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Abstract. Let H(Q) be the space of all the functions which are holomorphic on an open
neighbourhood of a convex locally closed subset Q of CN , endowed with its natural projec-
tive topology. We characterize when the topology of the weighted inductive limit of Fréchet
spaces which is obtained as the Laplace transform of the dual H(Q)′ of H(Q) can be described
by weighted sup-seminorms. The behaviour of the corresponding inductive limit of spaces of
continuous functions is also investigated.

1. Introduction

Martineau investigated in [15] the spaces H(Q) of analytic functions on a convex nonpluripolar
set Q in CN in the case that Q admits a countable fundamental system of compact sets. This
setup covers nonpluripolar compact convex sets and convex open sets in CN and convex open
sets in RN . In the latter case H(Q) coincides with the space of all real analytic functions
on Q. The strong dual H(Q)′b of each of these spaces can be canonically identified, via the
Laplace transform, with a weighted (LF)-space V H(CN ) of entire functions on CN , i.e. H(Q)′b is
isomorphic to a Hausdorff countable inductive limit of Fréchet spaces of entire functions defined
by weighted sup-seminorms. See the details below. The description of the topology of such
weighted inductive limits of spaces of holomorphic functions has been investigated thoroughly
in recent years since the work of Ehrenpreis [10] on analytically uniform spaces. Similar questions
on the projective description were later investigated by various authors (see Bierstedt [1]).

Many results about the projective description of weighted (LF )-spaces of entire functions were
obtained in [4, 5, 6, 7]. In particular, we derived in [6] necessary as well as sufficient conditions
for the projective description to hold algebraically or topologically for the space of Laplace
transforms of H(Q)′b where Q is a bounded locally closed convex subset of CN . In the present
paper we continue these investigations for such sets Q which are not necessarily bounded. As in
[6] we have algebraic and topological projective descriptions if Q is strictly convex at the relative
boundary of Q ∩ ∂rQ (see Definition 2.4 and Theorem 3.1). In Theorem 3.11 we show that this
condition is necessary for the topological projective description if we assume in addition that Q
admits a neighbourhood basis of domains of holomorphy. To obtain this result, we use a method
different from that of our earlier work. The new idea is to apply the approach that was used
in Bonet and Meise [5]. We use a result of Mal’tsev [14] which implies that if a convex, locally
closed set Q has a neighbourhood basis of domains of holomorphy and there is a supporting
hyperplane to the closure of Q with non-compact intersection with Q, then there is a differential
operator P (D) on H(Q) which is not surjective.

Bierstedt and Bonet [2] extended the projective description techniques from (LB) to (LF)
spaces of continuous functions using Vogt’s approach [21] to Palamodov and Retakh theory
of (LF)-spaces. The problem of topological projective description for the spaces V C(CN ) of
continuous functions corresponding to the Laplace transform of the space H(Q)′b has a positive
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answer by a result of Bierstedt, Meise, and Summers [3]. The algebraic coincidence of the (LF)-
space V C(CN ) and its projective hull is characterized in Theorem 4.5 by the condition that Q
is strictly convex at the relative boundary of Q ∩ ∂rQ.

2. Notation and Preliminaries

2.1. Definition. A subset Q of CN is called locally closed if for each z ∈ Q there is a closed
neighbourhood U of z in CN such that Q ∩ U is closed. Every open subset and every closed
subset of CN is locally closed.

For a convex set Q ⊂ CN the symbols intrQ and ∂rQ denote the relative interior and the
relative boundary of Q with respect to the affine hull of Q. For example, if 0 ∈ Q, the affine
hull of Q is the real linear span of Q. We write ω := Q ∩ ∂rQ. By ∂rω we denote the relative
boundary of ω with respect to ∂rQ.

2.2. Remark. By Bonet, Meise, Melikhov [6, Lemma 1] and Melikhov, Momm [18, Lemma 1.2],
the following assertions are equivalent for a convex subset Q of CN :

(i) Q is locally closed.
(ii) Q admits a countable fundamental system of compact subsets.
(iii) Q is the union of the relative interior intrQ of Q and a subset ω of ∂rQ which is open in

∂rQ.

