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§1. Introduction

A good way to understand the important connections between graphs and Potential Theory on

Riemannian manifolds (see e.g. [APR], [ARY], [CFPR], [FR2], [HS], [K1], [K2], [K3], [R1], [R2],

[So]) is to study Gromov hyperbolic spaces. This approach allows us to establish a general setting to

work simultaneously with graphs and manifolds, in the context of metric spaces. Besides, the idea of

Gromov hyperbolicity grasps the essence of negatively curved spaces, and has been successfully used

in the theory of groups (see e.g. [GH], [G1], [G2] and the references therein).

Although there exist some interesting examples of hyperbolic spaces (see the examples after Def-

inition 2.1), the literature gives no good guide about how to determine whether or not a space is

hyperbolic. Recently, some interesting results of Balogh and Buckley [BB] about the hyperbolicity of

Euclidean bounded domains with their quasihyperbolic metric have made significant progress in this

direction (see also [BHK] and the references therein).

We are interested in studying when non-exceptional Riemann surfaces equipped with their Poincaré

metrics are Gromov hyperbolic. We have also proved several theorems on hyperbolicity for general

metric spaces, which are interesting by themselves (see Section 2); they are key tools in the study

of Riemann surfaces (see Section 3). Although one should expect Gromov hyperbolicity in non-

exceptional Riemann surfaces due to its constant curvature −1, this turns out to be untrue in general,

since topological obstacles can impede it: for instance, the two-dimensional jungle-gym (a Z2-covering

of a torus with genus two) is not hyperbolic. Let us recall that in the case of modulated plane domains,

the quasihyperbolic metric and Poincaré metric are equivalent.

We prove in Section 4 that there is no inclusion relationship between hyperbolic Riemann surfaces

and the usual classes of Riemann surfaces, such as OG, OHP , OHB , OHD, surfaces with hyperbolic

isoperimetric inequality, or the complements of these classes (even in the case of plane domains). This

fact shows that the study of hyperbolic Riemann surfaces is more complicated and interesting that

one might think at first sight. One can find other results on hyperbolicity of Riemann surfaces in

[RT1], [RT2] and [PRT2].

Here we present the outline of the main results. We refer to the next sections for the definitions

and the precise statements of the theorems.

We can create or delete infinitely many topological obstacles in a metric space, preserving its

hyperbolicity (see Theorem 2.2). This fact simplifies the topology of the space (recall that topological

obstacles make difficult the hyperbolicity of a space).

One of the important aims in this paper is obtaining global results on hyperbolicity from local

information. That was the idea that led us to think of a Riemann surface S as the union of some

“pieces” or “building block components” {Sn}. Theorem 2.1 guarantees the hyperbolicity of some

metric spaces which are narrow in some sense. Using this result, we study the role of the decomposition

of a Riemann surface in Y -pieces and funnels (or more general bordered surfaces) in its hyperbolicity

(see theorems 3.1, 3.2, 3.6, 3.7 and 3.8). In particular, theorems 3.2, 3.7 and 3.8 can be applied even in

cases with arbitrarily long simple closed geodesics in the boundary of the Y -pieces. The hyperbolicity

constant in Theorem 2.1 is sharp, and this fact allows us to obtain accurate hyperbolicity constants
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in Theorem 3.1, and propositions 3.1 and 3.2, and good constants in the other results.

We also have results on uniform hyperbolicity of surfaces of finite type (see theorems 3.4 and

3.5, and propositions 3.1 and 3.2). Theorem 3.5 is remarkable, since it guarantees the hyperbolicity

of surfaces of finite type, with hyperbolicity constants which only depend on the topology of the

surface and some metric restrictions. By this reason it can be viewed as a result on stability of the

hyperbolicity of Riemann surfaces.

Theorem 3.7 is also one of the remarkable results of this paper, since it allows us to simplify

significantly the study of the hyperbolicity of a Riemann surface S: it shows how to construct explicitly

a very simple graph G related to S, such that the hyperbolicity of G guarantees the hyperbolicity

of S. In theorems 3.1, 3.2 and 3.6 the uniform hyperbolicity of the pieces gives the hyperbolicity of

the surface, since the pieces are joined together following a tree-like design (in which no topological

obstacles are created). In Theorem 3.7 we cannot obtain the global hyperbolicity just from local

information, since we do not have any restriction on the connections of the pieces; it is necessary to

ask for the hyperbolicity of the graph used as a model for the connections. This result simplifies the

geometry of the surface, since we only need to study its “skeleton”.

Theorem 3.7 can be applied to prove that some deformations of Riemann surfaces preserve the

hyperbolicity, such as significant changes in the length of simple closed geodesics (see Theorem 3.8)

or “twists” in the Y -pieces (see Corollary 3.3).

We want to remark a last result. It is clear that the funnel Fl with L(∂Fl) = l has thin constant

δl ≥ l/4; consequently, one can think that a surface with funnels with arbitrarily long simple closed

geodesics cannot be hyperbolic. However, Corollary 3.1 shows that this is not true.

We want to remark that almost every constant appearing in the results of this paper depends just

on a small number of parameters. This is a common place in the theory of hyperbolic spaces (see e.g.

theorems A, B and C) and is also typical of surfaces with curvature −1 (see e.g. theorems D and E,

the Collar Lemma in [R] and [S], and Theorem 3.1 in [PRT2]).

Notations. We denote by X or Xn geodesic metric spaces. By dX , LX and BX we shall denote,

respectively, the distance, the length and the balls in the metric of X.

We denote by S or Sn non-exceptional Riemann surfaces. We assume that the metric defined on

these surfaces is the Poincaré metric, unless the contrary is specified.

Finally, we denote by ci, ki, positive constants which can assume different values in different theo-

rems.

Acknowledgements. We would like to thank Professor José Luis Fernández for some helpful

suggestions. Also, we would like to thank Venancio Alvarez, Maŕıa Auxiliadora Márquez and Ana

Portilla for some useful discussions. Also, we would like to thank the referee for his/her careful reading

of the manuscript and for some helpful suggestions.

§2. Results in metric spaces

In our study of hyperbolic Gromov spaces we use the notations of [GH]. We give now the basic
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facts about these spaces. We refer to [GH] for more background and further results.

Definition 2.1. Let us fix a point w in a metric space (X, d). We define the Gromov product of

x, y ∈ X with respect to the point w as

(x|y)w :=
1
2

(
d(x,w) + d(y, w)− d(x, y)

) ≥ 0 .

We say that the metric space (X, d) is δ-hyperbolic (δ ≥ 0) if

(x|z)w ≥ min
{
(x|y)w, (y|z)w

}− δ ,

for every x, y, z, w ∈ X. We say that X is hyperbolic (in the Gromov sense) if the value of δ is not

important.

In this paper we only use the word hyperbolic in the sense of Definition 2.1.

Examples: (1) Every bounded metric space X is (diam X)-hyperbolic (see e.g. [GH, p. 29]).

(2) Every complete simply connected Riemannian manifold with sectional curvature which is

bounded from above by −k, with k > 0, is hyperbolic (see e.g. [GH, p. 52]).

(3) Every tree with edges of arbitrary length is 0-hyperbolic (see e.g. [GH, p. 29]).

Definition 2.2. If γ : [a, b] −→ X is a continuous curve in a metric space (X, d), we can define

the length of γ as

L(γ) := sup
{ n∑

i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < · · · < tn = b
}

.

We say that γ is a geodesic if it is an isometry, i.e. L(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every

s, t ∈ [a, b]. We say that X is a geodesic metric space if for every x, y ∈ X there exists a geodesic

joining x and y; we denote by [x, y] any of such geodesics (since we do not require uniqueness of

geodesics, this notation is ambiguous, but it is convenient). It is clear that every geodesic metric

space is path-connected.

Definition 2.3. If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T =

{x1, x2, x3} is the union of three geodesics [x1, x2], [x2, x3] and [x3, x1]. A geodesic triangle T is δ-thin

(or satisfies the Rips condition with constant δ) if for every x ∈ [xi, xj ] we have that d(x, [xj , xk] ∪
[xk, xi]) ≤ δ for any permutation {xi, xj , xk} of {x1, x2, x3}. The space X is δ-thin if every geodesic

triangle in X is δ-thin.

Remark. If we have a triangle with two identical vertices, we call it a “bigon”. Note that since

this is a special case of the definition, every bigon in a δ-thin space is δ-thin.

A basic result is that hyperbolicity is equivalent to Rips condition:

Theorem A. ([GH, p. 41]) Let us consider a geodesic metric space X.

(1) If X is δ-hyperbolic, then it is 4δ-thin.

(2) If X is δ-thin, then it is 4δ-hyperbolic.

We present now the class of maps which play the main role in the theory.
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Definition 2.4. A function between two metric spaces f : X −→ Y is a quasi-isometry if there

are constants a ≥ 1, b ≥ 0 with

1
a

dX(x1, x2)− b ≤ dY (f(x1), f(x2)) ≤ a dX(x1, x2) + b , for every x1, x2 ∈ X.

Such a function is called an (a, b)-quasi-isometry. An (a, b)-quasigeodesic in X is an (a, b)-quasi-

isometry between an interval of R and X. An (a, b)-quasigeodesic segment in X is an (a, b)-quasi-

isometry between a compact interval of R and X.

Notice that a quasi-isometry can be discontinuous.

Quasi-isometries are important since they are maps which preserve hyperbolicity:

Theorem B. ([GH, p. 88]) Let us consider two geodesic metric spaces X and Y , and an (a, b)-

quasi-isometry f of X onto Y . If Y (respectively X) is δ-hyperbolic, then X (respectively Y ) is

δ′-hyperbolic, where δ′ is a constant which only depends on δ, a and b.

In this paper we will work with topological subspaces of a geodesic metric space X. There is a

natural way to define a distance in these spaces:

Definition 2.5. If X0 is a path-connected subset of a metric space (X, d), then we associate to it

the restricted distance

dX0(x, y) := dX |X0(x, y) := inf
{
L(γ) : γ ⊂ X0 is a continuous curve joining x and y

} ≥ dX(x, y) .

We need an additional definition in order to obtain our first result.

