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Abstract. We provide a reasonable sufficient condition for a count-

able family of operators to have a common hypercyclic subspace.

We also extend a result of the third author and A. Montes [22],

thereby obtaining a common hypercyclic subspace for certain count-

able families of compact perturbations of operators of norm no

larger than one.

1. Introduction

It is known that for any separable infinite dimensional Banach space

X, there is a continuous linear operator T : X → X which is hyper-

cyclic; that is, there is a vector x such that the set {x, Tx, . . . , T nx, . . .}

is norm dense in X ([2], [5]). Moreover, a simple Baire category argu-

ment shows that the set HC(T ) of such so-called hypercyclic vectors

x is a dense Gδ in X [21], and its linear structure is well understood:

While HC(T ) must always contain a dense subspace ([9], [20]), it not

always contains a closed infinite dimensional one; see [16] for a complete
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characterization of when this occurs. (Throughout, when we say that

HC(T ) contains a vector space V we mean of course that every x ∈ V

except x = 0 is hypercyclic for T.) Thus, for example it was shown

that for the simplest example of a hypercyclic operator on a Banach

space, namely the Rolewicz operator

B2 : `2 → `2, B2(x1, x2, · · · ) = 2(x2, x3, · · · ),

HC(B2) contains an infinite dimensional vector space but that this

vector space cannot be closed [25, Theorem 3.4].

In recent years, an increasing amount of attention has been paid to

the set ∩T∈FHC(T ) of common hypercyclic vectors of a given family F

of hypercyclic operators acting on the same Banach space X. Again, by

a Baire category argument ∩T∈FHC(T ) is a dense subset of X when-

ever F is countable. Moreover, L. Bernal and C. Moreno [7] showed

this set contains a dense vector space if we ask in addition that the

members be hereditarily hypercyclic. Finally S. Grivaux proved that

this additional hypothesis can be suppressed [17, Proposition 4.3].

Other important recent work is by E. Abakumov and J. Gordon [1],

who showed that

∩{λ∈C: |λ|>1}HC(Bλ) 6= ∅,

where Bλ is the Rolewicz operator with 2 replaced by λ. In fact it

is simple to derive from this that the above intersection contains a

dense subspace of `2. On the other hand, in [4] F. Bayart showed that

under the assumption of a strong form of the hypercyclicity condition,

uncountable collections of hypercyclic operators can indeed contain an

infinite dimensional closed subspace of common hypercyclic vectors.

Similar results were obtained by G. Costakis and M. Sambarino [13],



OPERATORS WITH COMMON HYPERCYCLIC SUBSPACES 3

who also provided a criterion for the existence of common hypercyclic

vectors.

Our interest here will be in the following problem:

Problem 1. Let F be a countable family of operators acting on a

Banach space X. When does ∩T∈FHC(T ) contain a closed infinite di-

mensional subspace?

In Section 2 we show that a family of operators acting on a common

Banach space may fail to support a common hypercyclic subspace, even

if each operator in the family has a hypercyclic subspace (Example 2.1).

Moreover, if the family is uncountable it may even fail to have single

common hypercyclic vector (Example 2.2). In Section 3 we extend a

result of A. Montes [25, Theorem 2.1] by providing a reasonable suf-

ficient condition on a countable family of hypercyclic operators acting

on a Banach space to have a common infinite dimensional hypercyclic

subspace (Corollary 3.5). We then apply this to extend a result of the

third author and A. Montes [22], thereby obtaining a common hyper-

cyclic subspace for certain countable families of operators of the form

T = U + K where ‖U‖ ≤ 1 and K is compact.

2. Two Examples

Example 2.1 was provided to us by an anonymous referee. An oper-

ator T is said to be hereditarily hypercyclic with respect to a given in-

creasing sequence of positive integers (nk) provided {T nk}k∈N is hered-

itarily universal (cf. Section 3).

Example 2.1. Consider the operators T1 := (I + Bw)⊕B2 and T2 :=

B2 ⊕ (I + Bw) acting on `2 ⊕ `2, where B2 and I are the Rolewicz’ and

the identity operator on `2, respectively, and Bw is the compact shift on
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`2 defined by

(1) Bwen :=


1
n

en−1 if n ≥ 2

0 if n = 1

We show next that (a) Each of T1, T2 has a hypercyclic subspace, and

(b) T1 and T2 do not support a common hypercyclic subspace.

