∂r(r, θ) increases in r ≥ r2 for each fixed θ ∈ A, and
consequently ∂G/∂r(r, θ) ≥ ∂G/∂r(r2, θ) > 0 for every θ ∈ A and r ≥ r2. Hence, G(r, θ) increases in r ≥ r2

for each fixed θ ∈ A. By Corollary 3.6, G(r, θ) ≥ G(r2, θ) cosh c(r − r2) for every θ ∈ A and r ≥ r2.
Let us consider a curve σ parametrized in the Riemannian collared end as σ(θ) = (r(θ), θ), with θ ∈ [0, 2π]

and r(θ) ≥ R ≥ r2. Then

L(σ) =
∫ 2π

0

√
r′(θ)2 + G(r(θ), θ)2 dθ ≥

∫ 2π

0

G(r(θ), θ) dθ ≥
∫

A

G(r(θ), θ) dθ

≥
∫

A

G(R, θ) dθ ≥ cosh c(R− r2)
∫

A

G(r2, θ) dθ .

Since
∫

A
G(r2, θ) dθ is a positive constant independent of R, there exists r3 > r2 with

cosh c(r3 − r2)
∫

A

G(r2, θ) dθ > L(α) .

Hence, given any curve σ parametrized in the Riemannian collared end as σ(θ) = (r(θ), θ), with θ ∈ [0, 2π]
and r(θ) ≥ r3, we have L(σ) > L(α). Consequently, any curve σ ∈ [α] contained in the region {r ≥ r3}
verifies L(σ) > L(α). Then a minimizing sequence for α can not converge to E. This fact contradicts
Proposition 3.2.

If S is doubly connected, the argument is similar except for the fact that α bounds two collared ends.
Therefore, a minimizing sequence might not converge to an end in S; but we can always extract a subsequence
converging to some end in S.

Assume now that S is simple bordered. By Lemma 3.3, S is a subset of a complete Riemannian surface
R. The previous argument gives the desired result in R. Then, Lemma 3.3 implies the result in S. ¤

The following lemma is a well known result, but we include a direct proof by the sake of completeness.

Lemma 3.9. Let us consider a Riemannian surface S, which can be either simple bordered or without border.
Besides, S must be complete and with curvature K < 0. Then in each free homotopy class there exists at
most a closed geodesic, and if there exists, then it is minimizing. Consequently, every generalized funnel is
a funnel.

Proof. By Lemma 3.3, without loss of generality we can assume that S is nonbordered.
Seeking for a contradiction, suppose that there exist two freely homotopic closed geodesics γ1, γ2.
If γ1 and γ2 intersect at some point, they can not be tangent at this point, since they are geodesics. Then,

γ1 and γ2 intersect at least at another point, since they are freely homotopic. Therefore, some segment of
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γ1 and some segment of γ2 determine a geodesic “bigon” B (a polygon with two sides) with interior angles
α, β > 0. Gauss-Bonnet Formula gives

∫∫

B

K dA = α + β > 0 ,

which is a contradiction with K < 0.
Then γ1 and γ2 do not intersect. We consider the geodesic segment σ joining x1 ∈ γ1 with x2 ∈ γ2, which

gives the minimum distance between γ1 and γ2; then σ meets orthogonally to γ1 and to γ2. Let us consider
a universal covering map π : S̃ −→ S. Fix a lift γ̃1 of γ1 starting in x̃1, a lift σ̃ of σ starting in x̃1, and
finishing in x̃2, and a lift γ̃2 of γ2 starting in x̃2. Then σ̃ meets orthogonally to γ̃1 and to γ̃2. If we denote
by y1 and y2, respectively, the endpoints of γ̃1 and γ̃2, there exists a covering isometry T : S̃ −→ S̃ with
T (x̃1) = y1 and T (x̃2) = y2. We also have that with T (σ̃) joins y1 and y2, and meets orthogonally to γ̃1

and to γ̃2. Consequently, γ̃1, γ̃2, σ̃ and T (σ̃) bound a geodesical quadrilateral Q in S̃ with four right angles.
Gauss-Bonnet Formula gives

−
∫∫

Q

K dA = 2π − π

2
− π

2
− π

2
− π

2
= 0 ,

which is a contradiction with K < 0.
Then in each free homotopy class there exists at most a closed geodesic.
Consider now a simple closed geodesic γ. We need to prove that L(γ) = L([γ]). Let us define l := L(γ).
The Riemannian metric can be expressed in Fermi coordinates based on γ as ds2 = dr2 + G(r, θ)2 dθ2,

where G(r, θ) satisfies

∂2G

∂r2
(r, θ) + K(r, θ)G(r, θ) = 0 , G(0, θ) = 1 ,

∂G

∂r
(0, θ) = 0 .

