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Abstract. We show that any countable family of operators of the form P (B),

where P is a non-constant polynomial and B is the backward shift operator on

the countably infinite product of lines ω, has a common hypercyclic subspace.

The space ω = IKN -i.e., the countably infinite product of the (real or complex)

scalar field IK, endowed with the product topology- is perhaps the most elementary

infinite dimensional Fréchet space. Even so, because it does not support a dense

subspace with a continuous norm, it sometimes requires to be considered separately

when showing hypercyclic properties for all (separable, infinite dimensional) Fréchet

spaces, see for example [12, p. 587-8].

A continuous linear operator T acting on a Fréchet space X is said to be hyper-

cyclic provided there is some vector z in X whose orbit {z, T z, T 2z, . . .} is dense
in X . Such vector z is called a hypercyclic vector for T . A hypercyclic manifold

for T is a dense, invariant subspace of X consisting entirely -except for the origin-

of hypercyclic vectors for T . A hypercyclic subspace for T is a closed, infinite di-

mensional subspace of X consisting entirely -except for the origin- of hypercyclic

vectors for T .

Every separable, infinite dimensional Fréchet space supports a hypercyclic oper-

ator; see the works of Ansari [2], Bernal [5], and of Bonet and Peris [12]. It is also

well known that once an operator on a Fréchet space has a hypercyclic vector, the

smallest manifold invariant for T containing that vector is a hypercyclic manifold;

see the works of Bourdon [13], Herrero [19], and Wengenroth [29]. The situation
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for hypercyclic subspaces is different. Consider the backward shift

(x1, x2, x3, . . . )
B�→ (x2, x3, x4, . . . ).

While Rolewicz [27] showed that each scalar multiple λB is hypercyclic on 
2 when-

ever the scalar λ has modulus strictly larger than 1, Montes [24] showed that no

such operators have a hypercyclic subspace.

Read [26] and Bernal and Montes [7] constructed the first examples of hypercyclic

subspaces. In fact, Read’s examples include an operator on 
1 for which every non-

zero vector in 
1 is hypercyclic. González, León, and Montes [17] showed that if

an operator T acting on a Banach space X satisfies that T ⊕ T is hypercyclic on

X×X , then T has a hypercyclic subspace if and only if there exists a closed, infinite

dimensional subspace X0 of X and integers 1 < n1 < n2 < . . . so that

(1) T nkx →
k→∞

0 for each x ∈ X0

and, moreover, if and only if the essential spectrum of T meets the closed unit disk.

Let us stress here that the condition of T ⊕ T being hypercyclic on X × X is very

mild, as all hypercyclic operators that we know seem to have this property; see

[9]. In fact, the spectral characterization was used by León and Montes to test the

existence of hypercyclic subspaces among a wide variety of classes of hypercyclic

operators [22]. They also used this characterization to show that every separable,

infinite dimensional Banach space supports an operator with a hypercyclic subspace

[21].

Moreover, Condition (1) is sufficient to ensure the existence of a hypercyclic

subspace well beyond the Banach space setting, as long as the Frèchet space X

supports a continuous norm, see [11, Theorem 3.5] and [17, p. 177]. Indeed,

L. Bernal [6, Theorem 2.5] and independently, Petersson [25, Theorem 7], used

this fact to show that every separable infinite dimensional Fréchet space with a

continuous norm supports a hypercyclic subspace.

On the other hand, Bonet, Mart́ınez-Giménez and Peris [11, Remark 3.6] showed

that, in general, Condition (1) is no longer sufficient in the case of Fréchet spaces

without a continuous norm: the operator (xi)i∈Z

T�→ (2xi+1)i∈Z acting on X =

{(xi)i∈Z ∈ IKZ : (xi)∞i=1 ∈ 
2} satisfies Condition (1) and yet does not have a

hypercyclic subspace.
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We show in this note that ω supports operators with a hypercyclic subspace too,

even that ω is known not to have dense subspaces with a continuous norm [23,

Corollary 1]. Indeed, we show the following.

Theorem 1. Let (Pk)∞k=1 be any sequence of non-constant polynomials, and let

B be the backward shift acting on ω. Then the operators Pk(B) (k ∈ N) have a

common hypercyclic subspace. That is, there exists a closed infinite dimensional

subspace S of ω satisfying that

{x, Pk(B)x, P 2
k (B)x, . . . }

is dense in ω for each 0 �= x ∈ S and each k ∈ N.

Theorem 1 also improves a result by Herzog and Lemmert [20, Bemerkungen 1],

who showed that each operator on ω of the form P (B), where P is a non-constant

polynomial and B the backward shift, has a hypercyclic vector.