Definition 2.6. A geodesic metric space X is c1-decomposible if it verifies:

(1) X = ∪r∈IX
r, with I an interval in the real line, {Xr}r∈I pairwise disjoint, A(r) a set of

indices for each r ∈ I and Xr = ∪a∈A(r)X
r
a , with {Xr

a}a∈A(r) pairwise disjoint closed sets, and

diamX Xr
a ≤ c1.

(2) If for each geodesic γ : [0, l] −→ X and s ∈ [0, l], we denote by X
r(s)
a(s) the set Xr

a with γ(s) ∈ Xr
a ,

then ∪s∈[0,l]X
r(s)
a(s) is a closed set.

(3) If X
r(0)
a(0) 6= X

r(l)
a(l) , then there is s ∈ (0, l) such that X \X

r(s)
a(s) is not connected, and x0, xl are in

different connected components of X \X
r(s)
a(s) , for every x0 ∈ X

r(0)
a(0) , xl ∈ X

r(l)
a(l) .

A standard way to obtain a decomposition is to take a continuous function f : X −→ R, to define

Xr := f−1({r}) and to consider {Xr
a}a∈A(r) as the connected components of Xr. A natural choice

of f is f(x) = d(x, x0), for fixed x0 ∈ X. This choice gives the first example of decomposible spaces:

the trees are 0-decomposible. Non-trivial examples of decomposible spaces appear in propositions 3.1

and 3.2, and in theorems 3.1, 3.2 and 3.4.

Remarks. 1. The item (2) is only a technical topological condition about the “continuity” in r of

Xr, which is trivially satisfied in the applications developed in propositions 3.1 and 3.2, and theorems

3.1, 3.2 and 3.4.

2. If γ : [0, l] −→ X is a geodesic, then γ : [α, β] −→ X is also a geodesic for any 0 ≤ α < β ≤ l.

Hence conditions (2) and (3) imply, respectively:



6

(2′) For each geodesic γ : [0, l] −→ X, the set ∪s∈[α,β]X
r(s)
a(s) is closed for any 0 ≤ α < β ≤ l.

(3′) For any 0 ≤ α < β ≤ l, if X
r(α)
a(α) 6= X

r(β)
a(β) , then there is s ∈ (α, β) such that X \X

r(s)
a(s) is not

connected, and xα, xβ are in different connected components of X \X
r(s)
a(s) , for every xα ∈ X

r(α)
a(α) , xβ ∈

X
r(β)
a(β) .

Theorem 2.1. Every c1-decomposible geodesic metric space is (3c1/2)-thin.

Proof. The idea of the proof is to show that given a point x in a geodesic triangle T , then there

exists a set Xr
a (near x) which intersects two sides of T .

Let us consider a geodesic triangle T with vertices {x1, x2, x3} and x ∈ T . Without loss of generality

we can assume that x ∈ [x1, x2]. If l := dX(x1, x2), we consider the arc-length parametrization of

[x1, x2], γ : [0, l] −→ X. Let us denote by η the union of the two other sides η := [x2, x3]∪ [x3, x1]. If

x ∈ Xr
a and η ∩Xr

a 6= ∅, then dX(x, η) ≤ c1 by (1), and there is nothing else to prove. Assume that

η ∩Xr
a = ∅; then we will prove dX(x, η) ≤ 3c1/2. We consider s1 := γ−1(x) ∈ (0, l). Let us define

s0 := inf
{
α > 0 : X

r(s)
a(s) ∩ η = ∅ ∀s ∈ (α, s1]

}
,

s2 := sup
{
β < l : X

r(s)
a(s) ∩ η = ∅ ∀s ∈ [s1, β)

}
.

We show now that X
r(s0)
a(s0)

∩ η 6= ∅ and X
r(s2)
a(s2)

∩ η 6= ∅. We only deal with the second case; the first

one is similar. By definition of s2 we have only two possibilities: X
r(s2)
a(s2)

∩ η 6= ∅ or X
r(tk)
a(tk) ∩ η 6= ∅

with tk ↘ s2. Let us assume that we have the second possibility; then we can choose xk ∈ X
r(tk)
a(tk) ∩ η.

Since η is a compact set, we can choose a subsequence (which we also denote by xk) and a point

x0 ∈ η with xk → x0. For each ε > 0 there exists N such that xk ∈ η ∩ (∪s∈[s2,s2+ε] X
r(s)
a(s)

)
, for every

k ≥ N . Recall that η ∩ (∪s∈[s2,s2+ε] X
r(s)
a(s)

)
is a closed set by (2′). Then x0 ∈ η ∩ (∪s∈[s2,s2+ε] X

r(s)
a(s)

)
,

for every ε > 0.

First of all we will prove

∩ε>0 ∪s∈[s2,s2+ε] X
r(s)
a(s) = X

r(s2)
a(s2)

.

It is clear that X
r(s2)
a(s2)

⊆ ∩ε>0 ∪s∈[s2,s2+ε] X
r(s)
a(s) . In order to check the other inclusion let us consider

any y ∈ ∩ε>0 ∪s∈[s2,s2+ε] X
r(s)
a(s) . Since y belongs to this intersection, there exists a non-increasing

sequence {un}n converging to s2, such that y ∈ X
r(un)
a(un) for every n, and then X

r(un)
a(un) = X

r(u1)
a(u1)

for

every n.

Since X
r(u1)
a(u1)

is a closed set, limn→∞ γ(un) = γ(s2) and γ(un) ∈ X
r(u1)
a(u1)

, then γ(s2) ∈ X
r(u1)
a(u1)

;

therefore X
r(u1)
a(u1)

= X
r(s2)
a(s2)

, since γ(s2) ∈ X
r(s2)
a(s2)

by definition. Consequently, y ∈ X
r(s2)
a(s2)

as we want to

check.

Following with the proof of the theorem, we can conclude that x0 ∈ η∩X
r(s2)
a(s2)

; hence, X
r(s2)
a(s2)

∩η 6= ∅.

We prove now that X
r(s0)
a(s0)

= X
r(s2)
a(s2)

. Seeking a contradiction, let us assume that this is not true.

By (3′) we can take s ∈ (s0, s2) such that X \X
r(s)
a(s) is not connected, and γ(s0), γ(s2) are in different

connected components of X \X
r(s)
a(s) ; also by (3′), the same is true if we change γ(s0) by any point in

X
r(s0)
a(s0)

and γ(s2) by any point in X
r(s2)
a(s2)

.

Consider now a parametrization of the curve η : [0, l3] −→ X. Since X
r(s0)
a(s0)

∩η 6= ∅ and X
r(s2)
a(s2)

∩η 6=
∅, we can choose 0 ≤ l1 < l2 ≤ l3 with η(l1) ∈ X

r(s0)
a(s0)

, η(l2) ∈ X
r(s2)
a(s2)

(or viceverse). We denote by
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η0 : [l1, l2] −→ X the restriction of η to [l1, l2]. It is clear that η0∩X
r(s)
a(s) = ∅ (since η∩X

r(s)
a(s) = ∅) and

therefore, η0 joins η(l1) ∈ X
r(s0)
a(s0)

with η(l2) ∈ X
r(s2)
a(s2)

in X \X
r(s)
a(s) , which is a contradiction. Therefore

X
r(s0)
a(s0)

= X
r(s2)
a(s2)

.

Since X
r(s0)
a(s0)

= X
r(s2)
a(s2)

, we have that LX(γ([s0, s2])) = dX(γ(s0), γ(s2)) ≤ diamX

(
X

r(s0)
a(s0)

) ≤ c1.

Recall that x = γ(s1). Consequently dX

(
x,X

r(s0)
a(s0)

) ≤ min{LX(γ([s0, s1])), LX(γ([s1, s2]))} ≤ c1/2,

and so dX(x, η) ≤ dX

(
x, X

r(s0)
a(s0)

)
+ diamX

(
X

r(s0)
a(s0)

) ≤ c1/2 + c1 = 3c1/2. ¤

Definition 2.7. Let us consider a geodesic metric space X and {η1
n, η2

n}n pairwise disjoint compact

subsets of X. If c1, c2, c3, c4 are positive constants, we say that {η1
n, η2

n}n are (c1, c2, c3, c4)-identified

if:

(1) there exists a bijective isometry fn : (η1
n, dX |η1

n
) −→ (η2

n, dX |η2
n
) for each n,

(2) dX(p, p′) ≤ c1 if fn(p) = p′ for some n,

(3) dX(η1
n ∪ η2

n, η1
m ∪ η2

m) ≥ c2 for every n 6= m,

(4) if we denote by X0 the space obtained by identifying in X the closed sets η1
n and η2

n by fn for

each n, and by f the canonical projection of X onto X0, then for each n there exists i ∈ {1, 2} with

dX(u, v) ≤ c3 dX0(f(u), f(v)) + c4 if u, v ∈ ηi
n.

Remarks. 1. Hypothesis (3) guarantees that dX0 (defined by Definition 2.5) is a distance.

2. Conditions (2) and (4) are satisfied if diamX(η1
n ∪ η2

n) ≤ c for every n.

The following theorem allows us to create infinitely many topological obstacles in a metric space

(“genus”, if the space is a surface), preserving its hyperbolicity.

There is a more useful point of view to appreciate the next theorem: we can delete infinitely many

topological obstacles in a metric space, preserving its hyperbolicity. This fact allows a great simplifi-

cation in the topology of the space (recall that topological obstacles make difficult the hyperbolicity).

Theorem 2.2. Let us consider a geodesic metric space X and {η1
n, η2

n}n (c1, c2, c3, c4)-identified.

Then the canonical projection f of X onto X0 is a quasi-isometry with constants which only depend

on c1, c2, c3, c4. Consequently, if X0 is a geodesic metric space, then X is hyperbolic if and only if

X0 is hyperbolic. In particular, if X (respectively X0) is δ-hyperbolic, then X0 (respectively X) is

δ′-hyperbolic, with δ′ a universal constant which only depends on δ, c1, c2, c3 and c4.

Remarks. 1. It is possible to prove (we can apply a similar argument to the one in the proof

of [RT1, Theorem 2.1]) that X0 is a geodesic metric space if each ball in X intersects only a finite

number of ηi
n’s (this is the case if X is proper).