Since ∂2G/∂r2(r, θ) = −K(r, θ)G(r, θ) > 0, it follows that G(r, θ) is a convex function on r for each fixed
θ ∈ [0, l]; since ∂G/∂r(0, θ) = 0, we deduce that for each fixed θ ∈ [0, l], G(r, θ) attains its minimum value 1
at r = 0.

We prove now that any curve σ ∈ [γ] verifies L(σ) ≥ L(γ). Let us consider a fixed curve σ ∈ [γ]. Without
loss of generality we can assume that σ can be parametrized in Fermi coordinates as σ(θ) = (r(θ), θ), with
θ ∈ [0, l]. Then,

L(σ) =
∫ l

0

√
r′(θ)2 + G(r(θ), θ)2 dθ ≥

∫ l

0

G(r(θ), θ) dθ ≥
∫ l

0

G(0, θ) dθ =
∫ l

0

dθ = l = L(γ) .

This shows that L(γ) = L([γ]) and hence γ is minimizing.
In order to prove the last part of the lemma, consider now a generalized funnel F in S. We have proved

that there does not exist another closed geodesic freely homotopic to the boundary of the generalized funnel.
Hence, the generalized funnel is a funnel. ¤

Lemma 3.10. Let us consider a Riemannian surface S, which can be either simple bordered or without
border. Besides, S must be complete and with curvature K ≤ −c2 < 0. Then, every generalized puncture is
a puncture.

Proof. By Lemma 3.3, without loss of generality we can assume that S is nonbordered.
Seeking for a contradiction, consider a generalized puncture which is not a puncture. Then, its funda-

mental group is generated by a simple closed curve σ, there is no minimizing simple closed geodesic γ ∈ [σ],
and we have either:

(i) L([σ]) > 0; then by Theorem 3.7 there exists a minimizing simple closed geodesic γ ∈ [σ], which is a
contradiction,
or

(ii) L([σ]) = 0 and there exists a simple closed geodesic γ ∈ [σ]; then by Lemma 3.9 γ is minimizing,
which is a contradiction. ¤
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Theorem 3.11. Let us consider a complete Riemannian surface S and two disjoint nontrivial piecewise
smooth simple closed curves a and b in S, which are not freely homotopic. If α ∈ [a] and β ∈ [b] are any
choice of minimizing closed geodesics, then they are disjoint as well.

Furthermore, if α 6= β are freely homotopic minimizing simple closed geodesics in S, then they are disjoint.

Remark 3.12. We have some examples that show that the conclusion of the previous Theorem does not
hold if either α or β are not minimizing geodesics. See for example the figure below:

a

b

PSfrag replacements

α
β

Proof. First, let us assume that the curves a and b are not freely homotopic. Without loss of generality
we can assume that a and b are disjoint nontrivial smooth simple closed curves in S, since in other case
we can modify them slightly in order to obtain all these facts. Since α ∈ [a] and S is a surface, by Baer’s
Theorem (see e.g. [11] or [10]) there exists an isotopy, that is to say, a continuous family of diffeomorphisms
ft : S −→ S, such that f0 is the identity, and f1(a) = α. Let us define b1 := f1(b), which is a simple closed
curve freely homotopic to b. As f1 is bijective and a and b are disjoint curves, then b1 and α are disjoint too.

Seeking for a contradiction, let us assume that α ∩ β 6= ∅. If they do intersect each other tangentially
then they should coincide, and this is not possible since they are not freely homotopic. Therefore, they must
intersect transversally. Since b1 ∈ [β], there exists an smooth homotopy F : A −→ S, where A is the annulus
{z ∈ C : 1 ≤ |z| ≤ 2}, such that F (eiθ) = b1(θ) and F (2eiθ) = β(θ), with θ ∈ [0, 2π].

