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Abstract

In this paper we show that to check Gromov hyperbolicity of any surface of constant negative
curvature, or, Riemann surface, we only need to verify the Rips condition on a very small class of
triangles, namely, those obtained by marking three points in a simple closed geodesic. This result is,
in fact, a new characterization of Gromov hyperbolicity for Riemann surfaces.
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§1. Introduction

To understand the connections between graphs and Potential Theory on Riemannian manifolds

(see e.g. [ARY], [CFPR], [FR2], [HS], [K1], [K2], [K3], [R1], [R2], [So]) Gromov hyperbolic spaces are

a useful tool. Besides, the concept of Gromov hyperbolicity grasps the essence of negatively curved

spaces, and has been successfully used in the theory of groups (see e.g. [GH], [G1], [G2] and the

references therein).

A geodesic metric space is called hyperbolic (in the Gromov sense) if it satisfies the “Rips condition”:

there is an upper bound of the distance of every point in a side of any geodesic triangle to the union

of the two other sides (see Definition 2.3).

But, it is not easy to determine if a given space is Gromov hyperbolic or not. One interesting

instance is that of a Riemann surface endowed with the Poincaré metric. With that metric structure

a Riemann surface is negatively curved, but not all Riemann surfaces are Gromov hyperbolic, since

topological obstacles can impede it: for instance, the two-dimensional jungle-gym (a Z2-covering of a

torus with genus two) is not hyperbolic.

We are interested in studying when Riemann surfaces equipped with their Poincaré metric are Gro-

mov hyperbolic. The following theorem is the main result of this paper, which is a new characterization

of Gromov hyperbolicity for Riemann surfaces (see Theorem 5.1):

A Riemann surface S is hyperbolic if and only if the c0-triangles contained in simple closed geodesics

of S satisfy the Rips condition. By a c0-triangle we mean a triangle with continuous injective (1, c0)-

quasigeodesic sides, and we require that the vertices and the edges of such triangles are contained in

simple closed geodesics of S.

In general, one has to verify the Rips condition for all triangles. Our result is that for Riemann

surfaces you only have to verify it for a smaller class of triangles.
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Furthermore this theorem provides a bound for the hyperbolicity constant: if the triangles contained

in simple closed geodesics satisfy the Rips condition with constant δ0, then every geodesic triangle

satisfy it with constant δ = max{11, δ0 + 6}.
A connected question with our main theorem is when a Euclidean bounded domain with its quasi-

hyperbolic metric is Gromov hyperbolic. (Let us recall that in the case of modulated plane domains,

quasihyperbolic and Poincaré metrics are equivalent.) Recently, Balogh and Buckley [BB] have made

significant progress in this question (see also [BHK] and the references therein).

Theorem 5.1 provides good bounds for the hyperbolicity constants of some classical surfaces such

as the punctured disk, the annuli, the Y -pieces and plane domains of finite type (see Lemma 5.4 and

corollaries 5.1, 5.2 and 5.3).

It can also be successfully used as a powerful tool to study hyperbolicity of a class of Riemann

surfaces by means of its decomposition in Y -pieces and funnels (see Theorem 5.3).

As a consequence of these results, we have obtained interesting examples of hyperbolic Riemann

surfaces (see Theorem 5.3 and corollaries 5.1, 5.2 and 5.3), and a result that allows us a better under-

standing of the role that funnels and half-disks (see Definition 5.4) play in the study of hyperbolicity

(see Theorem 5.2). Theorem 5.2 is a useful result which has several applications in [RT2] and [PRT2].

One can think of the following as a natural first result in order to study hyperbolicity: if a Riemann

surface has a sequence of funnels {Fn}n with limn→∞ L(∂Fn) = ∞, then it is not hyperbolic. In [RT2]

we prove that this reasonable result is false indeed, and an important tool in the proof is Theorem

5.2.

Notations. We denote by X or Xn geodesic metric spaces. By dX , LX and BX we shall denote,

respectively, the distance, the length and the balls in the metric of X. From now on, when there is

no possible confusion, we will not write the subindex X.

We denote by R, S or S0 Riemann surfaces. We assume that the metric defined on these surfaces

is the Poincaré metric, unless the contrary is specified.

If Ω is a plane domain, we shall denote by λΩ the conformal density of the Poincaré metric in Ω ,

i.e. the function such that ds = λΩ (z)|dz| is the Poincaré metric in Ω .

We denote by <z and =z the real and imaginary part of z, respectively.

Finally, we denote by l, c and ci, positive constants which can assume different values in different

theorems.

Acknowledgements. We would like to thank Professor J. L. Fernández for some useful discus-

sions. Also, we would like to thank the referee for his/her careful reading of the manuscript and for

some helpful suggestions.

§2. Background in Gromov spaces

In our study of hyperbolic Gromov spaces we use the notations of [GH]. We give now the basic
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facts about these spaces. We refer to [GH] for more background and further results.

Definition 2.1. Let us fix a point w in a metric space (X, d). We define the Gromov product of

x, y ∈ X with respect to the point w as

(x|y)w :=
1
2

(
d(x,w) + d(y, w)− d(x, y)

) ≥ 0 .

We say that the metric space (X, d) is δ-hyperbolic (δ ≥ 0) if

(x|z)w ≥ min
{
(x|y)w, (y|z)w

}− δ ,

for every x, y, z, w ∈ X. We say that X is hyperbolic (in the Gromov sense) if the value of δ is not

important.

It is convenient to remark that this definition of hyperbolicity is not universally accepted, since

sometimes the word hyperbolic refers to negative curvature or to the existence of Green’s function.

However, in this paper we only use the word hyperbolic in the sense of Definition 2.1.

Examples: (1) Every bounded metric space X is (diam X)-hyperbolic.

(2) Every complete simply connected Riemannian manifold with sectional curvature which is

bounded from above by −k, with k > 0, is hyperbolic.

(3) Every tree with edges of arbitrary length is 0-hyperbolic.

We refer the reader to [BHK], [GH] and [CDP] for further examples.

Definition 2.2. If γ : [a, b] −→ X is a continuous curve in a metric space (X, d), we can define

the length of γ as

L(γ) := sup
{ n∑

i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < · · · < tn = b
}

.

We say that γ is a geodesic if it is an isometry, i.e. L(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every

s, t ∈ [a, b]. We say that γ is a local geodesic if for every t ∈ [a, b] there exists ε > 0 such that the

restriction of γ to [t − ε, t + ε] ∩ [a, b] is a geodesic. We say that X is a geodesic metric space if for

every x, y ∈ X there exists a geodesic joining x and y; we denote by [x, y] any such geodesic (since we

do not require uniqueness of geodesics, this notation is ambiguous, but it is convenient).

Definition 2.3. If X is a geodesic metric space and J is a polygon whose sides are J1, J2, . . . , Jn,

with Jj ⊆ X, we say that J is δ-thin if for every x ∈ Ji we have that d(x,∪j 6=iJj) ≤ δ. If x1, x2, x3 ∈ X,

a geodesic triangle T = {x1, x2, x3} is the union of three geodesics J1 := [x1, x2], J2 := [x2, x3] and

J3 := [x3, x1]. The space X is δ-thin (or satisfies the Rips condition with constant δ) if every geodesic

triangle in X is δ-thin.

Remark. Every geodesic quadrilateral in a δ-thin geodesic space is 2δ-thin. To see this, it is

enough to divide the quadrilateral in two triangles. In general, every geodesic polygon of n sides is

(n− 2)δ-thin. If we have a triangle with two identical vertices, we call it a “bigon”; obviously, every

bigon in a δ-thin space is δ-thin.

A fundamental result is that hyperbolicity is equivalent to the Rips condition:
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Theorem A. ([GH, p.41]) Let us consider a geodesic metric space X.

(1) If X is δ-hyperbolic, then it is 4δ-thin.

(2) If X is δ-thin, then it is 4δ-hyperbolic.

We present now the class of maps which play the main role in the theory.

Definition 2.4. A function between two metric spaces f : X −→ Y is a quasi-isometry if there

are constants a ≥ 1, b ≥ 0 with

1
a

dX(x1, x2)− b ≤ dY (f(x1), f(x2)) ≤ a dX(x1, x2) + b , for every x1, x2 ∈ X.

Such a function is called an (a, b)-quasi-isometry. An (a, b)-quasigeodesic in X is an (a, b)-quasi-

isometry between an interval of R and X.

Let us observe that a quasi-isometry does not have to be continuous (for instance, the map f :

R −→ Z such that f([n, n + 1)) = n for every integer n is a (1, 1)-quasi-isometry).