2. If ηi
n are simple closed curves, the condition that (η1

n, dX |η1
n
) and (η2

n, dX |η2
n
) are isometric is

equivalent to LX(η1
n) = LX(η2

n).

3. Theorem 2.2 is an improvement of [RT1, Theorem 2.2]; furthermore, it uses simpler and shorter

arguments.

Proof. We have that dX |η1
n
, dX |η2

n
and dX0 (defined by Definition 2.5) are distances.

It is clear that for every curve σ in X we have LX(σ) = LX0(f(σ)). Then for every x, y ∈ X we

have dX0(f(x), f(y)) ≤ dX(x, y), since there are more curves joining f(x) and f(y) in X0 than curves

joining x and y in X.
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In order to prove the other inequality, let us fix x, y ∈ X and let us consider a geodesic γ0 :

[0, l] −→ X0 joining f(x) and f(y), if there exists such geodesic (if this was not so, we can take γk

with LX0(γk) ≤ dX0(f(x), f(y)) + 1/k). Let us define ηn := f(η1
n) = f(η2

n). Then dX0(ηn, ηm) ≥ c2 if

n 6= m, by (3).

If LX0(γ0) = dX(x, y), then dX0(f(x), f(y)) = dX(x, y) and we are done. So suppose this is not so.

We shall construct a continuous curve g in X joining x and y, related to γ0. If LX0(γ0) < dX(x, y),

then γ0 meets some ηn. In this case let us choose a finite union of curves γ in X as follows: Since

dX0(ηn, ηm) ≥ c2, γ0 intersects only a finite number of ηn’s. Let us define

t11 := min{0 ≤ t ≤ l : γ0(t) ∈ ∪nηn} .

There exists this minimum since γ0 is a continuous function in a compact interval and γ0 ∩ (∪nηn) is

a compact set (γ0 intersects only a finite number of ηn’s).

Then there is n1 such that γ0(t11) ∈ ηn1 , and we define

t21 := max{0 ≤ t ≤ l : γ0(t) ∈ ηn1} .

In a similar way, we define recursively

t1j := min{t2j−1 < t ≤ l : γ0(t) ∈ ∪nηn} ;

if γ0(t1j ) ∈ ηnj , for some nj , we take

t2j := max{t2j−1 < t ≤ l : γ0(t) ∈ ηnj} .

We can continue this choice for 1 ≤ j ≤ r. We define a finite union of curves γ in X as the restriction

of f−1(γ0) to the closed set [0, t11] ∪ [t21, t
1
2] ∪ · · · ∪ [t2r−1, t

1
r] ∪ [t2r, l]; since f is not injective, we take

γ(t1j ) := limt→(t1j )− γ(t) and γ(t2j ) := limt→(t2j )+ γ(t); if t11 = 0 (and/or t2r = l), we take γ(0) = x

(and/or γ(l) = y).

Notice that γ(t1j ) ∈ ηi
nj

, γ(t2j ) ∈ ηk
nj

, with i, k ∈ {1, 2}, and i can be equal or not to k.

Now, let us choose continuous curves gj connecting γ(t1j ) and γ(t2j ) in X in the following way:

by (4), we can take i ∈ {1, 2} and a geodesic hj in X joining γ(t1j )
∗ and γ(t2j )

∗, with LX(hj) =

dX(γ(t1j )
∗, γ(t2j )

∗) ≤ c3 dX0(f(γ(t1j )), f(γ(t2j ))) + c4, where γ(tkj )∗ ∈ ηi
nj
∩ {f−1(γ0(tkj ))} for k = 1, 2.

Then gj is the union of hj and at most two curves of length less or equal than c1, by (2); therefore

LX(gj) ≤ c3 dX0(γ0(t1j ), γ0(t2j )) + 2c1 + c4.

We define g := γ∪g1∪g2∪· · ·∪gr, which is a continuous curve in X joining x and y. Consequently

we have

dX(x, y) ≤ LX(g) = LX(γ) +
r∑

j=1

LX(gj)

≤ dX0(γ0(0), γ0(t11)) +
r−1∑

j=1

dX0(γ0(t2j ), γ0(t1j+1)) + dX0(γ0(t2r), γ0(l))

+
r∑

j=1

(
c3 dX0(γ0(t1j ), γ0(t2j )) + 2c1 + c4

)
.
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Notice that

(r − 1)(2c1 + c4) ≤ 2c1 + c4

c2

r−1∑

j=1

dX0(γ0(t2j ), γ0(t1j+1)),

since dX0(ηn, ηm) ≥ c2. Then

dX(x, y) ≤ dX0(γ0(0), γ0(t11)) +
(
1 +

2c1 + c4

c2

) r−1∑

j=1

dX0(γ0(t2j ), γ0(t1j+1))

+ dX0(γ0(t2r), γ0(l)) + c3

r∑

j=1

dX0(γ0(t1j ), γ0(t2j )) + 2c1 + c4

≤ c dX0(f(x), f(y)) + 2c1 + c4 ,

where c := max{1 + (2c1 + c4)/c2, c3}. We conclude that f is a quasi-isometry with constants which

only depend on c1, c2, c3, c4. The conclusions about hyperbolicity are a consequence of this fact and

Theorem B. ¤

We finish this section with a theorem which will be very useful in the proof of the main results of

this paper. In order to state it, we need a definition.

Definition 2.8. We say that a geodesic metric space X has a decomposition, if there exists a family

of geodesic metric spaces {Xn}n∈Λ with X = ∪n∈ΛXn and Xn ∩Xm = ηnm, where for each n ∈ Λ,

{ηnm}m are pairwise disjoint closed subsets of Xn (ηnm = ∅ is allowed); furthermore any geodesic

segment in X meets at most a finite number of ηnm’s.

We say that Xn, with n ∈ Λ, is a (k1, k2, k3)-tree-piece if it satisfies the following properties:

(a) If ηnm 6= ∅, then X \ ηnm is not connected and a, b are in different connected components of

X \ ηnm for any a ∈ Xn \ ηnm, b ∈ Xm \ ηnm.

(b) diamXn(ηnm) ≤ k1 for every m 6= n, and there exists An ⊆ Λ, such that diamXn(ηnm) ≤
k2 dXn(ηnm, ηnk) if m 6= k and m, k ∈ An, and

∑
m/∈An

diamXn(ηnm) ≤ k3.

We say that a geodesic metric space X has a (k1, k2, k3)-tree-decomposition if it has a decomposition

such that every Xn, with n ∈ Λ, is a (k1, k2, k3)-tree-piece.

We wish to emphasize that condition diamXn(ηnm) ≤ k1 is not very restrictive: if the space is

“wide” at every point (in the sense of long injectivity radius, as in the case of simply connected

spaces) or “narrow” at every point (as in the case of trees), it is easier to study its hyperbolicity; if

we can find narrow parts (as ηnm) and wide parts, the problem is more difficult and interesting.

Remarks. 1. Obviously, condition (b) is required only for ηnm, ηnk 6= ∅.

2. The sets Λ and An do not need to be countable.

3. The hypothesis diamXn(ηnm) ≤ k2 dXn(ηnm, ηnk) holds if we have dXn(ηnm, ηnk) ≥ k′2, since

diamXn(ηnm) ≤ k1.

4. Condition (a) for every n ∈ Λ guarantees that the graph R = (V, E) constructed in the following

way is a tree: V = ∪n∈Λ{vn} and [vn, vm] ∈ E if and only if ηnm 6= ∅.

5. If X is a Riemann surface, {Xn}n∈Λ are bordered Riemann surfaces and ηnm ⊂ ∂Xn ∩ ∂Xm,

then the condition “a, b are in different components of X \ ηnm for any a ∈ Xn \ ηnm, b ∈ Xm \ ηnm”

in (a), is a consequence of “X \ ηnm is not connected”.
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The following result can be applied to the study of the hyperbolicity of Riemann surfaces (see

theorems 3.4, 3.6 and 3.8). In [PRT1] explicit expressions for the constants involved are supplied.

Theorem C. ([PRT1, Theorem 1]) Let us consider a (k1, k2, k3)-tree-decomposition {Xn}n∈Λ of a

geodesic metric space X. Then X is δ-hyperbolic if and only if there exists a constant k4 such that Xn

is k4-hyperbolic for every n ∈ Λ. Furthermore, if X is δ-hyperbolic, then k4 only depends on δ, k1, k2

and k3; if there exists k4, then δ only depends on k1, k2, k3 and k4.

§3. Results in Riemann surfaces

In this section we always work with the Poincaré metric; consequently, curvature is always −1.

In fact, many concepts appearing here (as punctures or funnels) only make sense with the Poincaré

metric.

The intuition would say that negative curvature must imply hyperbolicity; in fact this is what

happens when there are no topological “obstacles” (as in the case of the Poincaré disk D) or if

there is a finite number of them (see Theorem 3.5). However, if there are infinitely many topological

“obstacles”, the hyperbolicity can fail, as in the case of the two-dimensional jungle gym (a Z2-covering

of a torus with genus two).

The results in this section are useful since they not only provide many examples of hyperbolic

Riemann surfaces, but also allow to establish criteria in order to decide whether a Riemann surface is

hyperbolic or not.

Below we collect some definitions concerning to Riemann surfaces which will be referred to after-

wards.

An open non-exceptional Riemann surface (or a non-exceptional Riemann surface without bound-

ary) S is a Riemann surface whose universal covering space is the unit disk D = {z ∈ C : |z| < 1},
endowed with its Poincaré metric, i.e. the metric obtained by projecting the Poincaré metric of the

unit disk ds = 2|dz|/(1 − |z|2), or, equivalently, the upper half plane U = {z ∈ C : Im z > 0},
with the metric ds = |dz|/ Im z. Notice that, with this definition, every compact non-exceptional Rie-

mann surface without boundary is open. With this metric, S is a geodesically complete Riemannian

manifold with constant curvature −1, and therefore S is a geodesic metric space. The only Riemann

surfaces which are left out are the sphere, the plane, the punctured plane and the tori. It is easy to

study the hyperbolicity of these particular cases.