No connected component γ of F−1(α) can be a closed curve in A, since it should be either trivial or freely
homotopic to F−1(β). In this case, F (γ) = α would also be either trivial or homotopic to F (F−1(β)) = β,
and this is contradiction with our hypothesis. Therefore, F−1(α) must contain an arc σ joining two points
z1 and z2 in {z ∈ C : |z| = 2} = F−1(β). As A is a planar domain, one of the two arcs joining z1 and
z2 in F−1(β) (let us denote such arc by η), is homotopic to σ. This fact implies that the geodesics α and
β intersect in F (z1) and F (z2) and that F (σ) and F (η) are homotopic. Since α and β are minimizing,
L(F (σ)) = L(F (η)) and so, from α we can construct a new curve α̃ ∈ [α] with the same length by replacing
the arc F (σ) by the arc F (η). By means of a smooth modification in small neighborhoods of F (z1) and
F (z2) we can obtain a shorter curve freely homotopic to α, which is contradiction with the fact that α is
minimizing.

Now, we will deal with the second part of the Theorem. Once again we are going to seek for a contradiction:
let us assume that α∩ β 6= ∅. If they do intersect in a single point, as they are in the same homotopy class,
they must intersect each other tangentially and therefore α = β. If they do intersect in several points, then
they must intersect transversally. The argument in the previous case allows to obtain a shorter curve freely
homotopic to α, which is contradiction with the fact that α is minimizing. ¤

4. The main results.

Proposition 4.1. Every geodesic domain in any complete orientable Riemannian surface is a finite union
(with pairwise disjoint interiors) of generalized Y-pieces.

Remark 4.2. The argument in the proof of Proposition 4.1 also proves the following:
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Every complete orientable Riemannian surface without generalized funnels and with finitely generated
fundamental group, which is neither simply nor doubly connected nor homeomorphic to a torus, is a finite
union (with pairwise disjoint interiors) of generalized Y-pieces.

Proof. Let us fix a geodesic domain G in a complete orientable Riemannian surface S. We denote by
γ1, γ2, . . . , γk the minimizing simple closed geodesics in ∂G. Since G is a simple complete bordered Rie-
mannian surface, by Lemma 3.3 it is a subset of a complete Riemannian surface R.

In particular, R is a complete orientable topological surface. Since R contains a geodesic domain, R is
neither simply nor doubly connected nor homeomorphic to a torus. Then, by Theorem 1.1, R is the union of
topological Y-pieces {Yn} and cylinders {Cn}. The fundamental group of R is isomorphic to the fundamental
group of G, and therefore it is finitely generated; then there are only a finite number of topological Y-pieces
and cylinders. We denote by {ηm} ⊂ R the set of pairwise disjoint simple closed curves in ∪n∂Yn. Without
loss of generality we can assume that the curves are numbered such that ηj ∈ [γj ] for each 1 ≤ j ≤ k.

We want to change the curves ηj by minimizing simple closed geodesics. For each 1 ≤ m ≤ k, we replace
ηm by γm (Lemma 3.3 gives that γm are also minimizing simple closed geodesic in R). For each m > k, let
us choose a minimizing simple closed geodesic γm ∈ [ηm], if it exists. In other case, by Proposition 3.2, the
curve ηm bounds a generalized puncture in S and we define γm := ∅. By Theorem 3.11, the minimizing
simple closed geodesics {γm} ⊂ G are pairwise disjoint; then, they split G in the required finite union of
generalized Y-pieces (if for some m we have γm = ∅, the corresponding Y -piece in R is a generalized Y -piece
in G). ¤

The following theorem is the main result of this paper. It generalizes an already known result for constant
negatively curved surfaces to arbitrary surfaces with no restricition of curvature at all.

Theorem 4.3. Every complete orientable Riemannian surface which is neither simply nor doubly connected
nor homeomorphic to a torus is the union (with pairwise disjoint interiors) of generalized Y-pieces, general-
ized funnels and halfplanes.

Remark 4.4. If there are several freely homotopic minimizing simple closed geodesics which bound a gen-
eralized funnel, we will see in the proof that any of them can be chosen as border of this generalized funnel.

Proof. We assume first that the fundamental group of S is finitely generated. If S has not generalized
funnels, then Remark 4.2 gives the result. If S has generalized funnels {Fj}, then the closure of S \ ∪jFj is
a geodesic domain; Proposition 4.1 gives the result in this case.