Quasi-isometries are important since they are maps which preserve hyperbolicity:

Theorem B. ([GH, p.88]) Let us consider an (a, b)-quasi-isometry between two geodesic metric

spaces f : X −→ Y . If Y is δ-hyperbolic, then X is δ′-hyperbolic, where δ′ is a constant which depends

only on δ, a and b.

Definition 2.5. Let us consider H > 0, a metric space X, and subsets Y, Z ⊆ X. The set

VH(Y ) := {x ∈ X : d(x, Y ) ≤ H} is called the H-neighbourhood of Y in X. The Hausdorff distance

of Y to Z is defined by H(Y,Z) := inf{H > 0 : Y ⊆ VH(Z), Z ⊆ VH(Y )}.

The following is a beautiful and useful result:

Theorem C. ([GH, p.87]) For each δ, b ≥ 0 and a ≥ 1, there exists a constant H = H(δ, a, b) with

the following property:

Let us consider a δ-hyperbolic geodesic metric space X and an (a, b)-quasigeodesic g joining x and

y. If γ is a geodesic joining x and y, then H(g, γ) ≤ H.

This property is known as geodesic stability. Mario Bonk has proved that, in fact, geodesic stability

is equivalent to hyperbolicity [Bo].

Along this paper we will work with topological subspaces of a geodesic metric space X. There is a

natural way to define a distance in these spaces:

Definition 2.6. If X0 is a subset connected by rectifiable paths of a metric space (X, d), then we

associate to it the inner or intrinsic distance

dX0(x, y) := dX |X0(x, y) := inf
{
L(γ) : γ ⊂ X0 is a continuous curve joining x and y

} ≥ dX(x, y) .
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§3. Results in metric spaces

We are interested in studying when non-exceptional Riemann surfaces equipped with their Poincaré

metric are Gromov hyperbolic. However, we have proved several results on hyperbolicity for general

metric spaces, which are interesting by themselves and have consequences for Riemann surfaces (see

Section 5).

We want to remark that almost every constant appearing in the results of this paper depends just

on a small number of parameters (in fact, we give explicit expressions for them). This is a common

place in the theory of hyperbolic spaces (see e.g. theorems A, B and C) and is also typical of surfaces

with curvature −1 (see the Collar Lemma in [R] and [S], and Theorem 3.1 in [PRT2]).

We need some technical results which we collect in the following lemmas.

Lemma 3.1. Let us consider a geodesic metric space X and ε > 0. If γ is a continuous curve

joining x, y ∈ X with LX(γ) ≤ dX(x, y) + ε, then γ is a (1, ε)-quasigeodesic with its arc-length

parametrization.

Proof. Let us consider γ with its arc-length parametrization γ : [0, l] −→ X. Since γ is continuous,

it is clear that dX(γ(t), γ(s)) ≤ LX(γ([t, s])) = |t − s|. Let us show now |t − s| ≤ dX(γ(t), γ(s)) + ε.

We assume that there are 0 ≤ t, s ≤ l with |t − s| > dX(γ(t), γ(s)) + ε. Without loss of generality

we can assume t < s. We define a curve γ0 as a concatenation of three curves: γ([0, t]), a geodesic η

connecting γ(t) with γ(s), and γ([s, l]). Since γ0 is a continuous curve connecting x with y, we have

that
dX(x, y) ≤ LX(γ0) = LX(γ)− LX(γ([t, s])) + dX(γ(t), γ(s))

= LX(γ)− |t− s|+ dX(γ(t), γ(s))

< LX(γ)− ε ≤ dX(x, y) ,

which is a contradiction. ¤

Corollary 3.1. Let us consider a geodesic metric space X and ε > 0. If γ is a continuous curve

with LX(γ) ≤ ε, then γ is a (1, ε)-quasigeodesic with its arc-length parametrization.

Lemma 3.2. Let us consider a metric space X with a closed geodesic g of length l. If γ is a

continuous injective (1, c)-quasigeodesic in X with its arc-length parametrization, and it is contained

in g, then L(γ) ≤ (l + c)/2.

Remarks. 1. It is clear that every closed geodesic is only a local geodesic, but not a geodesic

(see Definition 2.2); however, since there is no possible confusion, we call it closed geodesic instead of

closed local geodesic.

2. If γ is a geodesic, it is clear that L(γ) ≤ l/2; Lemma 3.2 generalizes this fact.

Proof. Let us consider γ with its arc-length parametrization γ : [0, l0] −→ X. Assume that

l0 > (l + c)/2; then l − l0 < l0 − c. Observe that d(γ(0), γ(l0)) ≤ l − l0, since g \ γ is a continuous
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curve of length l − l0 joining γ(0) and γ(l0) (γ is continuous and injective). Hence, we have that

l0 − c ≤ d(γ(0), γ(l0)) ≤ l − l0 < l0 − c, which is a contradiction. ¤

Lemma 3.3. Every (a, b)-quasigeodesic triangle in a δ-hyperbolic geodesic metric space X is (4δ +

2H(δ, a, b))-thin, where H is the constant in Theorem C.

Proof. Given an (a, b)-quasigeodesic triangle in X of sides q1, q2, q3, Theorem C gives that there

exist geodesics g1, g2, g3, such that gi has the same end points as qi and H(gi, qi) ≤ H = H(δ, a, b). If

{i, j, k} is any permutation of {1, 2, 3}, and x ∈ qi, then there is a point x′ ∈ gi with d(x, x′) ≤ H.

Since X is 4δ-thin, we can find y′ ∈ gj ∪ gk with d(y′, x′) ≤ 4δ. We also have a point y ∈ qj ∪ qk with

d(y′, y) ≤ H. Consequently d(x, qj ∪ qk) ≤ d(x, y) ≤ 4δ + 2H. ¤

The following result is a modification of Theorem 2.4 in [RT1] (using a completely different line of

argument). Furthermore, this proof gives an explicit expression for the constants involved. It can be

applied to the study of hyperbolicity of Riemann surfaces (see Theorem 5.3). In order to state it, we

need one definition.

Definition 3.1. We say that the closed geodesic metric spaces {Xn}n∈Λ are a (c1, c2)-regular

decomposition of the geodesic metric space X if they verify the following conditions:

(a) X = ∪n∈ΛXn and Xn ∩Xm = ηnm, where for each n ∈ Λ, {ηnm}m∈Λ\{n} are pairwise disjoint

closed subsets of Xn (ηnm = ∅ is allowed); furthermore any geodesic in X with finite length meets at

most a finite number of ηnm’s.

(b) For any n,m ∈ Λ, diamXn(ηnm) ≤ c1 and if ηnm 6= ∅, then X \ ηnm is not connected and a, b

are in different connected components of X \ ηnm for any a ∈ Xn \ ηnm, b ∈ Xm \ ηnm.

(c) For each n ∈ Λ there exist disjoint sets An, Bn ⊆ Λ, verifying the following properties: if

m /∈ An ∪Bn, then ηnm = ∅; diamXn(∪m∈Anηnm) ≤ c2; and every geodesic joining two points in Xn

cannot escape from Xn across a ηnm with m ∈ Bn,

Remarks. 1. The sets Λ, An and Bn do not need to be countable.

2. The hypothesis on X \ ηnm guarantees that the graph R = (V, E) constructed in the following

way is a tree: V = ∪n∈Λ{vn} and [vn, vm] ∈ E if and only if ηnm 6= ∅.

3. We can think that the hypothesis “a geodesic joining two points in Xn cannot escape from

Xn across a ηnm with m ∈ Bn”, is very restrictive; however, Lemma 5.5 below gives a very simple

condition which allows one to assure this hypothesis.

4. If X is a Riemann surface, {Xn}n∈Λ are bordered Riemann surfaces and ηnm ⊂ ∂Xn ∩ ∂Xm,

condition “a, b are in different components of X \ ηnm for any a ∈ Xn \ ηnm, b ∈ Xm \ ηnm” in (b), is

a consequence of “X \ ηnm is not connected”.

5. We wish to emphasize that condition diamXn(ηnm) ≤ c1 is not very restrictive: if the space

is “wide” at every point (in the sense of long injectivity radius, as in the case of simply connected

spaces) or “narrow” at every point (as in the case of trees), it is easier to study its hyperbolicity; if

we can found narrow parts (as ηnm) and wide parts, the problem is more difficult and interesting.
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Theorem 3.1. Let us consider a (c1, c2)-regular decomposition {Xn}n∈Λ of the geodesic metric

space X. If there exists a constant δ0 such that Xn is δ0-thin for every n ∈ Λ, then X is δ-thin with

δ = 20δ0 + max{c1 + c2/2, c2}.

Proof. Let us consider a geodesic triangle T = {a, b, c} in X. If T ⊆ Xn for some n, then T is

δ0-thin, by hypothesis. We assume now that T intersects several Xn’s. We intend to study T in each

of those Xn’s separately.