To see (a), notice that B2 is hereditarily hypercyclic with respect to

the entire sequence (n), and I + Bw is hereditarily hypercyclic with re-

spect to some sequence (nk) [22, Lemma 4.5]. Hence T1 and T2 are

hereditarily hypercyclic with respect to some sequence (nk) and by [23,

Theorem 2.1] it suffices to verify that the essential spectrum of Ti in-

tersects the closed unit disk (i = 1, 2). Now, the sequence (en ⊕ 0) is

orthonormal in `2⊕ `2. Also, (T1− I)(en⊕0) = 1
n
en−1⊕0 converges to

zero in norm as n tends to infinity. This means (cf. [12] XI 2.3) that

1 belongs to the essential spectrum of T1. Similarly, 1 belongs to the

essential spectrum of T2. So each of T1, T2 has a hypercyclic subspace.

To show (b) assume, to the contrary, that there exists a closed, infi-

nite dimensional subspace Z of `2 ⊕ `2 such that every non-zero vector

(x, y) ∈ Z is hypercyclic for (I + Bw) ⊕ B2 and B2 ⊕ (I + Bw). In

particular, both x and y must be hypercyclic for B2.

Now, a simple Hilbert space argument shows that (at least) one of the

coordinate projections P1(Z) and P2(Z) must contain a closed infinite

dimensional subspace. Indeed, given an orthonormal sequence in Z one

can find a subsequence such that its sequence (xn) of i-th coordinate

projections (i = 1 or 2) is linearly independent, bounded, and bounded

away from zero. Next one can find a subsequence (xnk
) of (xn) that is

equivalent as a basic sequence to an orthonormal sequence, what gives

that Pi(Z) contains the closed linear span of the sequence (xnk
).
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But this implies that B2 has a hypercyclic subspace, which is not the

case [25, Theorem 3.4]. So T1 and T2 have no common hypercyclic

subspace.

Example 2.2. Let X = H be a separable, infinite-dimensional Hilbert

space, and let SH be the unit sphere of H. Let (wn) be a sequence of

positive scalars satisfying

lim
n→∞

infk

(
n∏

j=1

wk+j

) 1
n

≤ 1 and lim sup
n∏

j=1

wj = ∞.

For each h in SH , let {e(h)n : n ≥ 1} be a basis of H with e(h)1 = h,

and let Th : H → H be the corresponding unilateral weighted backward

shift defined by

(2) The(h)n =

 0 if n = 1

wn e(h)n−1 if n ≥ 2,

So Th has a hypercyclic subspace [23, Corollary 2.3]. Also, notice

that F = {Th : h ∈ SH } satisfies that for all 0 6= y in H,

T y
‖y‖

y = 0.

That is, F is a family of operators, each one having a hypercyclic sub-

space, but such that there is no hypercyclic vector common to all mem-

bers of F .

Let us also observe that in [1] the authors mention that there is

no common hypercyclic vector for the family of hypercyclic operators

{λB ⊕ δB : |λ|, |δ| > 1}. It is easy to see that no operator in this

family admits a hypercyclic subspace.
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3. A sufficient condition for a common hypercyclic

subspace

We prove the main result in the more general setting of universal-

ity. Given a sequence F = {Tj}j∈N of bounded operators acting on

a Banach space X, we say that a vector x ∈ X is universal for F

if {Tx : T ∈ F } is dense in X; the set of such universal vectors

is denoted HC(F). The sequence F is said to be universal (respec-

tively, densely universal ) provided HC(F) is non-empty (respectively,

dense in X). F is called hereditarily universal (respectively, hereditarily

densely universal) provided {Tnk
}k∈N is universal (respectively, densely

universal) for each increasing sequence (nk) of positive integers. For

more on the notion of universality, see [15] and [19]. A result similar

to the following theorem is proved in [10] for a (single) sequence of

universal operators in the context of Fréchet spaces.

Theorem 3.1. Let Tn,j (n, j ∈ N) be bounded operators on a Banach

space X, and let Y be a closed subspace of X of infinite dimension.

Suppose that for each n ∈ N

i) {Tn,j}j∈N is hereditarily densely universal, and

ii) limj→∞ ‖Tn,jx‖ = 0 for each x in Y .

Then there exists a closed, infinite dimensional subspace X1 of X so

that {Tn,jx}j∈N is dense in X for each non-zero x ∈ X1 and n ∈ N.

That is, X1 is a universal subspace of {Tn,j}j∈N for each n ∈ N.