Let us consider a surface S with infinitely generated fundamental group, and fix a point p ∈ S. Next, we
will take an increasing sequence of positive numbers {rn} so that limn→∞ rn = ∞. For each rn we intend
to associate a geodesic domain Gn to the ball B(rn) centered in p with radius rn.

The boundary of B(r) is a finite union of pairwise disjoint simple closed curves except for r ∈ A with
A a countable set. Since S is of infinite type, we can always find a positive number r1 /∈ A such that the
fundamental group of the ball B(r1) has, at least, two generators. We choose rn /∈ A with rn > max{rn−1, n}.
As rn > r1, the fundamental group of B(rn) has, at least, two generators as well. Since rn /∈ A, the boundary
of B(rn) is a finite union of pairwise disjoint simple closed curves {ηn

i }i∈In . In order to construct its geodesic
domain Gn, our goal is to relate a minimizing geodesic γn

i to each curve ηn
i ⊆ ∂B(rn), and we do it inductively

as it follows. There are two possibilities:

(1) There not exists any minimizing simple closed geodesic in [ηn
i ]. In this case γn

i := ∅.
(2) There exists at least one minimizing simple closed geodesic in [ηn

i ]. If n > 1 and there is j ∈ In−1

such that γn−1
j ∈ [ηn

i ], then γn
i := γn−1

j . Otherwise (notice that this situation includes the case
n = 1), choose γn

i as any of the minimizing simple closed geodesics in [ηn
i ].

Gn is the geodesic domain limited by all these geodesics {γn
i }i∈In . By construction, Gn ⊆ Gn+1.

Before going on with the proof, we need the following lemma:

Lemma 4.5. If there exists some positive number N such that γ is a minimizing simple closed geodesic
contained in ∂Gn for every n > N , then γ is the border of a generalized funnel in S.
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Proof. For n > N , let us consider the simple closed curve ηn ⊆ ∂B(rn) which is freely homotopic to γ. Since
limn→∞ dist(p, ηn) = limn→∞ rn = ∞, and ηn belongs to a single nontrivial freely homotopy class for every
n > N , Theorem 2.4 gives that {ηn} converges to a collared end F ; since its border γ is a minimizing simple
closed geodesic, F must be a generalized funnel. ¤

Now, let us continue with the proof of Theorem 4.3. We can take a subsequence of radii (by simplicity of
the notation we will denote this subsequence just like the whole sequence) such that Gn ⊂ Gn+1 and besides,
∂Gn ∩ ∂Gn+1 is either the empty set or a union of minimizing simple closed geodesics, each of them is the
border of a generalized funnel.

Let us define Hn as the closed set obtained as the union of Gn and the generalized funnels whose borders
belong to ∂Gn, and H := ∪nHn. Notice that due to the properties of Gn, each Hn is contained in the
interior of Hn+1. If S = H, then there is nothing else to prove. Otherwise, S \H is a closed non-empty set.

By Proposition 4.1, each connected component of the closure of Gn+1 \Gn is a finite union (with pairwise
disjoint interiors) of generalized Y-pieces. Therefore, in order to finish the proof, we just have to see that
every connected component J of S\H is a halfplane, that is to say: J is a simply connected set and ∂J ⊆ ∂H
is a unique nonclosed simple geodesic. From now on, by simplicity in the notation and as there is no possible
confusion, we will denote γn

i ⊂ ∂Hn by γn.
Next, we state a lemma that we will need along the proof:

Lemma 4.6. Let σ be a nontrivial simple closed curve in S. If there is a minimizing simple closed geodesic
γ ∈ [σ] contained in B(rn), then either γ is contained in Gn or it is freely homotopic to some geodesic in
∂Gn.

Proof. Let us assume that γ is not contained in Gn. Then, there are two possibilities: either γ ∩Gn = ∅ or
γ ∩ ∂Gn 6= ∅. In the first case, γ is contained in a doubly connected set whose borders are γn ⊂ ∂Gn and
ηn ⊂ ∂B(rn) and therefore γ is freely homotopic to both of them.