Let S be an open non-exceptional Riemann surface with a puncture or cusp q (if S ⊂ C, every

isolated point in ∂S is a puncture). A collar in S about q is a doubly connected domain in S “bounded”

both by q and a Jordan curve (called the boundary curve of the collar) orthogonal to the pencil of

geodesics emanating from q.

A collar in S about q of area α will be called an α-collar and it will be denoted by CS(q, α). A

theorem of Shimizu [S] gives that for every puncture in any open non-exceptional Riemann surface,

there exists an α-collar for every 0 < α ≤ 2 (see also [Bu, Chapter 4.4]).
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We say that a curve is homotopic to a puncture q if it is freely homotopic to ∂CS(q, α) for some

(and then for every) 0 < α < 2.

We have used the word geodesic in the sense of Definition 2.2, that is to say, as a global geodesic

or a minimizing geodesic; however, we need now to deal with a special type of local geodesics: simple

closed geodesics, which obviously cannot be minimizing geodesics. We will continue using the word

geodesic with the meaning of Definition 2.2, unless we are dealing with closed geodesics.

A collar in S about a simple closed geodesic γ is a doubly connected domain in S “bounded” by

two Jordan curves (called the boundary curves of the collar) orthogonal to the pencil of geodesics

emanating from γ; such collar is equal to {p ∈ S : dS(p, γ) < d}, for some positive constant d. The

constant d is called the width of the collar. The Collar Lemma [R] says that there exists a collar of γ

of width d, for every 0 < d ≤ d0, where cosh d0 = coth(LS(γ)/2).

We say that S is a bordered non-exceptional Riemann surface (or a non-exceptional Riemann surface

with boundary) if it can be obtained by deleting an open set V of an open non-exceptional Riemann

surface R, such that:

(1) S is connected and dS := dR|S (recall Definition 2.5),

(2) any ball in R intersects at most a finite number of connected components of V ,

(3) the boundary of S is locally Lipschitz.

Any such surface S is a bordered orientable Riemannian manifold of dimension 2 and its Riemannian

metric has constant negative curvature −1. It is not difficult to see that S is a geodesic metric space.

A funnel is a bordered non-exceptional Riemann surface which is topologically a cylinder and whose

boundary is a simple closed geodesic. Given a positive number a, there is a unique (up to conformal

mapping) funnel such that its boundary curve has length a. Every funnel is conformally equivalent,

for some β > 1, to the subset {z ∈ C : 1 ≤ |z| < β} of the annulus {z ∈ C : 1/β < |z| < β}.
Every doubly connected end of an open non-exceptional Riemann surface is a puncture (if there

are homotopically non-trivial curves with arbitrary small length) or a funnel (if this was not so).

A Y-piece is a bordered non-exceptional Riemann surface which is conformally equivalent to a

sphere without three open disks and whose boundary curves are simple closed geodesics. Given three

positive numbers a, b, c, there is a unique (up to conformal mapping) Y -piece such that their boundary

curves have lengths a, b, c (see e.g. [Bu, p. 109]). They are a standard tool for constructing Riemann

surfaces. A clear description of these Y -pieces and their use is given in [C, Chapter X.3] and [Bu,

Chapter 3].

A generalized Y-piece is a non-exceptional Riemann surface (with or without boundary) which is

conformally equivalent to a sphere without n open disks and m points, with integers n, m ≥ 0 such

that n + m = 3, the n boundary curves are simple closed geodesics and the m deleted points are

punctures. Notice that a generalized Y -piece is topologically the union of a Y -piece and m cylinders,

with 0 ≤ m ≤ 3.

We deduce now several applications of Theorem 2.1 which guarantee the hyperbolicity of many

Riemann surfaces, with good control of the hyperbolicity constants.
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Proposition 3.1. Any generalized Y -piece Y0 with L(γ) ≤ l, for every simple closed geodesic

γ ⊆ ∂Y0, is (4r0 + l)-decomposible and 3(4r0 + l)/2-thin, where r0 := 2 Arcsinh(1/2).

Proof. Let us denote by γ1, γ2, γ3, the simple closed geodesics in ∂Y0 (as usual, we identify a

puncture with a geodesic of zero length). If {i, j, k} is any permutation of {1, 2, 3}, let us con-

sider the geodesic Bi in Y0 which is orthogonal to γj and γk. If we split Y0 along the curves

Bi, we obtain two isometric convex right-angle hexagons H1,H2, with consecutive sides of length

L(γ1)/2, L(B3), L(γ2)/2, L(B1), L(γ3)/2, L(B2).

Let us consider the middle point xi of the side with length L(γi)/2 in H1, and the geodesic triangle

T = {x1, x2, x3} ⊂ H1. We can draw a ball B(z0, r) contained in H1, which is tangent to some

y1 ∈ [x2, x3], y2 ∈ [x1, x3] and y3 ∈ [x1, x2]. We have that π ≥ A(T ) > A(B(z0, r)) = 4π sinh2(r/2),

and then r < r0.

Let us consider the geodesics α1, α2, α3 in H1 starting in z0 and finishing respectively in x1, x2, x3.

For each point p ∈ [xi, xj ] ⊂ T , we consider the geodesic ap in H1 which starts in p orthogonally to

[xi, xj ] and finishes in αi ∪αj , and the geodesic bp in H1 which starts orthogonally to Bk and finishes

in p. It is clear that L(ap) + L(bp) < r0 + l/4.

Therefore we can draw in H1 curves joining two of the sets B1, B2, B3, with diameter less than

2r0 + l/2; in fact, the “curve” containing z0 is the union of three curves and joins the three sets.

We can do the same design in H2, since it is isometric to H1. If we paste these hexagons, we have

that Y0 is (4r0 + l)-decomposible. Theorem 2.1 gives that Y0 is 3(4r0 + l)/2-thin. ¤

Many Riemann surfaces can be decomposed in a union of funnels and generalized Y -pieces (see [FM,

Theorem 4.1] and [AR]). The following results use this decomposition in order to obtain hyperbolicity.

Theorem 3.1. Let us consider a non-exceptional Riemann surface S (with or without boundary)

without genus (S can be viewed as a plane domain). If there is a decomposition of S in a union of

generalized Y -pieces {Yn}n∈N with LS(γ) ≤ l for every simple closed geodesic γ ⊂ ∪n∂Yn, then S is

(4r0 + l)-decomposible and 3(4r0 + l)/2-thin, where r0 := 2 Arcsinh(1/2).

Proof. By Proposition 3.1 we know that each Yn is (4r0 + l)-decomposible. Since S is a plane

domain, the union in n of the curves constructed in Proposition 3.1 in each Yn gives that S is also

(4r0 + l)-decomposible, since any of such curves disconnects S. Consequently, Theorem 2.1 gives that

S is 3(4r0 + l)/2-thin. ¤

With an additional idea we can improve Proposition 3.1 and Theorem 3.1.

Proposition 3.2. Any generalized Y -piece Y0 with L(γ) ≤ l, for at least two simple closed geodesics

γ ⊆ ∂Y0, is (2r1 + l)-decomposible and 3(2r1 + l)/2-thin, where

r1 := max
{

Arcsinh(coth(l/4)), 4 Arcsinh(1/2)
}

.

Remark. This is the best result that we can obtain about Y -pieces: If L(γ) ≤ l for one simple

closed geodesic γ ⊆ ∂Y0, δ can be arbitrarily long, as shows the example after the proof of Proposition

3.2.
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Proof. Let us denote by γ1, γ2, γ3, the simple closed geodesics in ∂Y0 (as usual, we identify a

puncture with a geodesic of zero length). Without loss of generality, we can assume that L(γ3) > l,

since if this was not so, we can apply Proposition 3.1 (we have r1 ≥ 2r0).

If {i, j, k} is any permutation of {1, 2, 3}, let us consider the geodesic Bi in Y0 which is orthogonal

to γj and γk. If we split Y0 along the curves Bi, we obtain two isometric convex right-angle hexagons

H1,H2.

For each point p ∈ g3 := γ3 ∩H1, we consider the geodesic ap in H1 which starts in p and finishes

orthogonally to B3. We want to obtain a bound for L(ap); in order to do this, let us consider

first the simple case in which γ1 and γ2 are punctures. Then H1 is a quadrilateral with two right

angles and three sides of infinite length; if p0 is the middle point of g3, we can split H1 by deleting

ap0 in two isometric quadrilaterals Q1, Q2, with three right angles and two sides of infinite length.

The other sides have length L(γ3)/4 and L(ap0), with sinh(L(γ3)/4) sinh L(ap0) = 1 (see e.g. [B,

p. 157], [F, p. 89], [Ra, p. 96]). If p0, p1 are the end points of g3 in Q1, we can split Q1 by

deleting ap1 in a triangle and a quadrilateral Q11 with three right angles and four finite sides. We

have (see e.g. [F, p. 88]) sinh L(ap1) = sinh L(ap0) cosh(L(γ3)/4) = coth(L(γ3)/4), and consequently

L(ap) ≤ L(ap1) < Arcsinh(coth(l/4)) ≤ r1, since L(γ3) > l.

It is clear now that in the general case (with 0 ≤ L(γ1), L(γ2) ≤ l) we have L(ap) < r1 + l/2.

Let us denote by bp the curve in Y0 obtained by the union of ap and its symmetric curve ap′ ; each

bp joins γ3 with itself and have length less than 2r1 + l. It is clear that the set of the points of Y0 which

are not in the union of the bp’s has two connected components, which are tubular neighborhoods N1

of γ1 and N2 of γ2 in Y0. It is plain that we can draw in Ni curves freely homotopic to γi with length

less than 2r1 + l.

Then we have that Y0 is (2r1 + l)-decomposible and 3(2r1 + l)/2-thin, by Theorem 2.1. ¤

Example. The sharp hyperbolicity constant of the generalized Y -piece Yt with one puncture and

two simple closed geodesics of length 2t goes to infinity as t →∞.

Let us denote by γ1, γ2, the simple closed geodesics of Yt. The idea that lies behind the proof is

that given two points in γi, the distance between them is approximately the length of a subcurve of γi

joining them. Let us denote by p1 ∈ γ1, p2 ∈ γ2, the points with d(p1, p2) = d(γ1, γ2) =: s. We choose

the points q1 ∈ γ1, q2 ∈ γ2, with d(p1, q1) = d(p2, q2) = t. If we split Yt along the geodesics which

start orthogonally to γ1 in p1 and q1, and to γ2 in q2, we obtain two isometric right-angled hexagons

H1,H2. Each Hi has sides with length t, s, t,∞, 0,∞.