For more on hypercyclicity results we refer to the surveys by Grosse-Erdmann

[15, 16] and by Bonet, Mart̀ınez-Gimènez and Peris [10]. For work on common

hypercyclic vectors and common hypercyclic subspaces, we refer to the articles of

Abakumov and Gordon [1], Bayart [4], Costakis and Sambarino [14], and by Aron

et al. [3].

Before proving Theorem 1 we first show two lemmas. For each m ∈ N, we let

Πm denote the standard projection of ω onto IKm; that is, Πmx = (x1, . . . , xm) for

each x = (xi)∞i=1 in ω.

Lemma 2. Let T = P (B), where B is the backward shift on ω and P (t) =

a1 + a2t + · · · + ad+1t
d is any polynomial of degree d ≥ 1. Then for each l,

m ∈ N, (y1, y2, . . . , yl) ∈ IKl and (x1, x2, . . . , xmd) ∈ IKmd, there exists a unique

(z1, z2, . . . , zl) ∈ IKl so that

ΠlT
m(x1, x2, . . . , xmd, z1, z2, . . . , zl, h1, h2, . . . ) = (y1, y2, . . . , yl)

for each h1, h2, . . . in IK.

Proof. Notice that each x = (xi)∞i=1 ∈ ω we have

Tx = ((a1xj + a2xj+1 + · · ·+ adxj+d−1) + ad+1xj+d)
∞
j=1 ,
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and in general, for each m ∈ N the mth iterate of T is of the form

T mx = (ϕm,j(x1, x2, . . . , xj+md−1) + (ad+1)mxj+md)
∞
j=1 ,

for some linear functions ϕm,j : IKmd+j−1 → IK (j ∈ N) that are independent of x.

Thus the Lemma follows, since ad+1 �= 0. �

Lemma 3. Let [fi,j ] ∈ IKN×N be an infinite matrix with coefficients in IK and no

row of zeroes. For each row fn = (fn,1, fn,2, . . . ), let an := min{j ∈ N : fn,j �= 0 }.
Then if (am)∞m=1 is strictly increasing

i) {f1, f2, . . . } is linearly independent, and
ii) span{f1, f2, . . . }ω

= {∑∞
n=1 αnfn : (αn)∞n=1 ∈ IKN }.

Proof. Notice that since (am)∞m=1 is strictly increasing, for each s ∈ N we have

fs,as �= 0 and fn,j = 0 for each (n, j) ∈ (s,∞) × [1, as]. Hence (i) follows, and
∑∞

n=1 αnfn converges in ω for any (αn)∞n=1 ∈ IKN. Now, let g ∈ span{f1, f2, . . . }ω
.

There exist integers 1 < r1 < r2 < . . . and sequences (αn,1)∞n=1, (αn,2)∞n=1, . . . in

IK so that

(2) Pn := (αn,1f1 + αn,2f2 + · · ·+ αn,rnfrn) →
n→∞ g.

It remains to show that there exists a strictly increasing sequence (αs)∞s=1 in N

so that

(3) Πas (α1f1 + · · ·+ αsfs) = Πas(g) (s ∈ N).

Now, for n > a1 αn,1(f1,1, f1,2, . . . , f1,a1) = Πa1(Pn), and so by (2) αn,1 →
n→∞ α1

and Πa1(g) = Πa1(α1f1), where α1 =
ga1

f1,a1
. Inductively, suppose that we found

αj ∈ IK (1 ≤ j ≤ s − 1) so that

(4) αn,j →
n→∞ αj and Πaj (g) = Πaj (α1f1 + · · ·+ αjfj)

for each (1 ≤ j ≤ s− 1). Again, since (am)∞m=1 is strictly increasing, Πas(αn,1f1 +

· · ·+αn,sfs) = Πas(Pn) for each n > s and so by (4) and (2) we have αn,s →
n→∞ αs

and Πas(g) = Πas(α1f1 + · · ·+ αsfs), where αs =
gas−(α1f1,as +···+αs−1 fs−1,as )

fs,as
. So

(3) follows. �
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Proof of Theorem 1: Let {rl : l ∈ N} be a countable dense set in ω so that

each rl = (rl,j)∞j=1 satisfies rl,j �= 0 if and only if 1 ≤ j ≤ l. For each k ∈ N, let

Tk := Pk(B) and dk := degree(Pk). We make use of the following claim.