We finish the proof by showing that γ cannot intersect ∂Gn. Seeking for a contradiction, assume that
γ∩∂Gn 6= ∅; then, γ∩γn 6= ∅ for some minimizing closed geodesic γn ⊂ ∂Gn. Since γ and γn are minimizing
simple closed geodesics, Theorem 3.11 implies that γ ∩ ηn 6= ∅, where ηn is the closed curve in ∂B(rn) with
γn ∈ [ηn]. This is the required contradiction, since γ ⊂ B(rn). ¤

Going on with proof of Theorem 4.3 we will see that J is simply connected. In order to do so, let us prove
that every simple closed curve contained in J must be trivial, since every topological obstacle must be in H:
Let us consider a nontrivial simple closed curve σ in J . By Proposition 3.2, there are two possibilities:

(1) There exists a minimizing simple closed geodesic γ ∈ [σ]. Consider rn with γ ⊂ B(rn); we prove
now that γ ⊂ Hn+1. If γ is not contained in Gn, then by Lemma 4.6 it is freely homotopic to
some geodesic in ∂Gn. If γ bounds a generalized funnel, then γ ⊂ Hn. If a curve in ∂Gn is freely
homotopic to some curve in ∂Gn+1 then it must bound a generalized funnel. Since γ does not bound
a generalized funnel, it is not freely homotopic to any geodesic in ∂Gn+1; hence, Lemma 4.6 gives
γ ⊂ Gn+1, since γ ⊂ B(rn) ⊂ B(rn+1). Hence, in any case, γ ⊂ Hn+1, and it is not freely homotopic
to any curve in ∂Hn+1. Therefore, σ must intersect Hn+1, which is a contradiction with σ ⊂ J .

(2) The curve σ bounds a generalized puncture. Then, there exists some neighborhood of this collared
end contained in some Hn. Since σ is not freely homotopic to any geodesic in ∂Hn, σ must intersect
Hn, which is again a contradiction with σ ⊂ J .

Next, we will prove that ∂J is a geodesic. Let us fix a point q ∈ ∂J ; we want to prove that q belongs
to a geodesic arc γ contained in ∂J : There exist points qn ∈ γn ⊆ ∂Hn converging to q. Let us consider
now the sequence {vn} of tangent vectors to γn in qn. Notice that this latest sequence must converge to a
certain vector v, since otherwise the geodesics γn would intersect. As geodesics are solutions of a system of
ordinary differential equations and the initial data {qn, vn} converge to {q, v}, then the geodesics γn converge
uniformly in some neighborhood U of q to the geodesic γ whose tangent vector in q is v.

Now, let us prove that γ ∩U is contained in ∂J . Choose a point q′ ∈ γ ∩U . On the one hand, q′ /∈ extH,
since there exists a sequence of points in γn ⊂ Hn converging to q′. On the other hand, q′ does not belong
to H either, since if it did, there would exist some Hm containing q′ for some positive integer m, and this is
a contradiction with Hn contained in the interior of Hn+1 for every n.
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From the previous argument we also deduce that this geodesic can be prolonged to infinity at both sides:
if it had an endpoint p, it is obvious that p ∈ ∂J , but as we have just seen, for every point in the boundary
of J there exists a neighborhood U such that U ∩ ∂J is a geodesic arc containing p.

In order to see that every connected component γ ⊆ ∂J is simple, we will prove that it is not closed and
it does not intersect itself transversally: If γ were a simple closed geodesic, it would be compact and as γn

locally uniformly converge to γ then there would exist a positive integer N and a collar C for γ such that
γn ⊂ C for every n ≥ N , and therefore γn ∈ [γ], which is a contradiction. If γ intersected itself transversally,
there would exist some positive integer N such that each γn would intersect itself as well for every n ≥ N ,
and this is not possible since they are all simple. This same argument also proves that two different geodesics
contained in ∂H must be simple and pairwise disjoint.