Standard hyperbolic trigonometry (see e.g. [B, p. 161]) gives

cosh s = 1 +
2

sinh2t
, sinh s =

2 cosh t

sinh2t
.

Let us consider the geodesic γ0 in H1 which gives the distance between [p1, q1] and the side A of

infinite length which does not intersect with it; we define x := γ0 ∩ [p1, q1] and y := γ0 ∩ A. The

geodesic γ0 splits H1 into a right-angled pentagon and a quadrilateral with three right-angles and a

degenerated angle. Hyperbolic trigonometry for pentagons (see e.g. [B, p. 159]) gives cosh L(γ0) =

sinh s sinh t = 2 coth t; then limt→∞ cosh L(γ0) = 2 and limt→∞ sinhL(γ0) =
√

3 . We also have that
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sinh L(γ0) sinh d(x, q1) = 1 and limt→∞ d(x, q1) = Arcsinh(1/
√

3 ). Consequently, d(x, q1) is bounded

when t goes to ∞.

With this computations in mind, we consider the geodesic bigon γ1 in Yt with vertices {p1, q1} (it is

geodesic by the symmetry of Yt). Let us choose the point z ∈ γ1∩H1 such that d(z, p1) = d(z, q1) = t/2.

Then there exists some constant c with d(z, γ1 ∩H2) ≥ t/2− c if t is large enough, as a consequence

of the above computations; hence limt→∞ δ(Yt) = ∞.

In order to prove our next theorem, we need the following result appearing in [RT2]; in fact,

Theorem 5.2 in [RT2] provides a better result than Theorem D, but this version is enough for our

purpose.

Theorem D. ([RT2, Theorem 5.2]) Given an open non-exceptional Riemann surface S, let us

denote by F the union of some funnels of S. Let S0 be the bordered non-exceptional Riemann surface

obtained by deleting from S the interior of F . Then S is hyperbolic if and only if S0 is hyperbolic.

Furthermore, if S0 is δ0-hyperbolic, then S is δ-hyperbolic, with δ a constant which only depends on

δ0.

In order to state the next theorem we need a definition.

Definition 3.1. Let us consider a non-exceptional Riemann surface S of finite type (with or

without boundary); if S is bordered, we also require that ∂S is the union of local geodesics (closed or

non-closed). An outer loop in S is a simple closed geodesic which is the boundary curve of a funnel

or is contained in ∂S. An inner loop in S is a simple closed geodesic which is not an outer loop. The

characteristic of S is a = 2g − 2 + n, where g is the genus of S and n is the sum of the number of

punctures of S and the number of outer loops of S.

We also need the following beautiful theorem of Bers.

Theorem E. ([Be, Theorem 1]) Let us consider a non-exceptional Riemann surface S of finite type

(with or without boundary); if S is bordered, we also require that ∂S is the union of local geodesics

(closed or non-closed). If S has characteristic a, the length of its shortest inner loop (if any) is bounded

from above by a constant J = J(a, L) depending only on a and on the length L of the longest outer

loop (if any).

Remark. There exists such inner loop if 3g − 3 + n > 0.

In fact, Theorem E is proved in [Be] only for surfaces without boundary, but the other case is direct

from this one.

If we use Proposition 3.2 instead of Proposition 3.1 in the proof of Theorem 3.1, we obtain the

following result.

Theorem 3.2. Let us consider a non-exceptional Riemann surface S (with or without boundary)

without genus. If there is a decomposition of S into a union of funnels {Fm}m∈M and generalized

Y -pieces {Yn}n∈N (N 6= ∅) with LS(γ) ≤ l for at least two simple closed geodesics γ ⊆ ∂Yn for every

n ∈ N , then S is δ-hyperbolic, where δ is a constant which only depends on l.
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Proof. By Theorem D, we can assume that M = ∅. Let us consider Yn with LS(γ) > l for some

simple closed geodesic γ ⊆ ∂Yn. Let us assume that there exists some n0 6= n with γ ⊆ ∂Yn0 ; we can

apply Theorem E to the bordered Riemann surface Yn ∪ Yn0 with characteristic a = 2, and then we

have an inner loop γ′ in Yn ∪ Yn0 with LS(γ′) ≤ J(2, l). If we split Yn ∪ Yn0 by γ′, we obtain two

generalized Y -pieces Y ′
n, Y ′

n0
, such that Yn ∪ Yn0 = Y ′

n ∪ Y ′
n0

, and LS(σ) ≤ l0 := max{l, J(2, l)} for

every simple closed geodesic σ ⊆ ∂Y ′
n ∪ ∂Y ′

n0
.

Consequently, without loss of generality, we can assume that the decomposition of S in the union

of generalized Y -pieces {Yn}n∈N verifies the following property: if LS(γ) > l0 for some simple closed

geodesic γ ⊆ ∪n∂Yn, then γ is in the boundary of just one generalized Y -piece.

By Proposition 3.2 we have that each Yn is (2r1 + l0)-decomposible, with

r1 := max
{

Arcsinh(coth(l0/4)), 4Arcsinh(1/2)
}
.

Since S is a plane domain, the union in n of the curves constructed in Proposition 3.2 in each Yn gives

that S is also (2r1 + l0)-decomposible, since any of such curves disconnects S. Consequently, Theorem

2.1 gives that S is 3(2r1 + l0)/2-thin. ¤

Since the funnel Fl with L(∂Fl) = l has thin constant δl ≥ l/4, one can think that a surface with

funnels with arbitrarily long simple closed geodesics cannot be hyperbolic. However, Theorem 3.2

allows us to prove the following surprising result.

Corollary 3.1. There exist hyperbolic plane domains with funnels with arbitrarily long simple

closed geodesics.

Proof. For each positive integer n we consider a Y -piece Yn with two boundary geodesics of length

1 and a boundary geodesic of length n. We denote by Z1 the union of Y1 and two funnels with

boundary geodesics of length 1, and by Zn (n > 1) the union of Yn and a funnel with boundary

geodesic of length n.

Let us denote by Ω the union of {Zn}∞n=1 identifying the boundary geodesics (Z1 is connected with

Z2, and Zn is connected with Zn−1 and Zn+1, if n > 1). It is clear that Ω has funnels with arbitrarily

long simple closed geodesics, and Theorem 3.2 gives that it is hyperbolic. ¤

Definition 3.2. We say that a non-exceptional Riemann surface S (with or without boundary) is

of finite type if its fundamental group is finitely generated.

Definition 3.3. Let us consider a non-exceptional Riemann surface S with boundary and {η1
n, η2

n}n ⊆
∂S pairwise disjoint simple closed geodesics in S. If c1 is a positive constant, we say that {η1

n, η2
n}n

are c1-identified if LS(η1
n) = LS(η2

n) ≤ c1 and dS(η1
n, η2

n) ≤ c1 for every n.

If we apply Theorem 2.2 to the context of Riemann surfaces, we obtain the following result. It will

be an important tool in the proof of Theorem 3.5.

Theorem 3.3. Let us consider a non-exceptional Riemann surface S with boundary and {η1
n, η2

n}n

c1-identified. Then S is hyperbolic if and only if S0 is hyperbolic. In particular, if S (respectively

S0) is δ-hyperbolic, then S0 (respectively S) is δ′-hyperbolic, with δ′ a universal constant which only

depends on δ and c1.
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Proof. This result is a direct consequence of Theorem 2.2 and the following facts:

Every non-exceptional Riemann surface (with or without boundary) is a geodesic metric space.

Since ηi
n are simple closed curves, the condition that (η1

n, dS |η1
n
) and (η2

n, dS |η2
n
) are isometric is

equivalent to LS(η1
n) = LS(η2

n).

We have diamS(η1
n ∪ η2

n) ≤ LS(η1
n)/2 + dS(η1

n, η2
n) + LS(η2

n)/2 ≤ 2c1.

If γ1, γ2, are disjoint simple closed geodesics contained in an open non-exceptional Riemann surface,

with length less or equal than a, the Collar Lemma [R] says that there exist disjoint collars of γi of

width d0, where cosh d0 = coth(a/2). Therefore, d(γ1, γ2) ≥ 2Arccosh(coth(a/2)); it is clear that this

inequality is also true if S is bordered, since then S is contained in an open non-exceptional Riemann

surface. ¤

In order to prove the next theorems we need some definitions.

Definition 3.4. Given a Riemann surface S with finite genus g, we say that the simple closed

geodesics a1, . . . , ag, b1, . . . , bg are generators of the genus of S if S \aj and S \bj are connected, aj∩bj

is a single point, and (aj ∪ bj) ∩ (∪k 6=j(ak ∪ bk)) = ∅.

Given c > 0, we say that a Riemann surface S with finite genus g has c-small genus if there exist

a1, . . . , ag, b1, . . . , bg generators of the genus of S such that LS(aj) ≤ c, LS(bj) ≤ c, for j = 1, . . . , g.

We say that any plane domain (a surface without genus) has 0-small genus.

Definition 3.5. For each l, c ≥ 0 and each non-negative integer a, we denote by SG(a, l, c) the

set of non-exceptional Riemann surfaces of finite type S verifying the following properties: if S is

bordered, then ∂S is the union of local geodesics (closed or non-closed), S has characteristic less or

equal than a and c-small genus, and every outer loop has length less or equal than l.

We denote by SG(a, l) the set of plane domains in SG(a, l, c).

The two following theorems guarantee the hyperbolicity of the surfaces of finite type, with hyper-

bolicity constants which only depend on just two or three topological and metric parameters.

Theorem 3.4. For each l ≥ 0 and each non-negative integer a, there exists a constant δ = δ(a, l),

which only depends on a and l, such that every surface in SG(a, l) is δ-hyperbolic.

Proof. We prove the result by induction on a.

Let us consider first the case a = 0. If S ∈ SG(0, l), it is the punctured disk, an annulus or a funnel.