2.3. General Assumption. Throughout this article Q denotes a locally closed convex set and
(Qn)n∈N a fixed increasing fundamental sequence of compact convex sets in Q.

2.4. Definition. ([18, Definition 1.3]) A locally closed convex set Q is called (C-)strictly convex
at the relative boundary of ω if the intersection of Q with each supporting (complex) hyperplane
to the closure Q of Q is compact.

If the interior of Q is empty, the set Q is strictly convex at the relative boundary of ω if
and only if Q is compact. If the interior of Q is not empty, Q is (C-)strictly convex at the
relative boundary of ω if and only if each line segment (of which the C-linear affine hull belongs
to some supporting hyperplane of Q) of ω = Q ∩ ∂rQ is relatively compact in ω. By Bonet,
Meise, Melikhov [6, Proposition 2], a locally closed convex set Q is strictly convex at the relative
boundary of ω if and only if Q has a neighbourhood basis of convex domains. For example Q is
strictly convex at the relative boundary of ω if Q is open or compact. Let Q ⊂ CN be a convex
locally closed set such that Q := {x ∈ CN = R2N |x1 ≥ f(x2, ..., x2N ), (x2, ..., x2N ) ∈ R2N−1} for
a convex function f : R2N−1 → R. If the function f is strictly convex in the sense of Hörmander
[12, p. 56], then Q is strictly convex at the relative boundary of ω. If Q is closed and there is
a unbounded interval in R2N−1 on which f is affine then Q is not strictly convex at its relative
boundary.

2.5. Spaces of holomorphic functions. For an open set D ⊂ CN , we denote by H(D) the
space of all holomorphic functions on D with its standard Fréchet topology. For a compact
subset K of CN , the space of all functions which are holomorphic on some open neighbourhood
of K is denoted by H(K) and it is endowed with its natural inductive limit topology.

We denote by H(Q) the vector space of all functions which are holomorphic on some open
neighbourhood of the locally closed convex set Q. Let (Qn)n∈N be an increasing fundamental
sequence of compact convex sets in Q. Since the algebraic equality H(Q) = ∩n∈NH(Qn) holds,
we endow H(Q) with the projective topology of H(Q) := projnH(Qn). This topology does not
depend of the choice of the fundamental system (Qn)n∈N. See more details in Melikhov, Momm
[18, pp. 296-299]. In the case that Q is a locally closed convex subset of RN , the space H(Q)
is a space of real analytic functions. In particular, if Q is an open convex subset of RN , then
H(Q) = A(Q), where A(Q) denotes the space of all real analytic functions on Q. The projective
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description of the Fourier Laplace transform of H(Q)′b was studied by Ehrenpreis in [9] and by
the authors in [7].

2.6. Definition. For each set D ⊂ CN we denote by HD : CN → R∪{∞} the support function
of D: HD(z) := supw∈D Re〈z, w〉, z ∈ CN . Here 〈z, w〉 :=

∑N
j=1 zjwj . For each n ∈ N let

Hn := HQn be the support function of the convex compact set Qn.

2.7. Problem of the projective description. Next, we recall the necessary notation for
weighted inductive limits, see Bierstedt, Meise, Summers [3] and Bonet, Meise [4], and we state
the problem of projective description. For notation concerning locally convex spaces we refer
the reader to Meise, Vogt [17].

We denote by V = (vn,k)n,k∈N a double sequence of strictly positive upper semicontinuous
weights on CN , N ∈ N, such that

vn+1,k(z) ≤ vn,k(z) ≤ vn,k+1(z), z ∈ CN ,

for each n, k ∈ N. The weighted inductive limit of Fréchet spaces V H(CN ) of entire functions
associated with V is defined by

(2.1) V H(CN ) := ind
n→ proj

←k
H(vn,k,CN ),

where the steps H(v,CN ) are defined, for a positive weight v on CN , as the Banach space of
entire functions

H(v,CN ) := {f ∈ H(CN )| ||f ||v := sup
z∈CN

v(z)|f(z)| < ∞}.