Let us take z ∈ T . If z belongs to two sides of T , there is nothing to prove; if z only belongs to one

side of T , we denote by A the union of the sides of T which do not intersect z.

Let us fix n ∈ Λ. We assume first that the three sides of T intersect Xn.

We construct a geodesic polygon Pn in Xn modifying T ∩Xn in the following way: Let us consider

a side γi (i = 1, 2, 3) of T . If γi ⊆ Xn, we define gi := γi. If γi is not contained in Xn, then we

consider γi : [0, l] −→ X. Let us define

ti1 := min{0 ≤ t ≤ l : γi(t) ∈ Xn} , ti4 := max{0 ≤ t ≤ l : γi(t) ∈ Xn} .

If γi([ti1, t
i
4]) ⊆ Xn, we consider gi := γi([ti1, t

i
4]). In other case, we define

ti2 := min{0 ≤ t ≤ l : γi(t) ∈ ∪m∈Anηnm} , ti3 := max{0 ≤ t ≤ l : γi(t) ∈ ∪m∈Anηnm} ,

and gi := γi([ti1, t
i
2]) ∪ [γi(ti2), γi(ti3)] ∪ γi([ti3, t

i
4]), where we choose a geodesic [γi(ti2), γi(ti3)] in Xn.

This minimum and this maximum exist since γi is a continuous function in a compact interval and

γi ∩ (∪m∈Anηnm) is a compact set: each ηnm is a closed set and γi meets at most a finite number of

ηnm’s.

It is possible that g1 ∪ g2 ∪ g3 is not a polygon, since there can exist gaps between two gi’s. Since

diamXn(ηnm) ≤ c1 and X \ ηnm is not connected for any m ∈ Λ, we can find three geodesics h1, h2, h3

in Xn of length less or equal than c1 such that g1 ∪ h1 ∪ g2 ∪ h2 ∪ g3 ∪ h3 is a geodesic polygon Pn in

Xn (some hi can be a point). It is clear that Pn has at most 12 sides, and then it is 10δ0-thin.

Without loss of generality we can assume that z ∈ g1. In order to simplify the notation, we define

xj := γ1(t1j ) for 1 ≤ j ≤ 4.

If g1 := γ1([t11, t
1
4]) = [x1, x4], then there exists w′ ∈ Pn \ int g1 with dXn(z, w′) ≤ 10δ0, where int g1

denotes g1 without its end points. If w′ ∈ A, then dX(z, A) ≤ 10δ0; if w′ /∈ A, then there exists

w ∈ Pn ∩A with dXn(w, w′) ≤ max{c1, c2/2}, and therefore dX(z, A) ≤ 10δ0 + max{c1, c2/2}.
Let us assume now that g1 := [x1, x2]∪ [x2, x3]∪ [x3, x4]. Recall that [x1, x2]∪ [x3, x4] ⊆ γi ⊆ T , and

LX([x2, x3]) ≤ c2. We denote by a1 ∈ [x1, x2] the point farther of x2 such that dXn(a1, [x2, x3]) ≤ 10δ0;

in a similar way, we define a2 ∈ [x3, x4] as the point farther of x3 such that dXn(a2, [x2, x3]) ≤ 10δ0;

then dXn(a1, a2) ≤ 20δ0 + c2.

Let us consider b1 ∈ [a1, x1] the point farther of a1 such that dXn(b1, [x3, x4]) ≤ 10δ0 (if this b1 does

not exist, we take b1 := a1) and b2 ∈ [a2, x4] the point farther of a2 such that dXn(b2, [x1, x2]) ≤ 10δ0 (if

this b2 does not exist, we take b2 := a2). If b1 6= a1, then dX(b1, x3) = LX([b1, x3]) = dX(b1, [x3, x4]) ≤
10δ0; in a similar way, if b2 6= a2, then dX(b2, x2) ≤ 10δ0. We consider now the next four possibilities:
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If b1 = a1 and b2 = a2, we have seen that dX(b1, b2) ≤ 20δ0 + c2.

If b1 6= a1 and b2 6= a2, then dX(b1, b2) ≤ LX([b1, x3]) + LX([b2, x2]) ≤ 20δ0.

If b1 6= a1 and b2 = a2, then there is a point z0 ∈ [x2, x3] with dX(b2, z0) ≤ 10δ0; since there is some

xj (j = 2, 3) with dX(xj , z0) ≤ c2/2, we obtain that dX(b1, b2) ≤ dX(b1, xj)+dX(xj , z0)+dX(z0, b2) ≤
20δ0 + c2/2.

If b1 = a1 and b2 6= a2, we obtain in a similar way that dX(b1, b2) ≤ 20δ0 + c2/2.

Therefore, in the four situations we have dX(b1, b2) ≤ 20δ0 + c2. If z ∈ [b1, x1] ∪ [b2, x4], then

dX(z, A) ≤ 10δ0 + max{c1, c2/2}. If z ∈ [b1, b2], we can take bi with dX(z, bi) ≤ 10δ0 + c2/2; since

dX(bi, A) ≤ 10δ0+max{c1, c2/2}, we obtain dX(z,A) ≤ 20δ0+max{c1+c2/2, c2}. Let us remark that if

we consider z′ ∈ [b1, b2], with z′ /∈ Xn, the same argument gives dX(z′, A) ≤ 20δ0 +max{c1+c2/2, c2}.
Let us assume now that only two sides of T intersect Xn. As in the previous case, we can replace

each γi which intersect Xn by gi. Then we can construct in a similar way a geodesic polygon Pn in

Xn with at most 8 sides, which is 6δ0-thin. Hence the previous argument gives the same result with

even sharper constant.

Finally, let us assume that only one side of T intersects Xn. Then z belongs to some [b1, b2], and

the same inequality holds.

Consequently, X is δ-thin with δ := 20δ0 + max{c1 + c2/2, c2}. ¤

The same proof of Theorem 3.1 gives sharper constants in some particular cases.

Corollary 3.2. Under the hypothesis of Theorem 3.1, we have that:

(1) We can take δ := max{2δ0 + c2, 6δ0 + c2/2, 3c2/2}, if Bn = ∅ for every n ∈ Λ.

(2) We can take δ := 4δ0 + c1, if An = ∅ for every n ∈ Λ.

§4. Background in Riemann surfaces

We collect here some definitions concerning Riemann surfaces.

An open non-exceptional Riemann surface (or a non-exceptional Riemann surface without bound-

ary) S is a Riemann surface whose universal covering space is the unit disk D = {z ∈ C : |z| < 1},
endowed with its Poincaré metric, i.e. the metric obtained by projecting the Poincaré metric of the

unit disk

ds = λD(z)|dz| = 2 |dz|
1− |z|2 ,

or, equivalently, the upper half plane U = {z ∈ C : Im z > 0}, with the metric ds = λU(z)|dz| =

|dz|/ Im z. Observe that, with this definition, every compact non-exceptional Riemann surface without

boundary is open. With this metric, S is a complete Riemannian manifold with constant curvature −1;

therefore S is a geodesic metric space. The only Riemann surfaces which are left out are the sphere,

the plane, the punctured plane and the tori. It is easy to study hyperbolicity of these particular cases.
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It is well-known (see e.g. [An, p.100], [B, p.131], [JS, p.227], [N, p.18]) that

(4.1) dD(0, z) = log
1 + |z|
1− |z| = 2 Arctanh |z| , sinh2 dU(z, w)

2
=

|z − w|2
4 Im z Im w

.

A collar in S about a simple closed geodesic γ is a doubly connected domain in S “bounded” by

two Jordan curves (called the boundary curves of the collar) orthogonal to the pencil of geodesics

emanating from γ; such a collar is equal to {p ∈ S : dS(p, γ) < d}, for some positive constant d. The

constant d is called the width of the collar. The Collar Lemma [R] says that there exists a collar of γ of

width d, for every 0 < d ≤ d0, where cosh d0 = coth(LS(γ)/2), or similarly sinh d0 = cosech(LS(γ)/2).

As we remarked after Lemma 3.2, every closed geodesic is a local geodesic, but not a geodesic;

however, since there is no possible confusion, we call it closed geodesic instead of closed local geodesic.

A puncture in a non-exceptional Riemann surface is a doubly connected end in which we can find

homotopically non-trivial curves with arbitrarily small length. A puncture is an isolated point in ∂S

in the case that S ⊂ C. We can think of a puncture as a boundary geodesic of zero length.

We say that S is a bordered non-exceptional Riemann surface (or a non-exceptional Riemann surface

with boundary) if it can be obtained by deleting an open set V of an open non-exceptional Riemann

surface R, with dS := dR|S (recall Definition 2.6). Any such surface S is a bordered orientable

Riemannian manifold of dimension 2 and its Riemannian metric has constant negative curvature −1.