Lemma 5.4 and Corollary 5.1 in [RT2] give the result for the punctured disk and the annuli; the case

of the funnel is a consequence both of this fact and of the funnel being a geodesically convex subset

of an annulus.

We consider now the case a = 1. If S ∈ SG(1, l), it is the union of a generalized Y -piece and at

most three funnels. Since every simple closed geodesic of S is an outer loop, Theorem 3.2 gives the

result.

Let us assume now that the result is true for a − 1, with a ≥ 2, and let us prove it for a. Let

us consider a surface S ∈ SG(a, l). By Theorem E we can find an inner loop γ with length less or

equal than J(a, l) (there exists such inner loop since g = 0 and a − 1 > 0). Then S is the union of

two surfaces S1, S2, with S1 ∩ S2 = γ, since S has genus 0; notice that γ ⊆ ∂S1, ∂S2. If we define
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la := J(a, l)/2 (which only depends on a and l), A1 := A2 := ∅, we see that {S1, S2} is a (la, 0, la)-

tree-decomposition of S (see Definition 2.8). It is clear that S1 and S2 have characteristic less than

a, and every outer loop has length less or equal than max{l, J(a, l)}; then we have that they are

δ0-hyperbolic, with δ0 a constant which only depends on a and l, by the induction hypothesis. Then

Theorem C gives that there exists a constant δ = δ(a, l), which only depends on a and l, such that S

is δ-hyperbolic. ¤

We can improve this last result in the following theorem, in which we deal with the case of surfaces

with genus.

Theorem 3.5. For each l, c ≥ 0 and each non-negative integer a, there exists a constant δ =

δ(a, l, c), which only depends on a, l and c, such that every surface in SG(a, l, c) is δ-hyperbolic.

Proof. Let us fix a, l, c, and let us consider S ∈ SG(a, l, c). If S ∈ SG(a, l), we only need to apply

Theorem 3.4. If this was not so, we choose a1, . . . , ag, b1, . . . , bg generators of the genus of S. Then we

consider the bordered surface S1 obtained by cutting S along a1, . . . , ag, and we define t := max{l, c}.
To cut along aj decreases the genus by 1 and increases the number of outer loops by 2; therefore, the

characteristic remains unchanged. It is clear that S1 ∈ SG(a, t), and then we have by Theorem 3.4

that S1 is δ0-hyperbolic, with δ0 a constant which only depends on a and t. Notice that LS(bj) ≤ c;

hence the two copies of aj in ∂S1 are c-identified; then Theorem 3.3 gives that there exists a constant

δ = δ(δ0, c), which only depends on δ0 and c, such that S is δ-hyperbolic. ¤

The conclusion of Theorem 3.5 is not true without the hypothesis of c-small genus, as shows by the

following example:

Example. There exist open non-exceptional Riemann surfaces of finite type St with genus 1 and

characteristic 1, a puncture, and limt→0+ δ(St) = ∞: For each t > 0, let us consider the generalized

Y -piece Yt with a puncture and two simple closed geodesics γ1, γ2, of length 2t. Splitting Yt into two

isometric hexagons (with a side of zero length), standard hyperbolic trigonometry (see e.g. [B, p.

161]) gives

dYt(γ1, γ2) = Arccosh
(
1 +

2
sinh2t

)
=: g(t) .

Let us denote by St the Riemann surface of finite type with genus 1 and a puncture obtained from Yt

by identifying γ1 with γ2. It is clear that there exists a simple closed geodesic with length g(t) in St

“surrounding” the genus; then we have that if St is δ-thin, then δ ≥ g(t)/4.

Theorems 3.5 and C give the following result.

Theorem 3.6. Let us consider a non-exceptional Riemann surface S (with or without boundary).

If there exists a tree-decomposition of S into a union of bordered surfaces {Sm}m∈M ⊂ SG(a, l, c),

then S is δ-hyperbolic, where δ is a constant which only depends on a, l and c.

Remark. The condition “{Sm}m∈M is a tree-decomposition of S ” is verified if “{Sm}m∈M is a

decomposition of S such that for every m,n ∈ M , ∂Sm ∩ ∂Sn is the empty set or an outer loop γ of

Sm and Sn, and S \ γ is not connected if γ = ∂Sm ∩ ∂Sn”; it is sufficient to take k1 = l/2, An = ∅,

k2 = 0 and k3 = (a + 2)l/2, which are constants only depending on a and l.
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This remark and Theorem 3.6 give the following result.

Corollary 3.2. Let us consider a non-exceptional Riemann surface S (with or without boundary)

without genus. If there exists a decomposition of S into a union of bordered surfaces {Sm}m∈M ⊂
SG(a, l), then S is δ-hyperbolic, where δ is a constant which only depends on a and l.

Now, we want to obtain the equivalence of the hyperbolicity of an extensive class of Riemann

surfaces and some graphs. We start with a definition.

Definition 3.6. Let us consider a generalized Y -piece Y0, with L(γi) = li ≤ l, for every simple

closed geodesic γi ⊆ ∂Y0. We say that a tree G := (V,E) is the l-skeleton of Y0 if G has vertices

V = {v, v1, v2, v3} and edges E := ∪3
i=1[v, vi], such that L([v, vi]) = Arccosh(coth(li/2)) for i = 1, 2, 3.

Let us consider a generalized Y -piece Y0, with L(γi) = li, for every simple closed geodesic γi ⊆ ∂Y0,

l1, l2 ≤ l and l3 > l. We say that a tree G is the l-skeleton of Y0 if G has just one edge [v1, v2], such

that

L([v1, v2]) = Arccosh
(cosh(l3/2) + cosh(l1/2) cosh(l2/2)

sinh(l1/2) sinh(l2/2)

)
.

Remark. If L(γi) = li = 0 (i.e., if γi is a puncture), we choose as [v, vi] a halfline starting in v.

L([v1, v2]) is the distance between γ1 and γ2 (see e.g. [B, p. 161]).

Proposition 3.3. Given any generalized Y -piece Y0 with L(γi) = li ≤ l, for at least two simple

closed geodesic γi ⊆ ∂Y0, there exists a (1,M)-quaiisometry of Y0 onto its l-skeleton G, with

M := max
{3

2

(
log

(
2 cosh

l

2

(
1 + cosh

l

2

))
+

l

2
coth

l

2

)
, 2Arcsinh

(
coth

l

4

)
+ l

}
.

Proof. Let us denote by γ1, γ2, γ3, the simple closed geodesics in ∂Y0 (as usual, we identify a

puncture with a geodesic of zero length).

We deal first with the case L(γi) = li ≤ l, for i = 1, 2, 3. The Collar Lemma gives that, for each

geodesic γi, there exists a collar Cγi of width di = Arccosh(coth(li/2)), with boundary curves γi

and ηi; the closed curve ηi verifies L(ηi) = L(γi) cosh di = li coth(li/2) for i = 1, 2, 3. When γi is a

puncture, we have li = 0, di = ∞ and L(ηi) = 2 (see [Bu, Chapter 4.4]).

If {i, j, k} is any permutation of {1, 2, 3}, let us consider the geodesic segment Bi in Y0 which is

orthogonal to γj and γk. If we split Y0 along the curves Bi, we obtain two isometric convex right-angle

hexagons H1,H2, with consecutive sides of length L(γ1)/2, L(B3), L(γ2)/2, L(B1), L(γ3)/2, L(B2),

such that

L(Bi) = Arccosh
(cosh(li/2) + cosh(lj/2) cosh(lk/2)

sinh(lj/2) sinh(lk/2)

)

(see [B, p. 161]). Now, we define the hexagon H∗
1 := H1 \ ∪3

i=1Cγi in H1 (similarly H∗
2 in H2), with
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consecutive sides of length L(η1)/2, α3, L(η2)/2, α1, L(η3)/2, α2 , verifying

αi :=L(Bi)− (dj + dk)

=Arccosh
(cosh(li/2) + cosh(lj/2) cosh(lk/2)

sinh(lj/2) sinh(lk/2)

)
−

(
Arccosh(coth(lj/2)) + Arccosh(coth(lk/2))

)

≤ log
(
2

cosh(li/2) + cosh(lj/2) cosh(lk/2)
sinh(lj/2) sinh(lk/2)

)
−

(
log(coth(lj/2)) + log(coth(lk/2))

)

= log
(
2

cosh(li/2) + cosh(lj/2) cosh(lk/2)
cosh(lj/2) cosh(lk/2)

)
≤ log

(
2 cosh(l/2)(1 + cosh(l/2))

)
.

When γi is a puncture, we obtain the same inequality by a limit process (see [Bu, Chapter 4.4]).

On the other hand, the function g(t) = t coth(t/2) is increasing in t ∈ (0,∞); therefore L(ηi) ≤
l coth(l/2). Consequently, L(∂H∗

i ) ≤ 2M and diam(H∗
i ) ≤ M for i = 1, 2.

Let us define B′
2 := B2 ∩ Cγ1 , B′

3 := B3 ∩ Cγ2 and B′
1 := B1 ∩ Cγ3 .

We consider the continuous function f : Y0 −→ G, with f(H∗
1 ∪ H∗

2 ) = v, which is an isometry

between B′
2 and the edge [v, v1], between B′

3 and [v, v2], and between B′
1 and [v, v3]. In the other

points of Y0, if a ∈ Cγ1 , we define f(a) = f(a′) ∈ [v, v1], where a′ is the point in B′
2 such that

d(a, γ1) = d(a′, γ1); we define f in similar way in Cγ2 and Cγ3 .

First of all, we have dG(f(x), f(y)) ≤ dY0(x, y) for every x, y ∈ Y0.

We also have dY0(x, y) ≤ dG(f(x), f(y)) + M for every x, y ∈ Y0.

Therefore, we have that f is a (1,M)-quasi-isometry of Y0 onto G.

We deal now with the case l1, l2 ≤ l and l3 > l. We have that G = [v1, v2] and that L([v1, v2])

is equal to the length of the geodesic segment B3 in Y0 joining γ1 and γ2. We have seen in the

proof of Proposition 3.2 that any point in Y0 has a point of B3 at distance less or equal than

Arcsinh(coth(l/4)) + l/2 ≤ M/2; consequently, the map f1 : Y0 −→ B3 such that f1(x) is the nearest

point to x in B3 verifies dB3(f1(x), f1(y)) ≤ dY0(x, y) ≤ dB3(f1(x), f1(y)) + M for every x, y ∈ Y0.