Lemma 3.2. Let Tn,j (n, j ∈ N) be bounded operators on a Banach

space X so that for each fixed integer n the family {Tn,j}j≥1 is densely

universal. Then the set ∩∞n=1HC({Tn,j}j≥1) of common universal vec-

tors to every sequence {Tn,j}j∈N is dense in X.
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Proof. ∩∞n=1HC({Tn,j}j≥1) is a countable intersection of dense Gδ sub-

sets of the Baire space X [18, Satz 1.2.2]. �

Proof of Theorem 3.1. Reducing the subspace Y if necessary, we may

assume it has a normalized Schauder basis (ej)j. Let (e∗j) be its as-

sociated sequence in Y ∗ of coordinate functionals, that is, so that

e∗j(ei) = δi,j for i, j ∈ N. Let A(Y, X) denote the norm closure (in

L(X, Y )) of the subspace{
n∑

j=1

xje
∗
j(·) : n ∈ N, x1, . . . , xn ∈ X

}
.

For each T in B(X), define LT : A(Y, X) → A(Y,X) by LT V :=

TV . We make use of the following lemma, whose proof follows that

of Theorem 3.1. Analogous versions of this lemma are proved in [10]

for several operator ideals (nuclear, compact, approximable), in a more

general context, by using tensor product techniques developed in [24].

Lemma 3.3. Suppose {Tj}j∈N is a sequence of bounded operators on X

that is hereditarily densely universal. Then {LTrj
}j≥1 is a hereditarily

densely universal sequence of operators on A(Y,X), for some increasing

sequence (rj) of positive integers.

Now, notice that by (i) and Lemma 3.3, for each fixed n ∈ N there

exists a sequence of positive integers (rn,j)j so that the sequence of oper-

ators {LTn,rn,j
}j∈N is hereditarily densely universal on the Banach space

A(Y,X). By Lemma 3.2, there exists V in A(Y, X) that is universal for

every sequence {LTn,rn,j
}j∈N, and hence universal for every {LTn,j

}j∈N,

too (n ∈ N). Multiplying V by a non-zero scalar if necessary, we may

assume that ‖V ‖ < 1
2
. Consider now X1 := (i + V )(Y ), where i : Y →

X is the inclusion. For each x ∈ Y , ‖(i + V )x‖ ≥ ‖x‖− ‖V x‖ ≥ 1
2
‖x‖.

So i + V is bounded below and X1 is closed and of infinite dimension.
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Notice that {Tn,jV x}j∈N is dense in X for every 0 6= x ∈ Y and every

n ∈ N. Indeed, given ε > 0, let z ∈ X be arbitrary, and let S be a

finite rank operator in A(Y,X) such that Sx = z. By Lemma 3.3, for

each n there is some Tn,j such that ||Tn,jV − S|| < ε
‖x‖ . In particular,

||Tn,jV x − Sx|| = ||Tn,jV x − z|| < ε. The theorem now follows from

condition (ii). �

Proof of Lemma 3.3. Since {Tj}j∈N is hereditarily densely universal on

X, it follows from [6, Theorem 2.2] that there exists a dense subspace

X0 of X, an increasing sequence of positive integers (rj) and (possibly

discontinuous) linear mappings Sj : X0 → X (j ∈ N) so that

(3) Trj
, Sj, and (Trj

Sj − I) →
j→∞

0

pointwise on X0. Now, consider

A0 := {V ∈ A(Y, X) : V (Y ) ⊂ X0 and dim(V (Y )) < ∞}.

Then A0 is dense in A(Y, X), and it follows from (3) that

LTrj
, LSj

, and [LTrj
LSj

− I] →
j→∞

0

pointwise on A0. So {LTrj
}j≥1 is hereditarily densely universal on

A(Y,X), by [6, Theorem 2.2]. �

Remark 3.4. An alternative constructive proof of Theorem 3.1 may

be done with the arguments from [25, Theorem 2.2]. The proof here is

much simpler, and follows arguments from [10] and [11].

Corollary 3.5. Let Tl (l ∈ N) be operators acting on a Banach space

X. Suppose there exists a closed, infinite dimensional subspace Y of

X, increasing sequences (nl,q)q of positive integers, and scalars cl,q so

that for l ∈ N
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i) {cl,q T
nl,q

l }q∈N is hereditarily universal, and

ii) limq→∞ ‖cl,q T
nl,q

l x‖ = 0 for each x in Y .