It is not difficult to see that if any ball in R intersects at most a finite number of connected components

of V , and the boundary of S is locally Lipschitz, then S is a geodesic metric space.

A funnel is a bordered non-exceptional Riemann surface which is topologically a cylinder and whose

boundary is a simple closed geodesic. Given a positive number a, there is a unique (up to conformal

mapping) funnel such that its boundary curve has length a. Every funnel is conformally equivalent,

for some β > 1, to the subset {z ∈ C : 1 ≤ |z| < β} of the annulus {z ∈ C : 1/β < |z| < β}.
Every doubly connected end of an open non-exceptional Riemann surface is a puncture (if there

are homotopically non-trivial curves with arbitrary small length) or a funnel (in other case).

A Y -piece is a bordered non-exceptional Riemann surface which is conformally equivalent to a

sphere minus three open disks and whose boundary curves are simple closed geodesics (and then it is

triply connected). Given three positive numbers a, b, c, there is a unique (up to conformal mapping)

Y -piece such that their boundary curves have lengths a, b, c (see e.g. [Ra, p.410]). They are a standard

tool for constructing Riemann surfaces. A clear description of these Y -pieces and their use are given

in [Bu, chapter 1] and [C, chapter X.3].

A generalized Y -piece is a non-exceptional Riemann surface (with or without boundary) which is

conformally equivalent to a sphere without n open disks and m points, with integers n,m ≥ 0 such that

n+m = 3, the n boundary curves are simple closed geodesics and the m deleted points are punctures.

Observe that a generalized Y -piece is topologically the union of a Y -piece and m cylinders.
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§5. Results in Riemann surfaces

Although one should expect Gromov hyperbolicity in non-exceptional Riemann surfaces due to its

constant curvature −1, this turns out to be untrue in general, since topological obstacles can impede

it: for instance, the two-dimensional jungle-gym (a Z2-covering of a torus with genus two) is not

hyperbolic.

In [RT2] we prove that there is no inclusion relationship between hyperbolic Riemann surfaces and

the usual classes of Riemann surfaces, such as OG, OHP , OHB , OHD, surfaces with linear isoperimetric

inequality, or the complements of these classes (even in the case of plane domains). This fact shows

that the study of hyperbolic Riemann surfaces is more complicated and interesting than one might

think at first sight. One can find other results on hyperbolicity of Riemann surfaces in [RT1], [RT2],

[PRT1] and [PRT2].

The main result in this paper is Theorem 5.1, which allows us to reduce drastically the triangles

in which we have to check the Rips condition in Riemann surfaces. In [FR1, Lemma 1.2] it is proved

that in order to check the linear isoperimetric inequality in a Riemann surface it is enough to deal

with domains whose boundary is a finite union of simple closed geodesics; this fact is interesting

by itself and has important consequences, as the stability of linear isoperimetric inequality under

quasiconformal maps (see [FR1, Theorem 1]), and the equivalence of linear isoperimetric inequality

and Poincaré’s inequality (see [FR1, Theorem 2]). Here we prove that if the triangles contained in

simple closed geodesics of a Riemann surface S satisfy the Rips condition, then S is hyperbolic (see

Theorem 5.1).

The results in this section give many examples of hyperbolic Riemann surfaces, and provide criteria

in order to decide whether a Riemann surface is hyperbolic or not.

Definition 5.1. By a simply connected polygon in a non-exceptional Riemann surface we mean a

polygon isometric to a polygon in the Poincaré disk. We say that two sides in a polygon are disjoint

if their interiors are disjoint.

We collect in the following lemmas some technical results which we need in order to clarify the

proof of Theorem 5.1.

Lemma 5.1. Let us consider a simply connected locally geodesic quadrilateral in a non-exceptional

Riemann surface S with pairwise disjoint sides A, C, B and η, of lengths a, c, b and l0, respectively.

Let us assume also that C meets orthogonally the sides A and B. We have that:

(1) cosh l0 = cosh a cosh b cosh c− sinh a sinh b.

(2) Let us fix c0 > 0. If c ≥ c0, then a + b + c− c1 ≤ l0, with c1 := 3 log 2− 2 log(1− e−c0).

(3) If c0 := log(5 + 2
√

6 ), then c1 = c0.

Remark. It is clear by the triangle inequality that l0 ≤ a + b + c.



11

Proof. Since the quadrilateral is simply connected, we can assume that it is contained in the unit

disk D. Part (1) can be found in [F, p.88].

We show part (2). Let us observe that the function f(t) := 2(cosh t−1)e−t = (1−e−t)2 is increasing

in [0,∞). Then f(c) ≥ f(c0) = (1 − e−c0)2, for c ≥ c0, i.e. cosh c − 1 ≥ 1
2 f(c0)ec. Consequently, if

c ≥ c0,

el0 ≥ cosh l0 = cosh a cosh b cosh c− sinh a sinh b ≥ (cosh c− 1) cosh a cosh b ≥ 1
8

f(c0)ea+b+c,

and we deduce l0 ≥ a + b + c + log 1
8 (1− e−c0)2 = a + b + c− c1.

A direct computation gives (3). ¤

Lemma 5.2. Let us consider a simply connected self-intersecting locally geodesic quadrilateral in

a non-exceptional Riemann surface S with sides A, C, B and η, of lengths a, c, b and l0, respectively.

Let us assume also that C meets orthogonally the sides A and B. If η and C are not disjoint, then

we have that:

(1) cosh l0 = cosh a cosh b cosh c + sinh a sinh b.

(2) a + b + c− 3 log 2 ≤ l0.

Proof. Since the quadrilateral is simply connected, we can assume that it is contained in the unit

disk D. Part (1) can be found in [F, p.89].

We show part (2). The inequality is a consequence of

el0 ≥ cosh l0 = cosh a cosh b cosh c + sinh a sinh b ≥ cosh a cosh b cosh c ≥ 1
8

ea+b+c. ¤

Lemma 5.3. Let us consider c0 > 0 and a simply connected locally geodesic quadrilateral Q in a

non-exceptional Riemann surface S with pairwise disjoint sides A, C, B and η, of lengths a, c, b and

l0, respectively. Let us assume also that C meets orthogonally the sides A and B. If c ≥ c0, then we

have that

d(z, η) < c2 := Arcsinh
ec0 + 1
ec0 − 1

= Arcsinh
(

cotanh
c0

2

)
,

for every z ∈ A ∪B ∪ C.

Proof. Since Q is simply connected, we can assume that it is contained in the upper half plane U.

Without loss of generality we can assume that Q is the quadrilateral with vertices i, it, ie−iθ, ie−iφt,

with 0 < θ, φ < π/2 and t = ec ≥ ec0 .

It is clear that d(z, η) ≤ max{d(i, η), d(it, η)}. Without loss of generality we can assume that

d(i, η) = max{d(i, η), d(it, η)} (if it is not the case, we can change the roles of θ and φ).

It is obvious that d(i, η) is less than the distance of i to the geodesic η0 joining 1 and t.

The Möbius transformation Tz := (z − t)/(z − 1) maps η0 onto the imaginary half-axis I, and

Ti = (t + 1 + i(t− 1))/2. A computation gives (see e.g. [B, p.162])

d(z, η) < d(i, η0) = d(Ti, I) = Arcsinh
t + 1
t− 1

≤ Arcsinh
ec0 + 1
ec0 − 1

,

since t ≥ ec0 . ¤
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Lemma 5.4. Let us consider the annulus Al such that its simple closed geodesic has length

l; we denote by A0 the limit case A0 := D∗ := D \ {0}. Then Al is δ(l)-thin for any l ≥ 0,

where δ(l) := max
{
l + 2 log(1 +

√
2 ), d(l) + 3 log(1 +

√
2 ), d(l)/2 + 6 log(1 +

√
2 )

}
, with d(l) :=

Arcsinh
(
sinh(l/2) cotanh(l/6)

)
if l > 0 and d(0) := Arcsinh 3. In particular, δ(0) := 1

2 Arcsinh 3 +

6 log(1 +
√

2 ) < 6.1975.

Proof. Let us consider a geodesic triangle T = {a, b, c} in Al. If T is homotopic to a point, then it

is the boundary of a simply connected closed set E, and consequently E, with its intrinsic distance, is

isometric to some subset of D; this implies that T is δ0-thin, with δ0 := log(1+
√

2 ), since D is δ0-thin

(see [An, p.130]). Then we can assume that T is freely homotopic to the simple closed geodesic g, if

l > 0, or to the puncture, if l = 0.

Let us assume first that l > 0 and T ∩ g 6= ∅. We denote by F 1 and F 2 the two funnels whose

union is Al (the closures of the two connected components of Al \ g).