Therefore, we have that f := f2 ◦ f1 is a (1,M)-quasi-isometry of Y0 onto G, if f2 is an isometry

between B3 and G. ¤

Definition 3.7. Let us consider l > 0 and a Riemann surface S (with or without boundary),

such that there is a decomposition of S into a union of generalized Y -pieces {Yn}n∈N and funnels

{Fm}m∈M , with LS(γ) ≤ l for at least two simple closed geodesics γ ⊆ ∂Yn in each n. We say that a

graph G is a l-skeleton of S if it is the union of {Gn}n∈N with the following properties:

(a) Gn is the l-skeleton of Yn for n ∈ N .

(b) If Yn ∩ Ym = ∪i∈Inmγi
nm (with γi

nm = γi
mn), then Gn ∩ Gm = ∪i∈Inmvi

nm, where vi
nm is the

vertex associated to γi
nm, and we identify vi

nm with vi
mn in order to obtain G.

Remarks. 1. As a consequence of (b), we have:

(P) if LS(γ) > l for some simple closed geodesic γ ⊆ ∪n∂Yn, then γ is in the boundary of just one

generalized Y -piece.

We want to remark that (P) is not a restriction at all, since if {Yn}n does not satisfy this property,

we can change {Yn}n by {Y ′
n}n, as in the proof of Theorem 3.2, such that {Y ′

n}n verifies (P) with

max{l, J(2, l)} instead of l. Consequently, if S has a decomposition into a union of generalized Y -pieces
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{Yn}n∈N and funnels {Fm}m∈M , with LS(γ) ≤ l for at least two simple closed geodesics γ ⊆ ∂Yn in

each n, then it has a max{l, J(2, l)}-skeleton.

2. Notice that card Inm ≤ 3, and Gn ∩Gm = ∅ if and only if Yn ∩ Ym = ∅.

Theorem 3.7 below let us move the study of the hyperbolicity of a Riemann surface S to a graph G

with much simpler structure, so long as between them there exists the precise relationship described

in Definition 3.7.

Theorem 3.7. Let us consider a non-exceptional Riemann surface S (with or without boundary),

with a l-skeleton G. If S (respectively G) is δ-hyperbolic, then G (respectively S) is δ′-hyperbolic, with

δ′ a constant which only depends on δ and l.

Proof. Without loss of generality, we can assume that S does not have funnels by Theorem D. We

see now that there exists a (1+ c, 2M)-quaiisometry of S onto G, with M the constant in Proposition

3.3 and c := M/(2Arccosh(coth(l/2))).

For each n ∈ N , we have ∂Yn = ∪miγ
i
nm (as usual, we identify a puncture with a geodesic of zero

length). Let us consider the (1,M)-quasi-isometry fn : Yn −→ Gn defined in the proof of Proposition

3.3. Let us define f : S −→ G such that f |Yn := fn; we will show now that f is a (1 + c, 2M)-quasi-

isometry.

First of all, we have that dG(f(x), f(y)) ≤ dS(x, y) for every x, y ∈ S.

We prove now the reverse inequality. If x and y are in the same Yn, we apply Proposition 3.3. If x

and y are not in the same Yn, let us consider a geodesic g joining f(x) and f(y) in G. Since g meets at

most a finite number of Gn’s, we denote them by Gn1 , Gn2 , . . . , Gnr , where f(x) ∈ Gn1 , f(y) ∈ Gnr ,

and g meets Gnk+1 after Gnk
. Now, we take a continuous curve γ in S joining x and y, such that

f(γ) = g and γ ∩ Yn is a geodesic in Yn; then γ meets each simple closed curve σ ⊆ ∪n∂Yn at most

in a point, γ only meets the pieces Yn1 , Yn2 , . . . , Ynr , and γ meets Ynk+1 after Ynk
.

First of all, recall that dGn(vi1
nm1

, vi2
nm2

) ≥ 2Arccosh(coth(l/2)), by the Collar Lemma. Conse-

quently, if a ∈ γi1
nm1

, b ∈ γi2
nm2

, we obtain (using Proposition 3.3)

dYn(a, b) ≤ dGn(vi1
nm1

, vi2
nm2

)+M = dGn(vi1
nm1

, vi2
nm2

)+2c Arccosh(coth(l/2)) ≤ (1+c)dGn(vi1
nm1

, vi2
nm2

).

If we define xk := γ ∩ ∂Ynk
∩ ∂Ynk+1 , for k = 1, . . . , r − 1, we have

dS(x, y) ≤LS(γ) = dYn1
(x, x1) +

r−1∑

k=2

dYnk
(xk−1, xk) + dYnr

(xr−1, y)

≤ dGn1
(f(x), f(x1)) + M + (1 + c)

r−1∑

k=2

dGnk
(f(xk−1), f(xk)) + dGnr

(f(xr−1), f(y)) + M

≤ (1 + c)dG(f(x), f(y)) + 2M.

Therefore, f : S −→ G is a (1 + c, 2M)-quasi-isometry, and Theorem B finishes the proof. ¤

Next we prove that the hyperbolicity is stable under significant metric changes (even with non-

quasi-isometric deformations), as long as the topology is preserved. The following definition describes

the outstanding parameters involved in the kind of deformations studied in Theorem 3.8.
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Definition 3.8. Given a positive constant l, we say that two Riemann surfaces S and S′ (with

or without boundary) have similar l-skeletons if there are decompositions {Yn}n∈N ∪ {Fm}m∈M of S

and {Y ′
n}n∈N ∪ {F ′m}m∈M ′ of S′, with associated l-skeletons G and G′ respectively, such that:

(a) Yn ∩ Ym = ∪i∈Inmγi
nm (with γi

nm = γi
mn) and Y ′

n ∩ Y ′
m = ∪i∈Inmηi

nm (with ηi
nm = ηi

mn).

(b) If we define c1 := inf{LS(γ) : γ ⊆ (∪n∂Yn) \ ∂S and S \ γ is connected} and c′1 := inf{LS′(η) :

η ⊆ (∪n∂Y ′
n) \ ∂S′ and S′ \ η is connected}, then c1 = 0 if and only if c′1 = 0.

(c) If we define c2 := sup{LS(γ) : γ ⊆ (∪m∂Fm) ∪ ∂S, γ ⊆ ∂Yn and S \ Yn is connected} and

c′2 := sup{LS′(η) : η ⊆ (∪m∂F ′m) ∪ ∂S′, η ⊆ ∂Y ′
n and S′ \ Y ′

n is connected}, then c2 = ∞ if and only

if c′2 = ∞.

Theorem 3.8. Let us consider two non-exceptional Riemann surfaces S and S′ (with or without

boundary) with similar l-skeletons. Then S is hyperbolic if and only if S′ is hyperbolic. Furthermore,

if S is δ-hyperbolic, then S′ is δ′-hyperbolic, with δ′ a constant which only depends on δ, l, cj and c′j
(j = 1, 2).

Proof. Without loss of generality, we can assume that S and S′ do not have funnels, by Theorem

D. If c1 = 0, then there exist geodesics γi
nm (which do not disconnect S), with lengths linm → 0;

then Theorem 3.3 in [PRT2] gives that S is not hyperbolic (since c′1 = 0, we also have that S′ is not

hyperbolic).

If c2 = ∞, then there exist generalized Y -pieces Yn (which do not disconnect S), with li1nm1
, li2nm2

≤ l

and dYn(γi1
nm1

, γi2
nm2

) →∞; then Theorem 2.2 in [PRT2] gives that S is not hyperbolic (since c′2 = ∞,

we also have that S′ is not hyperbolic).

Let us assume now that c1, c
′
1 > 0 and c2, c

′
2 < ∞. First, we prove the result if S \ γ and

S′ \ η are connected for every γ ⊆ ∪n∂Yn and η ⊆ ∪n∂Y ′
n. If G and G′ are the l-skeletons of S and S′

respectively, Theorem 3.7 gives that there exist two surjective (1+c, 2M)-quasi-isometries f : S −→ G

and f ′ : S′ −→ G′, where M and c only depend on l. By Theorem B, we only need to prove that if

G is δ0-hyperbolic, then G′ is δ′0-hyperbolic, with δ′0 a constant which only depends on δ0, l, cj and c′j
(since S and S′ play symmetric roles).

We say that an edge e in a graph is a leaf if a vertex of e has degree one. Now, let us consider the

graph G0 (respectively G′0) obtained by removing from G (respectively G′) its set of leaves. Let us

remark that δ(G0) = δ(G) and δ(G′0) = δ(G′).

We define a function F : G0 −→ G′0, in the following way:

Let us consider a generalized Y -piece Yn such that its three curves in ∂Yn have length less or equal

than l. If f(γi
nm) = vi

nm and f ′(ηi
nm) = wi

nm, F is a dilatation of [vn, vi
nm] ∈ G0 onto [wn, wi

nm] ∈ G′0.

If Yn has a curve in ∂Yn with length greater than l, and the other boundary curves are γi1
nm1

, γi2
nm2

,

F is a dilatation of [vi1
nm1

, vi2
nm2

] ∈ G0 onto [wi1
nm1

, wi2
nm2

] ∈ G′0.

Let us prove now that F is a bijective (α, 0)-quasi-isometry, beeing α a constant which only depends

on l, cj and c′j : Since c1, c
′
1 > 0 and c2, c

′
2 < ∞, and there are no leaves either in G0 or in G′0,

then c1 ≤ linm := LS(γi
nm) ≤ max{l, c2} and c′1 ≤ Li

nm := LS′(ηi
nm) ≤ max{l, c′2}, if vi

nm ∈ G0

(recall that vi
nm ∈ G0 if and only if wi

nm ∈ G′0). Hence LG([vn, vi
nm]) = Arccosh

(
coth(linm/2)

)
and

LG′([wn, wi
nm]) = Arccosh

(
coth(Li

nm/2)
)

are comparable with constants which only depend on l, cj
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and c′j (if every curve in ∂Yn has length less or equal than l). The same is true for LG([vi1
nm1

, vi2
nm2

])

and LG′([wi1
nm1

, wi2
nm2

]) (if Yn has a curve in ∂Yn with length greater than l).