Then there exists a closed, infinite dimensional subspace X1 of X so

that {cl,q T
nl,q

l x}q∈N is dense in X for each non-zero x ∈ X1 and each

l ∈ N. That is, X1 is a supercyclic subspace for Tl for every l ∈ N.

Moreover X1 is a hypercyclic subspace for Tl for every l ∈ N if the

constants cl,q are equal to one.

In virtue of Theorem 3.1 and Example 2.1 it is natural to ask:

Problem 2. Let T1, T2 be two hereditarily hypercyclic operators acting

on a Banach space X, with a common hypercyclic subspace. Must

there exist sequences (nl,q)q (l = 1, 2) and a closed infinite dimensional

subspace Y of X so that {T nl,q

l }q is hereditarily universal and T
nl,q

l → 0
q→∞

pointwise on Y (l = 1, 2)?

4. An Application to Countable Families of Operators

We now apply Theorem 3.1 to show the following extension of [22,

Theorem 4.1] to countable families of operators.

Theorem 4.1. Let F = {Tl = Ul+Kl : l ∈ N} be a family of operators

acting on a common Banach space X. Suppose that for each l ∈ N

a) ‖Ul‖ ≤ 1, Kl is compact, and

b) {T nl,q

l }q≥1 is hereditarily universal, for some increasing se-

quence (nl,q)q≥1 of positive integers.

Then the operators in F have a common hypercyclic subspace.

To show Theorem 4.1, we make use of the three lemmas below.

Lemma 4.2 and Lemma 4.3 follow from slight modifications of a proof
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by Mazur [14, p 38-39] and of a proof by Bernal-González and Calderón-

Moreno [7, Theorem 3.1], respectively. Lemma 4.4 is proved at the end

of this section.

Lemma 4.2. Let (Xn) be a sequence of closed, finite-codimensional

subspaces of X, with Xn ⊇ Xn+1 (n ≥ 1). Then there exists a normal-

ized basic sequence (en) so that en belongs to Xn for all n ≥ 1.

Lemma 4.3. Let Tl,j (l, j ∈ N) be bounded operators on a Banach

space X so that for each l ∈ N the family {Tl,j}j is hereditarily densely

universal. Then there exists a dense manifold X0 of X and, for each

l ∈ N, an increasing sequence of positive integers (rl,q)q so that

lim
q→∞

‖Tl,rl,q
x‖ = 0 (x ∈ X0).

Moreover, X0 may be chosen so that each non-zero vector of X0 is

universal for {Tl,j}j≥1, for each l ∈ N.

Lemma 4.4. Let X and Z be Banach spaces, and let Kl,n : X → Z

be compact operators (l, n ≥ 1). Given ε > 0, there exist closed linear

subspaces Xn of finite codimension in X (n ≥ 1) so that

i) Xn ⊇ Xn+1

ii) ‖Kl,nx‖ ≤ ε ‖x‖ (x ∈ Xn, 1 ≤ l ≤ n)

Proof of Theorem 4.1. Notice that for each l ∈ N, {T nl,q

l }q≥1 must be

hereditarily densely universal [8, Lemma 2.5]. Hence, by Theorem 3.1

it suffices to get a closed, infinite dimensional subspace Y of X and

subsequences (ml,q)q of (nl,q)q so that

lim
q→∞

‖Tml,q

l x‖ = 0 (x ∈ Y, l ∈ N).

For each pair of positive integers n and l, let Kl,n be the compact

operators defined by T n
l = (Ul + Kl)

n = Un
l + Kl,n. Apply Lemma 4.4
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to get closed, finite codimensional subspaces Xn of X satisfying

(4)

a) Xn ⊇ Xn+1

b) ‖Kl,nx‖ ≤ ‖x‖ (x ∈ Xn, 1 ≤ l ≤ n).

By Lemma 4.2, we can pick a normalized basic sequence (en) in X so

that en ∈ Xn (n ∈ N). Let K > 0 be the basis constant of (en), and pick

a decreasing sequence of positive scalars, (εm), so that
∑∞

n=1 εn < 1
2K

.

By Lemma 4.3 (applied to the operators Tl,j = T
nl,j

l l, j ∈ N), there

exist subsequences (ñl,q)q of (nl,q)q and a dense subspace X0 of X so

that

(5) lim
q→∞

‖T ñl,q

l x‖ = 0 (x ∈ X0).

Pick a sequence (zm) in X0 so that

(6) ‖en − zn‖ <
εn

max{ ‖T i
l ‖ : l, i ≤ n. }

.