Let us observe that the funnels are geodesically convex (every geodesic connecting two points of

the funnel is contained in the funnel). Hence, without loss of generality we can assume that a is in the

interior of F 1 and b, c are in the interior of F 2 (the case in which there is some vertex in g is easier).

We define B := [a, b]∩ g and C := [a, c]∩ g. There are two local geodesics g1, g2 ⊂ g joining B and C;

let us observe that LAl
(gi) ≤ l.

Let us consider the triangle T1 = {a,B, C}, where we choose as [B, C] the local geodesic gi ⊂ g such

that [a, B]∪[B,C]∪[C, a] is homotopic to a point; since T1 is homotopic to a point, the above argument

implies that T1 is δ0-thin. Given x ∈ [a,B] there is some y ∈ [a,C] ∪ [B, C] with dAl
(x, y) ≤ δ0; if

y ∈ [a,C], then dAl
(x, [a,C]) ≤ δ0; if y ∈ [B, C], we have dAl

(x, [a,C]) ≤ dAl
(x, y)+dAl

(y, C) ≤ δ0 + l.

If x ∈ [a,C], we obtain a similar result.

Let us consider the quadrilateral Q1 = {b, c, C,B}, where we choose as [B, C] the local geodesic

gi ⊂ g such that [b, c] ∪ [c, C] ∪ [C, B] ∪ [B, b] is homotopic to a point; since Q1 is homotopic to a

point, the above argument implies that Q1 is 2δ0-thin. In a similar way to the case of T1, given any

point in T ∩Q1 there is a point y ∈ T ∩Q1 (in other side of T ) with dAl
(x, y) ≤ 2δ0 + l. Then T is

(2δ0 + l)-thin.

Let us assume now that l > 0 and T ∩ g = ∅. Next, we find an upper bound for dAl
(T, g). Given

a point w of T , we denote by w0 the point in g with dAl
(w, w0) = dAl

(w, g). If T = {a, b, c}, we have

that dAl
(a0, b0) + dAl

(b0, c0) + dAl
(c0, a0) = l. Hence, without loss of generality we can assume that

dAl
(a0, b0) ≥ l/3. Let us consider the point x ∈ [a, b] with dAl

(x, g) = dAl
([a, b], g). We consider first

the case x ∈ (a, b). We can assume that t := dAl
(a0, x0) ≥ l/6.

We consider now the geodesic quadrilateral Q := {a, a0, x0, x} with three right angles (known as

Lambert quadrilateral). If s := dAl
(x0, x) and φ is the angle of [a, a0] and [a, x] in a, the trigonometric

formulas give sinh s sinh t = cos φ (see e.g. [B, p.157], [C, p.263]). Then

sinh s =
cosφ

sinh t
<

1
sinh t

≤ 1
sinh(l/6)

.
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Therefore, we have that

(5.1) dAl
(T, g) < Arcsinh

1
sinh(l/6)

.

If x = a or x = b, a similar argument with t := dAl
(a0, b0) gives sinh s sinh t < 1, and we obtain

sinh s < 1/ sinh(l/3), which also implies (5.1).

Without loss of generality we can assume that dAl
(T, g) = dAl

(x, g) = dAl
(x, x0) = s. Let us

consider the local geodesic gx starting and finishing in x, which is freely homotopic to g. We consider

first the case x ∈ (a, b). We denote by 2dx the length of gx and by y the point in gx at distance dx of

x.

We consider the geodesic quadrilateral R := {x, x0, y0, y} with three right angles. Since dAl
(x0, y0) =

l/2, the trigonometric formulas give (see e.g. [F, p.88])

sinh dx = sinh(l/2) cosh s = sinh(l/2)
√

1 + sinh2s

< sinh(l/2)
√

1 + cosech2(l/6) = sinh(l/2) cotanh(l/6) .

Let us assume now that l = 0, i.e. that we deal with the case A0 = D∗; then T is freely homotopic

to the puncture. We consider the universal covering map π : U −→ D∗, given by π(z) = exp(2πiz).

It is clear that π maps bijectively U0 := {z ∈ U : 0 ≤ <z < 1}) in D∗. Without loss of generality we

can assume that π(z1) = a, π(z2) = b and π(z3) = c, with <z1 = 0 and 1/3 ≤ <z2 ≤ <z3 < 1. Since

<(z2 − z1) ≥ 1/3, there exists a point z ∈ [z1, z2] with =z > 1/6; then max
{=z : π(z) ∈ T

}
> 1/6.

We denote by z0 a point of U0 in which this maximum is attained.

Let us consider the local geodesic g0 in D∗ starting and finishing in π(z0), which is freely homotopic

to the puncture; if we denote by 2dπ(z0) the length of g0, (4.1) gives that

sinh2dπ(z0) = sinh2 dU(z0, 1 + z0)
2

< sinh2 dU(i/6, 1 + i/6)
2

= 9 ,

and consequently dπ(z0) < Arcsinh 3.

Recall that d(l) := Arcsinh
(
sinh(l/2) cotanh(l/6)

)
if l > 0 and d(0) := Arcsinh 3. Then there

exists a point p ∈ T such that the local geodesic gp in Al starting and finishing in p, which is freely

homotopic to g or to the puncture, has length 2dp < 2d(l).

Let us assume first that p is not a vertex of T ; without loss of generality we can assume also that

p ∈ [a, c]. Since gp is freely homotopic to T , we have a geodesic pentagon P ′ := {a′, b′, c′, p′1, p′2} in

D, which is isometric to the pentagon P made of [a, b], [b, c], [c, p], gp and [p, a], if we identify p′1 with

p′2 (we have chosen P ′ such that dD(a′, b′) = dAl
(a, b), dD(b′, c′) = dAl

(b, c), dD(c′, p′1) = dAl
(c, p),

dD(p′1, p
′
2) = LAl

(gp) and dD(p′2, a
′) = dAl

(p, a)).

It is clear that if x′, y′, are the corresponding points in P ′ to the points x, y ∈ P , we have dAl
(x, y) ≤

dD(x′, y′).

Now we use a similar argument to the one in the proof of Theorem 3.1.

Since P ′ is a geodesic pentagon in D, we have that it is 3δ0-thin. Let us consider the point α′1 in

the oriented geodesic [p′1, c
′], defined by α′1 := max{z ∈ [p′1, c

′] : dD(z, [p′1, p
′
2]) ≤ 3δ0}, and the point

α′2 in the oriented geodesic [p′2, a
′], defined by α′2 := max{z ∈ [p′2, a

′] : dD(z, [p′1, p
′
2]) ≤ 3δ0}.
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If αj is the corresponding point in P to α′j , we have that LAl
([α1, α2]) = dAl

(α1, α2) ≤ 6δ0 + d(l),

since dAl
(αj , gp) ≤ 3δ0 and diamAl

(gp) ≤ dp < d(l).

We define now β′1 := max
({α′1} ∪ {z ∈ [p′1, c

′] : dD(z, [p′2, a
′]) ≤ 3δ0}

)
, β′2 := max

({α′2} ∪ {z ∈
[p′2, a

′] : dD(z, [p′1, c
′]) ≤ 3δ0}

)
. Let us denote by βj the corresponding point in P to β′j .

If β1 6= α1, then dAl
(β1, p) = LAl

([β1, p]) = dAl
(β1, [p, a]) ≤ 3δ0; in a similar way, if β2 6= α2, then

dAl
(β2, p) ≤ 3δ0. We consider now the next four possibilities:

If β1 = α1 and β2 = α2, we have seen that dAl
(β1, β2) ≤ 6δ0 + d(l).

If β1 6= α1 and β2 6= α2, then dAl
(β1, β2) ≤ dAl

(β1, p) + dAl
(p, β2) ≤ 6δ0.

If β1 6= α1 and β2 = α2, then there is a point z0 ∈ [p′1, p
′
2] with dD(β′2, z0) ≤ 3δ0; since there is

some p′i with dD(p′i, z0) ≤ d(l), we obtain that dAl
(β1, β2) ≤ dD(β′1, β

′
2) ≤ dD(β′1, p

′
i) + dD(p′i, z0) +

dD(z0, β
′
2) ≤ 6δ0 + d(l).

If β1 = α1 and β2 6= α2, we obtain in a similar way that dAl
(β1, β2) ≤ 6δ0 + d(l).

Therefore, in the four situations we have dAl
(β1, β2) ≤ 6δ0 + d(l). If x ∈ [β1, c] ∪ [β2, a], then

dAl
(x, [a, b] ∪ [b, c]) ≤ 3δ0. If x ∈ [β1, β2], we can take βi with dAl

(x, βi) ≤ 3δ0 + d(l)/2; since

dAl
(βi, [a, b] ∪ [b, c]) ≤ 3δ0, we obtain dAl

(x, [a, b] ∪ [b, c]) ≤ 6δ0 + d(l)/2.