Let us assume now that there are geodesics γi
nm such that S \ γi

nm is not connected (then we also

have S′ \ ηi
nm is not connected). In this case, we can decompose S = ∪rSr (respectively S′ = ∪rS

′
r),

where {Sr}r are the connected components which we obtain by splitting S for every simple closed

geodesic γ ⊆ ∪n∂Yn with S \ γ not connected; then any simple closed geodesic γ ⊆ (∪n∂Yn) ∩ Sr

(respectively η ⊆ (∪n∂Y ′
n) ∩ S′r) does not disconnect Sr (respectively S′r). Consequently {Sr}r is a

(k1, k2, 0)-tree-decomposition of S with An = Λ, k1 = l
2 and k2 = l

4 Arccosh(coth(l/2)) (see Definition

2.8; in order to estimate dSr
(γi

nm, γu
st) we can use the Collar Lemma, since γi

nm, γu
st are disjoint simple

closed geodesics). Similarly {S′r}r is also a (k1, k2, 0)-tree-decomposition of S′.

Then Theorem C gives that if S is δ-hyperbolic then Sr is δ1-hyperbolic for every r, with δ1 a

constant which only depends on δ and l. Now, we can apply the last argument to Sr and S′r, and

therefore S′r is δ2-hyperbolic with δ2 a constant which only depends on δ, l, cj and c′j . Finally, we use

again Theorem C to assure that S′ is δ′-hyperbolic, with δ′ only depending on δ, l, cj and c′j .

This finishes the proof because of the symmetry between S and S′. ¤

Remark. After the proofs of theorems 3.7 and 3.8, it is clear that the conclusions of these theorems

also hold if we define the l-skeleton of a Y -piece in the following similar way:

If L(γi) = li ≤ l, for i = 1, 2, 3, we define L([v, vi]) := log(1 + l−1
i ) for i = 1, 2, 3. If l1, l2 ≤ l and

l3 > l, we take L([v1, v2]) := log(1 + l−1
1 ) + log(1 + l−1

2 ) + l3.

As a consequence of Theorem 3.8, we obtain that hyperbolicity is a property stable under “twisting”,

for Riemann surfaces with l-skeletons (the result is not true without this hypothesis).

Notice that if two non-exceptional Riemann surfaces have the same l-skeleton G, they have the

same decomposition {Yn}n∈N ∪ {Fm}m∈M , and they are obtained by gluing the pieces following the

same design of G, after applying a twist to the curves in ∪n∂Yn.

Corollary 3.3. Let us consider two non-exceptional Riemann surfaces S, S′ (with or without

boundary), with the same l-skeleton. If S is δ-hyperbolic, then S′ is δ′-hyperbolic, with δ′ a constant

which only depends on δ and l.

§4. The hyperbolicity in the Classification Theory of Riemann surfaces

We prove in this section that there is no inclusion relationship between hyperbolic Riemann surfaces

and the usual classes of Riemann surfaces, such as OG (surfaces without Green’s function), surfaces

with hyperbolic isoperimetric inequality, or the complements of these classes (even in the case of

plane domains). This fact is important since it points out that hyperbolic Riemann surfaces are a

class completely different from the more usual classes of Riemann surfaces. This makes the study of

hyperbolic Riemann surfaces more complicated and interesting.

We have the same result for the classes OHP (surfaces without non-constant harmonic positive

functions), OHB (surfaces without non-constant harmonic bounded functions), and OHD (surfaces
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without non-constant harmonic functions with finite Dirichlet integral), since in the case of plane

domains (and even for surfaces with finite genus) we have OG = OHP = OHB = OHD (see e.g. [AS,

p. 208]).

Let us denote by H the class of hyperbolic Riemann surfaces and by HII the class of Riemann

surfaces with hyperbolic isoperimetric inequality. We are going to provide some plane domains which

can be used so as to prove the following facts:

(a) HII is not contained in H.

(b) (HII)c is not contained in H.

(c) H is not contained in HII.

(d) H is not contained in (HII)c.

(e) OG is not contained in H.

(f) (OG)c is not contained in H.

(g) H is not contained in OG.

(h) H is not contained in (OG)c.

Notice that we only need to prove (a), (d), (e) and (h), since HII ⊂ (OG)c.

Definition 4.1. We can define the modulus of an annulus {r < |z− z0| < R} as R/r. We say that

the annulus A = {r < |z− z0| < R} separates the boundary of the plane domain Ω if A ⊆ Ω and each

connected component of the complement of A meets ∂Ω . We say that a plane domain Ω is modulated

if there is an upper bound for the modulus of every annulus which separates the boundary of Ω .

Any modulated plane domain belongs to HII (see e.g. [FR1, Theorem 3]). Let us recall that

a plane domain Ω belongs to OG if and only if ∂Ω has zero logarithmic capacity (see e.g. [AS, p.

249]). Hence, the plane domains in OG (and in OHP , OHB , OHD) can be characterized by the size of

their boundaries. However, when we deal with hyperbolic plane domains the situation is much more

sophisticated.

(a) There exists a plane domain Ω 1 ∈ HII ∩Hc.

For each natural number n we consider a real number a0 := 0 (if n = 0) and an ∈ (0, 1/2) (if

n > 0), the sets En := {|z − 2n| = 1/2}, Fn := {|z − 2n| = 1/2 + 1/(n + 2), | Im z| ≥ an, Re z ≤ 2n}
and Gn := {|z− 2n| = 1/2 + 1/(n + 2), | Im z| ≥ an+1, Re z ≥ 2n}. Let us denote by H+

n the segment

contained in {Im z = an+1} joining the point Gn ∩ {Im z = an+1} with Fn+1 ∩ {Im z = an+1}; we

denote by H−
n the conjugated of H+

n .

We define Ω 1 as the unique plane domain whose boundary is equal to ∪n(En∪Fn∪Gn∪H+
n ∪H−

n ).

We have that Ω 1 ∈ HII since it is a modulated domain.

If we denote by γn the simple closed geodesic in Ω 1 freely homotopic to the ideal boundary En, we

choose the sequence {an}n small enough to guarantee that γn∩{Im z ≥ 0} is a geodesic in Ω 1. Then,

for each n, we can choose a geodesic triangle contained in γn with thin constant greater or equal than

L(γn)/4. Since L(γn) −→∞, we deduce that Ω 1 is not hyperbolic.

(d) The unit disk is a plane domain contained in H ∩HII.

(e) There exists a plane domain Ω 2 ∈ OG ∩Hc.
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For each positive integer n we consider isometric generalized Y -pieces {Y r
n }2Nn

r=1 with two boundary

geodesics of length n and a puncture. Let us denote by Zn the union of {Y r
n }2Nn

r=1 identifying the

boundary geodesics (we join Y r
n with Y r−1

n and Y r+1
n , if 1 < r < 2Nn); we paste these pieces without

“twist”, i.e. if αr
n is the geodesic joining the two boundary geodesics of Y r

n , we identify a point of αr
n

with a point of αr+1
n .

We denote by Y1 the generalized Y -piece with two punctures and a boundary geodesic of length

1; for each positive integer n > 1 we consider a generalized Y -piece Yn with a puncture and two

boundary geodesics of length n and n− 1.

Let us define Ω 2 as the union of {Zn}∞n=1 and {Yn}∞n=1 identifying boundary geodesics of equal

length (we join Zn with Yn and Yn+1 without “twist”).

We denote by βn the geodesic βn := ∪2Nn
n=1αn joining the two boundary geodesics of Zn.

Let us consider the “central” geodesic of Zn, γn := Y Nn
n ∩ Y Nn+1

n . The symmetry of Zn guarantee

that there is a geodesic bigon (see the remark after Definition 2.3) in Ω 2 contained in γn: we choose

as vertices un := βn ∩ γn = αNn
n ∩αNn+1

n and vn ∈ γn with dγn
(un, vn) = n/2. Let us choose Nn large

enough in order to have dZn(γn, ∂Zn) ≥ n; this inequality gives that this bigon has sharp thin-constant

equal to n/4. Hence, Ω 2 is not hyperbolic.

It is not very difficult to see that Ω 2 is in OG: Let us consider the simple closed geodesic σn that

joins Yn with Zn, Φr
n the family of curves joining the two simple closed geodesics in Y r

n , and Γn the

family of curves joining σ1 with σn+1 in ∪n−1
j=1 (Zj ∪Yj+1). In order to see that Ω 2 ∈ OG, it is sufficient

to see that limn→∞ Λ(Γn) = ∞, by [AS, p. 229], where Λ(Γn) denotes the extremal length of Γn

(see [AS, pp. 220-223] for the definition and properties of extremal length). Since Λ(Φr
j) does not

depend on r, the second theorem in [AS, p. 222] gives that Λ(Γn) ≥ ∑n−1
j=1 2NjΛ(Φr

j). If we choose

Nj ≥ 1/Λ(Φr
j), we obtain limn→∞ Λ(Γn) ≥ limn→∞(2n− 2) = ∞, and consequently Ω 2 ∈ OG.

(h) The twice puncture plane C \ {0, 1} (the generalized Y -piece with three punctures) is a plane

domain contained in H ∩ OG. It is hyperbolic by Proposition 3.1, since it is a generalized Y -piece,

and it is in OG since a finite number of points has zero logarithmic capacity.
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[ARY] Alvarez, V., Rodŕıguez, J.M., Yakubovich, V.A., Subadditivity of p-harmonic “measure” on graphs,
Michigan Math. J. 49 (2001), 47-64.

[BB] Balogh, Z. M., Buckley, S. M., Geometric characterizations of Gromov hyperbolicity, Invent. Math.
153 (2003), 261-301.

[B] Beardon, A. F., The geometry of discrete groups. Springer-Verlag, New York, 1983.
[Be] Bers, L., An Inequality for Riemann Surfaces. Differential Geometry and Complex Analysis. H. E.

Rauch Memorial Volume. Springer-Verlag. 1985.
[BHK] Bonk, M., Heinonen, J., Koskela, P., Uniformizing Gromov hyperbolic spaces. Astérisque No. 270
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