Claim 4. There exists an infinite, upper triangular matrix F = [fi,j ] ∈ IKN×N

satisfying

a) No row fn = (fn,1, fn,2, . . . ) is zero.

b) The sequence (an)∞n=1 given by an := min{j ∈ N : fn,j �= 0} is strictly
increasing.

c) For each (k, i, l) ∈ N×N×N with k < i+ l, there exists a positive integer

mk,i,l so that

Πl T
mk,i,l

k fn =



(rl,1, rl,2, . . . , rl,l) if n = i

( 0, 0, . . . , 0 ) if n �= i.

Suppose the Claim holds. We show now that S := span{f1, f2, . . . }ω
is a hyper-

cyclic subspace for each Tk (k ∈ N).

By (a), (b), and Lemma 3(i), the closed subspace S is infinite dimensional.

Let 0 �= f ∈ S. We show that f is hypercyclic for Tk, k ∈ N. By Lemma 3,

f =
∑∞

n=1 αnfn for some sequence of scalars (αn)∞n=1. Multiplying f by a nonzero

scalar if necessary, we may assume without loss of generality that αi = 1 for some

i ∈ N. But by (c), for each l > max{k − i, 1}

Πl T
mk,i,l

k f =
∞∑

n=1

αnΠl T
mk,i,l

k fn

= Πl T
mk,i,l

k fi

= (rl,1, rl,2, . . . , rl,l).

It follows that f is hypercyclic for Tk. We finish the proof of Theorem 1 by showing

the Claim.

Proof of Claim. Let M0,0 := 1. Inductively, for each N ∈ N define



MN := dN M(N−1),(N−1)2

MN,i := 2N+iMN (1 ≤ i ≤ N2)

M(N−1),(N−1)2+1 := MN,1.
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Also, for each (k, i, l) ∈ N × N × N with 1 ≤ k ≤ (i+ l)− 1, let

mk,i,l :=
M(i+l−1),((k−1)(i+l−1)+i)

dk
.

Finally, let fn,j = 0 for each (n, j) ∈ N × [1,M1,1]. We complete the definition of

the matrix F = [fn,j] inductively. At each step N we define fn,j for all (n, j) ∈
N × (MN,1,MN+1,1].

Step N = 1. We define fn,j for all (n, j) ∈ N × (M1,1,M2,1] so that

(5) Π1 T
m1,1,1
1 (fn,1, fn,2, . . . , fn,M2,1 , ∗, ∗, . . . ) =




r1,1 if n = 1

0 if n �= 1.

By Lemma 2 (letting l = 1, m = m1,1,1, T = T1, d = d1, y1 = r1,1 and xj = f1,j

(1 ≤ j ≤ M1,1)), there exists a unique z ∈ IK so that

Π1 T
m1,1,1
1 (f1,1, f1,2, . . . , f1,M1,1 , z, ∗, ∗, . . . ) = r1,1.

So (5) is satisfied if we define f1,M1,1+1 := z, and fn,j = 0 for each (1,M1,1 + 1) �=
(n, j) ∈ N × (M1,1,M2,1].

Step N (N ≥ 2).

We divide this step into N2 substeps; one for each (k, i) ∈ [1, N ] × [1, N ]. We

start with substep N.1.1, and follow with the “lexicographic” order given by the

relation (k′, i′) < (k, i) if and only if either k′ < k or both k′ = k and i′ < i.

At each substep N.k.i we define the coordinates fn,j for all indexes (n, j) in

N × (MN,(k−1)N+i,MN,(k−1)N+i+1], so that

(6) Πl T
mk,i,l

k gn =



(rl,1, . . . , rl,l) if n = i

( 0 , . . . , 0 ) if n �= i,

for any gn of the form gn = (fn,1, . . . , fn,MN,(k−1)N+i+1, ∗, ∗, . . . ) and l = N +1− i.

Substep N.1.1.

Applying N times Lemma 2 (Taking, for each 1 ≤ n ≤ N : l = N , m = m1,1,N ,

T = T1, d = d1, x
(n)
j = fn,j (1 ≤ j ≤ MN,1), and (y

(n)
1 , . . . y

(n)
N ) = (rN,1, . . . , rN,N) if

n = 1 and (y(n)
1 , . . . , y

(n)
N ) = (0, . . . , 0) ∈ IKN if n �= 1), we get (z(n)

1 , z
(n)
2 , . . . , z

(n)
N ) ∈



HYPERCYCLIC SUBSPACES IN OMEGA 7

IKN (1 ≤ n ≤ N) so that

(7) ΠN T
m1,1,N

1 gn =



(rN,1, . . . , rN,N) if n = 1

(0, . . . , 0) if n �= 1.

for any gn of the form gn = (fn,1, . . . , fn,MN,1 , z
(n)
1 , . . . , z

(n)
N , ∗, ∗, . . . ). Hence (6) is

satisfied for (k, i) = (1, 1) if we define

(fn,MN,1+1, . . . , fn,MN,1+N ) = (z(n)
1 , . . . , z

(n)
N ) (1 ≤ n ≤ N)

and fn,j = 0 for each (n, j) in either (N \ {1, . . . , N}) × (MN,1,MN,2] or in N ×
(MN,1 +N + 1,MN,2].