If x ∈ [a, b], there exists a point y′ ∈ P ′ \ (a′, b′) with dD(x′, y′) ≤ 3δ0. If y′ /∈ [p′1, p
′
2], then

dAl
(x, [b, c] ∪ [c, a]) ≤ 3δ0. If y′ ∈ [p′1, p

′
2], there is p′i with dD(y′, p′i) ≤ d(l), and hence dD(x′, p′i) ≤

3δ0 + d(l). Since p ∈ [a, c], we have that dAl
(x, [b, c] ∪ [c, a]) ≤ 3δ0 + d(l). A similar result is true if

x ∈ [b, c]. These facts give that T is max{3δ0 + d(l), 6δ0 + d(l)/2}-thin.

If p is a vertex of T , the proof is easier since we construct a quadrilateral instead of a pentagon,

and we do not need to split a side of T . This finishes the proof of Lemma 5.4. ¤

The following is the main result of this paper; it allows one to check the Rips condition only

for triangles contained in simple closed geodesics. We would like to remark the simplification that

Theorem 5.1 means in the applications: Let us consider an annulus A with simple closed geodesic γ.

A generic triangle T in A is determined by the coordinates of three points, i.e., by six real coordinates;

however, a generic triangle T0 in the simple closed geodesic γ is determined by three real coordinates.

Therefore Theorem 5.1 is a remarkable improvement of Rips condition in the context of Riemann

surfaces.

Definition 5.2. By a c0-triangle we mean a triangle with continuous injective (1, c0)-quasigeodesic

sides, with its arc-length parametrization.

We define the constants

c0 := log(5 + 2
√

6 ) < 2.2925 , K := 2 log(1 +
√

2 ) + log(5 + 2
√

6 ) + log
√

6 +
√

10
2

< 5.0869 .

Theorem 5.1. Let us consider a non-exceptional Riemann surface S (with or without boundary);

if S has boundary, we also require that ∂S is the union of local geodesics (closed or non-closed). Then

S is hyperbolic if and only if every c0-triangle contained in a simple closed geodesic in S is δ0-thin.
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Furthermore, if every c0-triangle contained in a simple closed geodesic in S is δ0-thin, then S is

δ-thin, with δ = max{δ(4c0), δ0 + K}, where δ(t) is the constant in Lemma 5.4 (it verifies δ(4c0) <

10.9325).

Remarks. 1. Although one can think of quasigeodesic triangles as an artificial technical device,

the example after the proof of Theorem 5.1 shows that they are essential.

2. Even though this theorem reduces drastically the triangles in which we have to check the Rips

condition, we must “pay” for it by working with quasigeodesic triangles; however the situation is

advantageous since the class of quasigeodesics that we need is very restrictive: recall that we only

consider continuous injective (1, c0)-quasigeodesics, and Lemma 3.2 gives a bound of its length which

will be good enough in the applications (see Theorem 5.3 and corollaries 5.2 and 5.3).

Proof. The heart of the proof of Theorem 5.1 is to relate any geodesic triangle T in S with a

c0-triangle contained in a simple closed geodesic γ in S. In some way, we can consider T and γ as

“subsets” of the annulus Al (with l := LS(γ)). The geodesic triangles in the simple closed geodesic of

Al are (l/4)-thin, and this value is sharp (it is enough to consider a triangle with sides of lengths l/4,

l/4 and l/2). However, the problem in a general Riemann surface is more difficult (and recall that

we can find simple closed geodesics arbitrarily long). Therefore, if l is big we need a narrow metric

relationship between T and γ.

If S is hyperbolic, Lemma 3.3 guarantees that every c0-triangle in S is δ0-thin.

Let us assume that every c0-triangle contained in a simple closed geodesic in S is δ0-thin. First,

we want to remark that if S has boundary, the hypothesis on ∂S gives that it is the union of pairwise

disjoint simple local geodesics (closed or non-closed).

In this case, we can construct an open non-exceptional Riemann surface R by pasting to S a funnel

in each simple closed geodesic, and a half-disk in each non-closed simple geodesic.

Since S is geodesically convex in R (every geodesic connecting two points of S is contained in S),

then dR(z, w) = dS(z, w) for every z, w ∈ S, and any simple closed geodesic in R is contained in S.

Let us consider a geodesic triangle T in S. By Lemma 2.1 in [RT1], we can assume that T is a

simple closed curve.

We have three possibilities: T is homotopic to a point, T is homotopic to a puncture, or T is

freely homotopic to a simple closed geodesic in S. This is well known if S has no boundary; if S has

boundary, it is enough to apply the result to R, since R has not additional topological obstacles (the

fundamental groups of S and R are isomorphic).

If T is homotopic to a point, then it is the boundary of a simply connected closed set E, and

consequently E, with its intrinsic distance, is isometric to some subset of D; this implies that T is

log(1 +
√

2 )-thin, since D is log(1 +
√

2 )-thin (see [An, p.130]).

If T is homotopic to a puncture, then it is the boundary of a closed doubly connected set, which is,

with its intrinsic distance, isometric to some subset of D∗ := D \ {0}; this implies that T is δ(0)-thin,

with δ(0) the constant in Lemma 5.4. Since every geodesic triangle in D is isometric to some geodesic
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triangle in D∗, we have that log(1 +
√

2 ) ≤ δ(0).

In other case, T is freely homotopic to a simple closed geodesic γ in S.

If L(γ) < 4c0, let us consider the annulus AL(γ) with a simple closed geodesic g of length L(γ). We

have that AL(γ) is δ(L(γ))-thin, with δ(L(γ)) the constant in Lemma 5.4. Since

d = d(l) = Arcsinh
( sinh(l/2)

sinh(l/6)
cosh(l/6)

)
,

if l > 0 and d(0) = liml→0 d(l), we have that d = d(l) is an increasing function for l ≥ 0; then we also

have that δ(0) ≤ δ(L(γ)) < δ(4c0), with

δ(4c0) = max
{

4c0 + 2 log(1 +
√

2 ), Arcsinh
(
sinh(2c0) cotanh(2c0/3)

)
+ 3 log(1 +

√
2 ),

1
2

Arcsinh
(
sinh(2c0) cotanh(2c0/3)

)
+ 6 log(1 +

√
2 )

}

= 4c0 + 2 log(1 +
√

2 ) < 10.9325 .

In this case, the closed set in S bounded by T and γ is, with its intrinsic distance, isometric to a set

in AL(γ), bounded by g and a triangle T0. These facts give that T is δ(4c0)-thin.

We consider now the case L(γ) ≥ 4c0.

First, we assume that γ ∩ T = ∅. If η is a side of T , we associate to it two curves η′, η′′, in the

following way. We consider a simply connected locally geodesic quadrilateral Q in S with pairwise

disjoint sides A, C, B and η, of lengths a, c, b and l0, respectively, with the following conditions: (i)

C ⊂ γ, (ii) C meets orthogonally the sides A and B. Q is uniquely determined by these conditions.

If c ≥ c0, the arc η′ := A ∪ C ∪ B is a continuous injective (1, c0)-quasigeodesic with its arc-length

parametrization by lemmas 3.1 and 5.1. If c < c0, we take η′ := η, which is a geodesic. (Observe that

we have c < c0 for at most one side of T , since L(γ) ≥ 4c0; in other case, T would not be a geodesic

triangle.) In both cases, we define η′′ := C ⊂ γ. We have that η′′ is always a continuous injective

(1, c0)-quasigeodesic with its arc-length parametrization: this is clear if c ≥ c0 (since η′′ ⊂ η′), and it

is a consequence of Corollary 3.1 if c < c0.

If T is the union of the geodesics η1, η2, η3, we consider the (1, c0)-quasigeodesic triangle T ′ defined

as the union of the (1, c0)-quasigeodesics η′1, η
′
2, η

′
3. We consider also the (1, c0)-quasigeodesic triangle

T ′′ ⊂ γ defined as the union of the (1, c0)-quasigeodesics η′′1 , η′′2 , η′′3 .

By hypothesis, T ′′ is δ0-thin. We prove now that T ′ is δ1-thin, with δ1 := max{δ0, 2 log(1+
√

2 )}+c0.

If η′i 6= ηi, for i = 1, 2, 3, then T ′ is δ0-thin, since every point in T ′ \ T ′′ belongs to two sides of T ′.

If it is not the case, there is only one i with η′i = ηi; we can assume η′1 = η1. Let us consider

the quadrilateral Q1 with sides A1, C1, B1 and η1; we have that L(C1) < c0. Since Q1 is simply

connected, it is isometric to a quadrilateral in D which is 2 log(1 +
√

2 )-thin.