The space V H(CN ) is a Hausdorff (LF)-space. In order to describe its topology by means of
weighted sup-seminorms, Bierstedt, Meise, and Summers [3] associated with V the system V of
all those weights v : CN → [0,∞[ which are upper semicontinuous and have the property that
for each n there are αn > 0 and k = k(n) such that v ≤ αnvn,k on CN . The projective hull of
the weighted inductive limit is defined by

HV (CN ) := {f ∈ H(CN ) | ||f ||v := sup
z∈CN

v(z)|f(z)| < ∞ for all v ∈ V },

endowed with the Hausdorff locally convex topology defined by the system of seminorms
{||.||v | v ∈ V }. The projective hull is a complete locally convex space and V H(CN ) is contained
in its projective hull with continuous inclusion.

The problem of projective description is to determine conditions under which
(1) the spaces V H(CN ) and HV (CN ) coincide algebraically, or
(2) the space V H(CN ) is a topological subspace of its projective hull HV (CN ).

A positive answer to question (2), i.e., whether V H(CN ) is a topological subspace of its
projective hull, is of particular importance, because when the answer is positive it permits to
describe the topology of the weighted (LF)-space of holomorphic functions by means of weighted
sup-seminorms.

In this article we are interested in the weight functions

vn,k(z) := exp(−Hn(z)− |z|/k), n, k ∈ N, z ∈ CN ,

where |z| := (
∑N

j=1 |zj |2)1/2. By Melikhov, Momm [18, Lemma 1.10], the Laplace transform

F(ϕ)(z) := ϕ(exp〈·, z〉), z ∈ CN ,

is a linear topological isomorphism from the strong dual H(Q)′b of H(Q) onto V H(CN ).
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We denote by V 0 the set of all weights v such that there are unbounded increasing sequences
(k(n))n∈N ⊂ N and (αn)n∈N ⊂ ]0,∞[ with

v(z) = inf
n∈N

exp(−Hn(z)− |z|/k(n) + αn) for all z ∈ CN .

It is easy to see that every weight in V 0 is contained in V and that every element in V is
estimated by a weight in V 0.

2.8. Remark. Let G ⊂ CN be open and convex and let (Gn)n∈N be a fundamental sequence of
(convex) compact subsets Gn of G with Gn ⊂ intGn+1 for all n ∈ N. We put

VG := (vG,n)n∈N, vG,n(z) := exp(−HGn(z)), z ∈ CN , n ∈ N.

By Hörmander [12, Theorem 4.7.3] the Laplace transform

F(ϕ)(z) := ϕ(exp〈·, z〉), z ∈ CN ,

is a linear topological isomorphism from the strong dual H(G)′b of H(G) onto the weighted (LB)-
space VGH(CN ). Moreover, as a consequence of Bierstedt, Meise, Summers [3, Theorem 1.6],
the space VGH(CN ) and its projective hull HVG(CN ) coincide algebraically and topologically.

3. Spaces of holomorphic functions

In this section we study the problem of topological projective description for the weighted
(LF)-space V H(CN ).

3.1. Theorem. Let Q ⊂ CN be a convex locally closed set. If Q is strictly convex at the
relative boundary of ω, then the weighted inductive limit V H(CN ) coincides with its projective
hull HV (CN ) algebraically and topologically.

Proof. We first claim that the space V H(CN ) coincides algebraically and topologically with
proj←G∈G H(G)′b, where G := {G | G is open and convex, G ⊃ Q}. To show this as in the
proof of Bonet, Meise, Melikhov [6, Theorem 6 (i)], note first that by Bonet, Meise, Melikhov
[6, Proposition 2], we have H(Q) = ind→G∈G H(G) algebraically. If B is any bounded set in
H(Q) then B is bounded in H(Qn) for each n ∈ N. Since H(Qn) is a (DFS)-space, there exists
a convex open neighbourhood Un of Qn so that B ⊂ H(Un) and such that the functions in
B are uniformly bounded on Un. Then V :=

⋃
n∈N Un is an open neighbourhood of Q. Since

Q is strictly convex at the relative boundary of ω, there is an open neighbourhood U of Q
in G which is contained in V . Clearly, B ⊂ H(U). From the construction it follows easily
that B is bounded in H(U) and consequently bounded in ind→G∈G H(G). Since Q is strictly
convex at the relative boundary of ω, H(Q) is bornological by results of Martineau [15] (see
Melikhov, Momm [18, Remark 1.9 (b)]). From this and the preceding considerations we get that
H(Q) = ind→G∈G H(G) holds topologically and H(Q)′b = proj←G∈G H(G)′b. By Remark 2.8 this
implies

V H(CN ) = proj
←G∈G

proj
←u∈V G

H(u,CN ).