To finish, there is only one fact to prove: ∂J consists of just one geodesic. Let us assume that there
exist two simple geodesics σ1, σ2 ⊂ ∂J . Let us consider two points q1 ∈ σ1, q2 ∈ σ2, two simple connected
neighborhoods V1, V2 of q1 and q2 respectively, two simple closed geodesics γn1 ⊂ ∂Hn1 , γn2 ⊂ ∂Hn2 , with
γn1 ∩ V1 6= ∅, γn2 ∩ V2 6= ∅ and n1 6= n2, and curves η1 ⊂ V1, η2 ⊂ V2 joining, respectively, γn1 with q1 and
q2 with γn2 . As J is path-connected, it is possible to construct the three following curves: η3 ⊂ J joining q1

and q2, η := η1 + η3 + η2 and the closed curve β := η + γn2 − η + γn1 . Since β cannot bound a generalized
puncture, every closed geodesic γ ∈ [β] verifies γ ∩ σ1 6= ∅ and γ ∩ σ2 6= ∅; in particular, this means that
every minimizing simple closed geodesic do intersect ∂J . But, by Lemma 4.6, there must exist a minimizing
closed geodesic in [β] entirely contained in H, which is a contradiction. ¤

In fact, the proof of Theorem 4.3 gives the following result.

Theorem 4.7. Every complete orientable Riemannian surface which is neither simply nor doubly connected
nor homeomorphic to a torus is the union (with pairwise disjoint interiors) of generalized funnels, halfplanes
and a set G which can be exhausted by geodesic domains.

The curvature of a Riemannian surface homeomorphic to a torus can not verify K < 0; then, Theorem
4.3, Lemma 3.9 and Lemma 3.10 give directly the following result.

Theorem 4.8. Every complete orientable Riemannian surface with curvature K ≤ −c2 < 0, which is neither
simply nor doubly connected is the union (with pairwise disjoint interiors) of generalized Y-pieces, funnels
and halfplanes. Furthermore, every generalized puncture is a puncture.

In order to deal with bordered surfaces, we need a last definition.

Definition 4.9. A finite cylinder is a bordered Riemannian surface which is homeomorphic to S1 × [0, 1],
whose border is the union of two simple closed geodesics, and at least one of them is minimizing.

Theorem 4.10. Every simple complete orientable bordered Riemannian surface which is neither simply
nor doubly connected is the union (with pairwise disjoint interiors) of generalized Y-pieces, finite cylinders,
generalized funnels and halfplanes.

Furthermore, there is a bijection between finite cylinders in the decomposition and nonminimizing simple
closed geodesics in the border.

Proof. Let S be a simple complete orientable bordered Riemannian surface which is not simply nor doubly
connected, whose border is the union of simple closed geodesics {γi}i∈I . By applying Lemma 3.3 we can
construct another complete Riemannian surface R by gluing a neighborhood Fi of a collared end to each γi,
such that R = ∪i∈IFi ∪ S. It is obvious that R is not homeomorphic to a torus, since it is not compact.

By Theorem 4.3 we know that R is the union (with pairwise disjoint interiors) of generalized Y-pieces,
generalized funnels and halfplanes. Furthermore, by Remark 4.4, if γi is a minimizing simple closed geodesic
in S, for some i ∈ I, we can choose the decomposition in such a way that γi belongs to the border of a
generalized funnel.

If γi is a nonminimizing simple closed geodesic in S for some i ∈ I, Lemma 3.3 ((7) and (2)) guarantees
both that there exists the minimizing simple closed geodesic γ0

i ∈ [γi] and that it is contained in S. Then,
the funnel Fi in this decomposition intersects S in a finite cylinder whose border is γ0

i ∪ γi.
Consequently, we obtain the desired decomposition in S if we restrict to S this decomposition in R. ¤
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Theorem 4.11. Every simple complete orientable bordered Riemannian surface with curvature K ≤ −c2 <
0, is the union (with pairwise disjoint interiors) of generalized Y-pieces, funnels and halfplanes. Furthermore,
every generalized puncture is a puncture.

Proof. The proof follows the argument of the proof of Theorem 4.10, using Theorem 4.8, instead of Theorem
4.3.

Lemma 3.9 gives that in each free homotopy class there exists at most a closed geodesic. Consequently,
there are not finite cylinders in the decomposition.

We only need to study the simple complete orientable bordered Riemannian surfaces with curvature
K ≤ −c2 < 0 which are simply or doubly connected.

Let S be such a surface. S can not be simply connected: Seeking for a contradiction, suppose that
S is simply connected; then ∂S can be considered a geodesic triangle with three angles equal to π, and
Gauss-Bonnet Formula gives

−
∫∫

S

K dA = π − π − π − π = −2π ,

which is a contradiction with K < 0.
If S is doubly connected, then Lemma 3.9 gives that ∂S is a single simple closed geodesic and besides it

is minimizing. Then, S is a funnel. ¤
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