Substep N.k.i.

We have already defined fn,j for each (n, j) ∈ N × [1,MN,(k−1)N+i], so that

equation (6) holds for each (1, 1) ≤ (k′, i′) < (k, i). That is, so that

(8) Πl T
mk′,i′,l

k′ gn =



(rl,1, . . . , rl,l) if n = i′

(0, . . . , 0) if n �= i′,

for any gn ∈ ω of the form gn = (fn,1, . . . , fn,MN,(k′−1)N+i′+1
, ∗, ∗, . . . ) and l =

N + 1− i′.

We apply N times Lemma 2 ( taking, for each 1 ≤ n ≤ N : l = N + 1 − i, m =

mk,i,l, T = Tk, d = dk, x
(n)
j = fn,j (1 ≤ j ≤ MN,(k−1)N+i), and (y

(n)
1 , . . . y

(n)
l ) =

(rl,1, . . . , rl,l) if n = i and (y(n)
1 , . . . , y

(n)
l ) = (0, . . . , 0) ∈ IKl if n �= i ), to obtain

(z(n)
1 , . . . , z

(n)
l ) ∈ IKl (1 ≤ n ≤ N), so that

(9) Πl T
mk,i,l

k gn =



(rl,1, . . . , rl,l) if n = i

( 0 , . . . , 0 ) if n �= i,

for any gn ∈ ω of the form gn = (fn,1, . . . , fn,MN,(k−1)N+i
, z

(n)
1 , . . . , z

(n)
l , ∗, ∗, . . . ) and

l = N +1− i. So equation (6) is satisfied if we define fn,MN,(k−1)N+i+s = z
(n)
s when

(n, s) ∈ [1, N ]× [1, l], and fn,j = 0 for all indexes (n, j) in either (N \ {1, . . . , N})×
(MN,(k−1)N+i,MN,(k−1)N+i+1] or in {1, . . . , N}×(MN,(k−1)N+i+l,MN,(k−1)N+i+1].

We have now completely defined the matrix [fn,j] ∈ IKN×N. Notice that for each

N ∈ N, fN,j = 0 for 1 ≤ j ≤ MN,N , and (as defined on substep N.1.N of step

N) fN,MN,N+1 �= 0. So aN = min{j ∈ N : fN,j �= 0 } = MN,N + 1, and (a) and
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(b) of the Claim hold. Finally, given any (k, i, l) ∈ N × N × N with k < i + l, our

definitions on substep N.k.i of step N = i+ l − 1 given by (6) ensure that

Πl T
mk,i,l

k fn =



(rl,1, . . . , rl,l) if n = i

( 0 , . . . , 0 ) if n �= i.

So Part (c) of the Claim holds, and the proof of Theorem 1 is now complete.

�

Corollary 5. The set of operators on ω that have a hypercyclic subspace is dense,

with respect to the Strong Operator Topology (S. O. T.), in the algebra L(ω) of all

continuous linear operators on ω.

Proof. By a result of Hadwin, Nordgreen, Radjavi and Rosenthal [18] (cf. [8, Corol-

lary 6]), the set of operators on ω having a hypercyclic subspace, which is invariant

under conjugations, must be either empty or S.O.T.-dense in L(ω). Theorem 1

then gives the desired conclusion. �

Remark 6. A simple modification to Lemma 2 allows to generalize Theorem 1

to backward shifts Bb with non-zero weights. Namely, if (bn)∞n=2 is a sequence

of nonzero weights and (x1, x2, x3, . . . )
Bb�→ (b2x2, b3x3, b4x4, . . . ) is its associated

weighted shift on ω, then any countable collection of operators of the form P (Bb),

where P is a non-constant polynomial, has a common hypercyclic subspace in ω.

Solving a problem by Salas [28], Abakumov and Gordon [1] showed that the

family {λB : |λ| > 1} of all scalar multiples of the backward shift B on 
2 (with

the scalars of modulus strictly larger than 1) have a common hypercyclic vector.

Hence (cf. also [14, Remark 8.3]) it is natural to ask

Problem 7. Let F be the collection of all operators on ω of the form P (B), where

P is a non-constant polynomial and B is the backward shift. Do the operators in

F have a common hypercyclic vector in ω? Do they share a common hypercyclic

subspace?
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Appl. Sci. Engrg. 13 (2003), 1649-1655.
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