Notice that ‖en − zn‖ < εn (n ≥ 1) and, because (en) is normalized,

|e∗n(x)| ≤ 2K‖x‖ (n ≥ 1) for all x in Y0 = span{e1, e2, . . . }, where (e∗n)

is the sequence of functional coefficients associated with the Schauder

basis (en) of Y0. Hence
∑∞

n=1 ‖e∗n‖ ‖en − zn‖ < 2K
∑∞

n=1 εn < 1, and

so any subsequence (znk
) of (zm) is equivalent to the corresponding

basic sequence (enk
) [14, p 46]. We let Y := span{znk

: k ≥ 1}, where

(znk
) ⊆ (zn) is defined as follows. Let n0 := 1. For l ∈ N, choose ml,1

in (ñl,q) so that ‖Tml,1

l zn0‖ <
εn0

2
. Also, let n1 := m1,1. Next, for each

l ∈ N, since zn0 , zn1 ∈ X0, we may apply (5) to get ml,2 ∈ (ñl,q)q which

satisfies the following conditions. ml,2 > max{2, n1, ml,1}

‖Tml,2

l zni
‖ <

εni

22 i = 0, 1.
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Also, let n2 := max1≤l≤2{ml,2}. Continuing this process we get, for

each l ∈ N, an integer ml,s in (ñl,q)q so that

(7)

 i) ml,s > max{s, ns−1, ml,s−1}

ii) ‖Tml,s

l zni
‖ <

εni

2s i = 0, . . . , s− 1,

where nr = max1≤l≤r{ml,r} for each r ∈ N. It suffices to show that

T
ml,s

l →
s→∞

0 pointwise on Y (l ∈ N). Let 0 6= z =
∑∞

j=1 αjznj
in Y,

l ∈ N be fixed, and s ≥ l be arbitrary. Then

(8) T
ml,s

l z =
s−1∑
j=1

αjT
ml,s

l znj
+

∞∑
j=s

αj T
ml,s

l (znj
−enj

)+T
ml,s

l (
∞∑

j=s

αj enj
).

Notice that |αj| ≤ 2L‖z‖ (1 ≤ j), where L is the basis constant of

(znk
). By (7.ii),

(9) ‖
s−1∑
j=1

αjT
ml,s

l znj
‖ <

s−1∑
j=1

|αj|
εnj

2s
≤ L‖z‖

2s−1

s−1∑
j=1

εnj
.

Also, by (7i) and (6)

(10) ‖
∞∑

j=s

αj T
ml,s

l (znj
− enj

)‖ ≤ 2L‖z‖
∞∑

j=s

εnj
.

Finally, since Xns ⊆ Xml,s
and ‖Ul‖ ≤ 1, by (4b)

(11)

‖Tml,s

l

∞∑
j=s

αj enj
‖ = ‖(Uml,s

l + Kl,ml,s
)(

∞∑
j=s

αj enj
) ‖

≤ 2 ‖
∞∑

j=s

αj enj
‖ (s ≥ l).

So by (8), (9), (10), and (11), lims→∞ ‖T
ml,s

l z‖ = 0. We finish the

proof of Theorem 4.1 by showing Lemma 4.4.

Proof of Lemma 4.4. Let n ≥ 1 and ε > 0 be fixed. Because each

Kl,n
∗ : Z∗ → X∗ is compact, there exist x∗l,n,1, . . . , x

∗
l,n,kl,n

in X∗ so that

(12) K∗
l,n(BZ∗) ⊆ ∪kl,n

i=1 B(x∗l,n,i, ε).
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For each positive integer s, let Xs := ∩s
n=1 ∩n

l=1 ∩
kl,n

i=1 Ker(x∗l,n,i). So

each Xs is closed and of finite codimension in X, and Xs ⊇ Xs+1

(s ≥ 1). Now, let x ∈ Xn, and let 1 ≤ l ≤ n be fixed. By the

Hahn-Banach theorem, there is a functional z∗ of norm one so that

‖Kl,nx‖ = 〈Kl,nx, z∗〉. By (12), we may choose 1 ≤ j ≤ kl,n so that

‖K∗
l,nz

∗−x∗l,n,j‖ < ε. Hence, because x is in Xn ⊆ Ker(x∗l,n,j), ‖Kl,nx‖ =

〈x, K∗
l,nz

∗ − x∗l,n,j〉 ≤ ε ‖x‖. �

The proof of Theorem 4.1 is now complete. �
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