Next we show that the space HV (CN ) is contained in projGproju∈VG
H(u,CN ) and that the

inclusion is continuous. We fix a convex open neighbourhood G of Q, a function κ ∈ VG and show
that there exists v ∈ V with κ ≤ v. To do so, for every n there is αn ≥ 1 with κ ≤ αn exp(−HGn).
Since G is a neighbourhood of Q, for each n there exist k(n) such that Qn + 1

k(n)B(0, 1) ⊂ Gk(n)

and, consequently, Hn(z) + |z|/k(n) ≤ HGk(n)
(z) for all z ∈ CN . Hence

κ(z) ≤ exp(−Hn(z)− |z|/k(n) + log αk(n)) for all z ∈ CN and n ∈ N.
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Moreover, the sequences (k(n))n∈N and (αn)n∈N can be taken increasing and unbounded. If we
define

v(z) := inf
n∈N

exp(−Hn(z)− |z|/k(n) + logαk(n)) for all z ∈ CN ,

then v ∈ V 0 and κ ≤ v. From here it follows that HV (CN ) is continuously embedded in
projGproju∈VG

H(u,CN ). Consequently, the space V H(CN ) and its projective hull HV (CN )
coincide algebraically and topologically. ¤

We prove in Theorem 3.11 below that the strict convexity of Q at its relative boundary is
necessary for V H(CN ) to be a topological subspace of HV (CN ), if Q has a basis of neighbour-
hoods which consists of domains of holomorphy. To show this we need some results about entire
functions and differential operators of infinite order with constant coefficients.

3.2. Definition. An entire function f on CN is said to be of order at most one and zero type if
for each ε > 0 there is C ≥ 0 with |f(z)| ≤ C exp(ε|z|) for all z ∈ CN . We denote by A0 the set
of all entire functions f on CN of order at most one and zero type. By Hörmander [12, Theorem
4.7.3], A0 = F(H({0})′).

By Martineau [16, Lemme 15] each nonzero entire function P ∈ A0 is slowly decreasing, i.e.,
for each ε > 0 there is R > 0 such that for all z ∈ CN with |z| ≥ R there is w ∈ B(z, ε|z|) with
|P (w)| ≥ exp(−ε|w|). Here we denote B(µ, r) := {z ∈ CN | |z − µ| ≤ r}, µ ∈ CN , r ≥ 0.

We will use the following statements about functions in A0.

3.3. Lemma. Let P be a nonzero entire function on CN of order at most one and zero type.
(i) For each locally bounded function r : CN → [0,∞[ satisfying lim|z|→∞ r(z)/|z| = 0, there

is a continuous function m : CN → [0,∞[ satisfying lim|z|→∞m(z)/|z| = 0 and

sup
|t−z|≤r(z)

|P (t)| ≤ exp m(z) for all z ∈ CN .

(ii) There exists a continuous function r : CN → [0,∞[ satisfying lim|z|→∞ r(z)/|z| = 0 and

sup
|t−z|≤r(z)

|P (t)| ≥ exp(−r(z)) for all z ∈ CN .

Proof. (i) Since for each ε > 0 there is C > 0 such that |P (z)| ≤ C exp(ε|z|) for all z ∈ CN , for
the function α(z) := max(0; log|P (z)|) we have lim|z|→∞ α(z)/|z| = 0. From the inequalities

( sup
|t−z|≤r(z)

α(t))/|z| ≤ sup
|t−z|≤r(z)

|t|
|z| sup

|t−z|≤r(z)

α(t)
|t| ≤ |z|+ r(z)

|z| sup
|t|≥|z|−r(z)

α(t)
|t| =

= (1 + r(z)/|z|) sup
|t|≥|z|−r(z)

α(t)
|t|

and lim|z|→∞ r(z)/|z| = 0, lim|z|→∞(|z| − r(z)) = ∞ it follows that β(z) := sup|t−z|≤r(z) α(t) =
o(|z|) as |z| → ∞. As m we can choose any continuous majorant of β with m(z) = o(|z|) as
|z| → ∞.