Then for each z ∈ η′1 = η1, there exists w ∈ A1 ∪ C1 ∪ B1 with d(z, w) ≤ 2 log(1 +
√

2 ). If

w ∈ A1 ∪ B1, then d(z, η′2 ∪ η′3) ≤ 2 log(1 +
√

2 ). If w ∈ C1, then there exists w′ ∈ A1 ∪ B1 with

d(w, w′) ≤ c0 (since L(C1) < c0), and we have d(z, η′2 ∪ η′3) ≤ 2 log(1 +
√

2 ) + c0.

If z ∈ η′2, we consider three cases. If z ∈ η′2 ∩ γ = η′′2 , then d(z, η′1 ∪ η′3) ≤ d(z, η′′3 ) ≤ d(z, η′′1 ∪ η′′3 ) +

c0 ≤ δ0+c0. If z ∈ η′2∩η′3, then d(z, η′1∪η′3) = 0. In other case, z ∈ A1∪B1 (we can assume that A1 ⊂ η′2
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and B1 ⊂ η′3); then there exists w ∈ B1∪C1∪η1 with d(z, w) ≤ 2 log(1+
√

2 ); since L(C1) < c0, there

exists w′ ∈ B1∪η1 ⊂ η′3∪η′1 with d(w,w′) ≤ c0, and we have d(z, η′1∪η′3) ≤ d(z, w′) ≤ 2 log(1+
√

2 )+c0.

Consequently, T ′ is δ1-thin, with δ1 := max{δ0, 2 log(1 +
√

2 )}+ c0.

The case z ∈ η′3 is similar to z ∈ η′2.

We show now that T is δ2-thin, with

δ2 := δ1 + 2 log(1 +
√

2 ) + c2, and c2 := Arcsinh
(

cotanh
c0

2

)
= log

√
6 +

√
10

2
.

Let us consider x ∈ T ; we can assume that x ∈ η1. If η1 6= η′1, then η1 ∪ η′1 is a simply connected

geodesic quadrilateral, and therefore there exists x′ ∈ η′1 with d(x, x′) ≤ 2 log(1 +
√

2 ). If η1 = η′1, we

take x′ = x. Then there exists y′ ∈ η′2∪η′3 with d(x′, y′) ≤ δ1; without loss of generality we can assume

that y′ ∈ η′2. If η2 6= η′2, Lemma 5.3 gives that there exists y ∈ η2 with d(y, y′) < c2. If η2 = η′2, we take

y = y′. Consequently we have that d(x, y) < δ2 := δ1+2 log(1+
√

2 )+c2 = max{δ0, 2 log(1+
√

2 )}+K.

Therefore T is δ-thin, with δ := max{δ(4c0), δ0 + K, 2 log(1 +
√

2 ) + K} = max{δ(4c0), δ0 + K},
since δ(4c0) > 10 > 2 log(1 +

√
2 ) + K.

We assume now that γ ∩ T 6= ∅.

If γ ∩ T has only one connected component, the same argument works.

If γ ∩ T has two connected components, the argument is similar, using now Lemma 5.2 instead of

Lemma 5.1. The constant in this case is smaller, since 3 log 2 < c0. ¤

The following example shows that the quasigeodesic triangle T ′′ in the proof of Theorem 5.1 does

not need to be geodesic.

Example. There is a geodesic triangle T in a triply connected Riemann surface S0 such that T ′′

is not geodesic.

Given x0 < Arcsinh 1, there exists y > 0 with sinh(x0 + y) > cosh y. Then sinh(x + y) > cosh y for

any x0 ≤ x < Arcsinh 1, and consequently we can choose some x < Arcsinh 1 such that sinh x sinh(x+

y) > cosh y.

If we define ε := Arcsinh(1/ sinhx)− x > 0, we have that sinh x sinh(x + ε) = 1. Let us consider a

geodesic quadrilateral V with three right angles and an angle equal to zero, such that the two finite

sides have length x and x + ε (see e.g. [B, p.157], [F, p.89]). If we paste four quadrilaterals isometric

to V , we obtain a generalized Y -piece Y0 with two punctures and a simple closed geodesic γ with

L(γ) = 4(x + ε). We obtain S0 by gluing Y0 with a funnel F whose simple closed geodesic has length

4(x + ε).

Let us denote by µ0 the geodesic in Y0 with L(µ0) = 2x, joining γ with itself which is not homotopic

to any curve contained in γ. We denote by p′′, q′′ the end points of µ0. Let us consider the non bounded

geodesic µ in S0 which contains µ0, and the two points p, q ∈ µ ∩ F at distance y of γ.

Let us define the triangle T as the union of the two geodesics α, β in F joining p and q (in fact, T

is a geodesic “bigon”). The length of the segment of µ between p and q is 2x + 2y; by [F, p.88] we

have sinh(L(α)/2) = sinh(x+ ε) cosh y = cosh y/ sinhx < sinh(x+ y); then we obtain L(α) < 2x+2y,



18

and consequently α, β are in fact geodesics in S0. However, T ′′ = {p′′, q′′} is contained in γ and then

L(α′′) = L(β′′) = 2x + 2ε > 2x = L(µ0); hence α′′, β′′ are not geodesics in S0.

From now on we will obtain several consequences of Theorem 5.1.

Corollary 5.1. The annulus Al such that its simple closed geodesic has length l ≥ 4c0 is (l/4+K)-

thin, with K < 5.0869 the constant in Theorem 5.1. The same is true for each funnel of Al.

Remark. This bound of the hyperbolicity constant for the annulus is asymptotically sharp: we

have that the best thin constant of Al is greater than or equal to l/4, since we have a geodesic triangle

contained in the simple closed geodesic with sides of lengths l/2, l/4, l/4.

Proof. Let us observe that the last part of the proof of Theorem 5.1 gives that Al is δ2-thin, if

l ≥ 4c0.

In this case the hypothesis “any continuous injective (1, c0)-quasigeodesic triangle contained in a

simple closed geodesic in S is δ0-thin”, can be changed by “any geodesic triangle contained in the

simple closed geodesic γ of Al is δ0-thin”, since T ′′ is a geodesic triangle in Al if T is a geodesic

triangle in Al. Since the sides of any geodesic triangle contained in γ have length less than or equal to

l/2, any geodesic triangle contained in γ is δ0-thin, with δ0 = δ0(Al) = l/4. Consequently, we obtain

that Al is δ2-thin with

δ2 = max
{ l

4
, 2 log(1 +

√
2 )

}
+ K =

l

4
+ K ,

since l/4 ≥ c0 > 2 > 2 log(1 +
√

2 ). The same is true for each funnel of Al. ¤

Definition 5.3. We say that a non-exceptional Riemann surface S (with or without boundary) is

of finite type if its fundamental group is finitely generated.

Corollary 5.2. Let us consider a non-exceptional Riemann surface S (with or without boundary)

of genus 0; if S has boundary, we also require that ∂S is the union of local geodesics (closed or non-

closed). If S is of finite type, then it is hyperbolic. In fact, if every simple closed geodesic γ in S

verifies L(γ) ≤ l, then S is δ-thin, with δ = max{δ(4c0), K+(l+c0)/4} and c0, δ(4c0),K the constants

in Theorem 5.1.

Proof. The set of simple closed geodesics in S is finite: {γ1, . . . , γk}, and we have L(γj) ≤ l.

Every continuous injective (1, c0)-quasigeodesic with its arc-length parametrization g ⊂ γj verifies

L(g) ≤ (l + c0)/2 by Lemma 3.2; hence d(z, ∂g) ≤ (l + c0)/4 for every z ∈ g. Then the hypothesis of

Theorem 5.1 is verified with δ0 := (l+c0)/4. Hence S is δ-thin with δ = max{δ(4c0),K+(l+c0)/4}. ¤

A consequence of this corollary is the following result.

Corollary 5.3. Every generalized Y -piece Y with L(γi) ≤ l, where γi (i = 1, 2, 3) are the simple

closed geodesics in ∂Y , is δ-thin, with δ = max{δ(4c0),K + (l + c0)/4}.

Remark. As usual we see a puncture as a simple closed geodesic with zero length.
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In order to prove the following result we need one definition.

Definition 5.4. A half-disk is a bordered non-exceptional Riemann surface which is topologically

a closed half-plane and whose boundary is a simple geodesic. Every half-disk is conformally equivalent

to the subset {z ∈ D : <z ≥ 0} of the hyperbolic disk D.

It is clear that a funnel contains infinitely many half-disks.

Two additional consequences which are important in the study of hyperbolicity of Riemann surfaces

can be deduced from Theorem 5.1. The first one (see Theorem 5.2 below) allows us to simplify the

topology: it assures that to delete funnels and half-disks does not change the hyperbolicity of a

Riemann surface. Theorem 5.2 is a useful result which has several applications in [RT2] and [PRT2].