(ii) Since P is of order at most one and zero type, we can select an increasing unbounded
sequence Rn > 0 such that for each n ∈ N and each z ∈ CN with |z| ≥ Rn there exists
w ∈ B(z, |z|/n) such that |P (w)| ≥ exp(−|w|/n). We put s(z) := 1 if |z| < R2 and s(z) := |z|/n
if Rn+1 ≤ |z| < Rn+2 and n ∈ N.
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For z ∈ CN with |z| ∈ [Rn+1, Rn+2), n ∈ N, we choose w ∈ B(z, |z|/(n+1)) ⊂ B(z, s(z)) such
that |P (w)| ≥ exp(−|w|/(n + 1)). Then

sup
|t−z|≤s(z)

|P (t)| ≥ exp
(
−|z|+ |z|/(n + 1)

n + 1

)
= exp

(
− n + 2

(n + 1)2
|z|

)
≥ exp

(
−|z|

n

)
= exp(−s(z)).

As r we can choose any continuous majorant of s with lim|z|→∞ r(z)/|z| = 0. ¤

3.4. Lemma. (i) For each v ∈ V and every upper semicontinuous function m : CN → R such
that lim|z|→∞m(z)/|z| = 0 the function v expm belongs also to V .
(ii) For each v ∈ V and every locally bounded function r(z) : CN → [0,∞[ for which
lim|z|→∞ r(z)/|z| = 0 there is u ∈ V with v ≤ inf |t−z|≤r(z) u(t) for all z ∈ CN .

Proof. (i) This follows easily from the definition of V and the condition on m.

(ii) It is enough to show the assertion for v ∈ V 0. To do so, fix

v(z) = inf
n∈N

exp(−Hn(z)− |z|/k(n) + αn) ∈ V 0.

Since for all n ∈ N and ε > 0 the function Hn(z)+ε|z| is subadditive and positively homogeneous,
for each n ∈ N there exists Cn ≥ 0 such that

sup
|t−z|≤r(z)

(Hn(t) + |t|/(k(n) + 1)) ≤ Hn(z) + |z|/k(n) + Cn for all z ∈ CN .

Moreover, the sequence (Cn)n∈N can be taken increasing. The desired function is

u(z) := inf
n

exp(−Hn(z)− |z|/(k(n) + 1) + αn + Cn), z ∈ CN . ¤

3.5. Lemma. For each nonzero entire function P ∈ A0 the multiplication operator

MP : V H(CN ) → V H(CN ), MP (f) := Pf,

is an injective topological homomorphism if V H(CN ) is endowed with the topology induced by
HV (CN ).

Proof. It is clear that MP is injective and linear. To show that MP is continuous we fix a
function v ∈ V . By Lemma 3.3 (i) there is a continuous function m : CN → [0,∞[ such that
lim|z|→∞m(z)/|z| = 0 and |P (z)| ≤ exp(m(z)) for all z ∈ CN . Then u := v expm ∈ V and for
all f ∈ V H(CN )

‖MP (f)‖v = sup
z∈CN

|P (z)f(z)|v(z) ≤ ‖f‖u.

Consequently, MP : V H(CN ) → V H(CN ) is continuous if V H(CN ) is endowed with the topol-
ogy induced by HV (CN ).

To show that the division map Pf 7→ f is continuous for this topology, choose a continuous
function r : CN → [0,∞[ according to Lemma 3.3 (ii) and a continuous function m : CN → [0,∞[
for 4r according to Lemma 3.3 (i). Fix v ∈ V . By Lemma 3.4 (i) for m + 2r, the function
v exp(m + 2r) belongs to V , and we can apply Lemma 3.4 (ii) to conclude that there is w ∈ V
such that

v(z) exp(m(z) + 2r(z)) ≤ inf
|t−z|≤4r(z)

w(t).