One can think of the following as a natural first result in order to study hyperbolicity: if a Riemann

surface has a sequence of funnels {Fn}n with limn→∞ L(∂Fn) = ∞, then it is not hyperbolic. In [RT2]

we prove that this reasonable result is false indeed, and an important tool in the proof is Theorem

5.2.

Our recent research let us expect that Theorem 5.2 will be a key tool in the characterization of

hyperbolic Denjoy domains.

Theorem 5.2. Let us consider a non-exceptional Riemann surface S (with or without boundary);

if S has boundary, we also require that ∂S is the union of local geodesics (closed or non-closed). Let

us denote by F the union of some pairwise disjoint funnels and half-disks of S. Let S0 be the bordered

non-exceptional Riemann surface obtained by deleting from S the interior of F . Then S is hyperbolic

if and only if S0 is hyperbolic.

Furthermore, if S is δ-thin (hyperbolic), then S0 is δ-thin (hyperbolic); if S0 is δ′-hyperbolic, then

S is δ-thin, with δ = max{δ(4c0), 4δ′ + 2H(δ′, 1, c0) + K}, c0, δ(4c0),K the constants in Theorem 5.1,

and H the constant in Theorem C.

Remark. We want to emphasize that there is no hypothesis about the length of the boundary

curves of the funnels. This is an important fact since there are hyperbolic Riemann surfaces containing

funnels Fn with L(∂Fn) −→∞ as n →∞ (see the examples in Section 4 of [RT2]).

Proof. Let us assume that S is δ-thin (hyperbolic). As S0 is geodesically convex in S (every

geodesic connecting two points of S0 is contained in S0), then dS(z, w) = dS0(z, w) for every z, w ∈ S0.

Therefore S0 is also δ-thin (hyperbolic).

Let us assume now that S0 is δ′-hyperbolic. By Lemma 3.3, every (1, c0)-quasigeodesic triangle

T in S0 is (4δ′ + 2H(δ′, 1, c0))-thin, where H is the constant in Theorem C. Let us observe that

any simple closed geodesic in S is contained in S0. Since dS(z, w) = dS0(z, w) for every z, w ∈ S0,

every (1, c0)-quasigeodesic triangle in S (contained in a simple closed geodesic in S) is also a (1, c0)-

quasigeodesic triangle in S0. Let us observe also that H ≥ 1 > log(1 +
√

2 ). Then Theorem 5.1 gives

that S is δ-thin, with δ = max{δ(4c0), 4δ′ + 2H(δ′, 1, c0) + K}. ¤
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The following result on geodesically convex subsets of Riemann surfaces is a consequence of the

Collar Lemma. It will be useful in the proof of Theorem 5.3.

Lemma 5.5. Let us consider a non-exceptional Riemann surface S (with or without boundary),

a simple closed geodesic η of S such that S \ η is not connected, and the closure S0 of a connected

component of S \ η. We define L0 := 4 Arccosh t0, where t0 is the unique solution greater than 1 of

the equation 2t3 − 2t− 1 = 0 :

t0 := 3

√
9 +

√
33

36
+

1
3

3

√
36

9 +
√

33
< 1.1915 .

If L(η) < L0, then every geodesic connecting two points of S0 is contained in S0, and consequently

dS(z, w) = dS0(z, w) for every z, w ∈ S0.

Proof. We assume first that S is open. If L := L(η), then there exists a collar of η of width d0 with

sinh d0 sinh(L/2) = 1, by the Collar Lemma (see [R]). Hence sinh d0 sinh(L0/2) > 1, since L < L0.

We take z, w ∈ S0. In order to prove the lemma, without loss of generality we can assume that

z, w ∈ η; therefore dS0(z, w) ≤ L/2.

In order to obtain a contradiction, let us assume that there exists a geodesic γ in S joining z, w,

and not contained in S0; then 2d0 ≤ L(γ) ≤ L/2 and we conclude that 4d0 ≤ L. Let us observe that

2t3 − 2t− 1 < 0 for every 1 < t < t0; this implies that 2 cosh3(L/4)− 2 cosh(L/4) < 1, since L < L0.

Then we have

2 cosh
L0

4
sinh2 L0

4
< 1 , sinh

L0

4
sinh

L0

2
< 1 , sinh

L0

4
<

1
sinh L0

2

< sinh d0 ,

and hence we obtain L < 4d0, which is a contradiction.

If S has boundary, then it is contained in a Riemann surface R and dS = dR|S . If γ is a geodesic

in S joining z, w, and not contained in S0, then there is a geodesic in R joining z, w, which is not

contained in S0, and we have seen that it is a contradiction. ¤

Remark. If we follow the proof of Lemma 5.5, we can deduce that if L(η) = L0, it is possible for

γ to escape from S0, but then L(η) = 2d0 = L/2, and we also have dS(z, w) = dS0(z, w) for every

z, w ∈ S0.

Many Riemann surfaces can be decomposed in a union of funnels and generalized Y -pieces (see [FM,

Theorem 4.1] and [AR]). The following result uses this decomposition in order to obtain hyperbolicity.

A part of this result appears in [RT1], but here we give a new proof which allows one to obtain an

explicit bound for the hyperbolicity constant.

Theorem 5.3. Let us consider a non-exceptional Riemann surface S (with or without boundary)

without genus (S can be viewed as a plane domain). If there is a decomposition of S in a union of

funnels {Fm}m∈M and generalized Y -pieces {Yn}n∈N with LS(γ) ≤ l for every simple closed geodesic
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γ ⊂ (∪n∂Yn) ∪ (∪m∂Fm), then S is δ-hyperbolic, where δ := 20δ0 + l + K0, δ0 := max{δ(4c0),K +

(l + c0)/4} and

K0 := Arccosh
(cosh(l/2) (1 + cosh(l/2))

sinh2(L0/2)

)
,

with c0, δ(4c0),K the constants in Theorem 5.1 and L0 the constant in Lemma 5.5. In fact, if l < L0,

we can take δ := 4δ0 + l/2.

Proof. First of all, let us observe that Yn is δ0-thin, with δ0 := max{δ(4c0),K + (l + c0)/4}, by

Corollary 5.3. Lemma 5.4 and Corollary 5.1 give that Fm is also δ0-thin.

We denote by Li for i = 1, 2, 3, the three lengths of the simple closed geodesics in ∂Yn (Li = 0 if

its corresponding “geodesic” is a puncture).

If L0 ≤ Li ≤ l for at least two geodesics, without loss of generality we can assume that L2 =

LYn(ηnm) ≥ L0 and L3 = LYn(ηnk) ≥ L0. We consider the geodesic gmk ⊂ Yn, which joins ηnm

and ηnk, and we put t = LYn
(gmk). We denote by ηnr the geodesic in ∂Yn with length L1; if we

consider the geodesics gmr, gkr, joining respectively ηnm and ηnr, and ηnk and ηnr, we can split Yn

in two isometric right-angle hexagons. By standard hyperbolic trigonometry (see e.g. [B, p.161], [Ra,

p.100]), we have that

cosh t =
cosh(L1/2) + cosh(L2/2) cosh(L3/2)

sinh(L2/2) sinh(L3/2)
≤ cosh(l/2) (1 + cosh(l/2))

sinh2(L0/2)
,

and therefore, t ≤ K0.

We are going to consider different cases according to the values of Li.

(1) If L0 ≤ Li ≤ l for i = 1, 2, 3, then the distance between any two simple closed geodesics of ∂Yn

is less than or equal to K0; therefore diamYn(∪mηnm) ≤ l/2 + K0 + l/2 = l + K0. Then we are in the

hypothesis of Theorem 3.1, with c2 = l + K0 and Bn = ∅.

(2) If L1 < L0 ≤ L2, L3 ≤ l, then the distance between the simple closed geodesics of ∂Yn of length

L2, L3, (say ηnm, ηnk) is less than or equal to K0; then diamYn(ηnm ∪ ηnk) ≤ l + K0. Then we are in

the hypothesis of Theorem 3.1, with c1 = l/2, c2 = l + K0 and An = {m, k}.
(3) If L1, L2 < L0, then we are in the hypothesis of Theorem 3.1, with c1 = l/2 and An = ∅.

The case of Fm is similar to (3), with c1 = l/2 and An = ∅.

Then, Theorem 3.1 (with c1 = l/2 and c2 = l + K0) gives that S is δ-thin, with δ := 20δ0 +

max{l/2 + (l + K0)/2, l + K0} = 20δ0 + l + K0.

In fact, if l < L0, we only need to consider (3), and then Corollary 3.2 gives that we can take

δ := 4δ0 + l/2. ¤

References.
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