By Hörmander’s division lemma [11, Lemma 3.2], for each f ∈ V H(CN ) and z ∈ CN , we have

|f(z)| =
∣∣∣∣
(Pf)(z)

P (z)

∣∣∣∣ ≤
sup

|t−z|≤4r(z)
|P (t)f(t)| sup

|t−z|≤4r(z)
|P (t)|

( sup
|t−z|≤r(z)

|P (t)|)2 ≤

≤ ‖Pf‖w( sup
|t−z|≤4r(z)

w(t)−1) exp(m(z)) exp(2r(z))
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and consequently,

|f(z)|v(z) ≤ ‖Pf‖w
v(z) exp(m(z) + 2r(z))

inf
|t−z|≤4r(z)

w(t)
.

Hence |f |v ≤ |Pf |w for each f ∈ V H(CN ). The proof is complete. ¤
Next, we recall the necessary notations for differential operators of infinite order.

3.6. Definition. Let P (z) :=
∑

α∈NN
0

aαzα be an entire function on CN of order at most one
and zero type. By Gol’dberg’s theorem in Ronkin [20, Theorem 3.1.1] an entire function P (z) =∑

α∈NN
0

aαzα is of at most order one and zero type if and only if lim|α|→∞ |α||aα|1/|α| = 0.

For each open set G in CN and every function f ∈ H(G) the series P (D)f :=
∑

α∈NN
0

aαf (α)

converges absolutely in the space H(G) and the linear differential operator P (D) maps H(G)
continuously into H(G) (see Martineau [16]). Consequently, P (D) is a continuous linear operator
from H(Q) into H(Q).

For each λ ∈ CN the equality P (D)(exp〈·, λ〉) = P (λ) exp〈·, λ〉 holds.
If P (D)t : H(Q)′ → H(Q)′ is the adjoint operator to P (D), then

F ◦ P (D)t ◦ F−1 = MP ,

where MP is the multiplication operator f 7→ Pf from V H(CN ) into V H(CN ).

3.7. Remark. Let P (D) be a differential operator of infinite order and U a unitary transformation
of CN with the inverse U−1. The set U(Q) is convex and locally closed. The map TU (f) := f ◦U
is a topological isomorphism of H(U(Q)) onto H(Q).

The map TU ◦ P (D) ◦ TU−1 is also a differential operator of infinite order.

Proof. Let (U−1)t be the map defined by the transpose of the matrix of U−1. It is easy to check
from the definition that the function PU−1 := P ◦ (U−1)t belongs also to A0. For each λ ∈ CN

we have, for eλ := exp〈·, λ〉,
TU ◦ P (D) ◦ TU−1(eλ) = TU ◦ P (D)(TU−1(eλ)) = TU ◦ P (D)(e(U−1)t(λ)) =

TU (P ((U−1)t(λ))eU−1)t(λ)) = P ((U−1)t(λ))eUt(U−1)t(λ)) =

P ((U−1)t(λ))eλ = PU−1(λ)eλ = PU−1(D)eλ.

Since the system {eλ |λ ∈ CN} is total in H(Q), the continuous linear operators PU−1(D) and
TU ◦ P (D) ◦ TU−1 coincide on H(Q). ¤

The notation below has to be introduced, as we need Theorem 3.9 about the surjectivity of a
convolution operator on the spaces of holomorphic functions on convex locally closed sets in C.

3.8. Definition. Let B be a convex compact set in C, µ ∈ H(B)′ and G a convex and locally
closed set in C. We denote by a the Laplace transform of µ and define the convolution operator
La : H(G + B) → H(G) by

La(f)(z) := µ(f(z + ·)).
Here the spaces H(G + B) and H(G) are endowed with their natural inductive limit topologies.
(By Martineau [15, Theorem 1.23] (see also Melikhov, Momm [18, Remarks 1.5 and 1.9]) the
inductive limit topologies in H(G + B) and H(G) coincide with the corresponding projective
topologies.) The operator La is linear and continuous from H(G + B) into H(G) (see [18]).

We apply later Theorem 3.9 for a special case: If a(z) =
∑

α∈N0
aαzα ∈ A0, then B = {0}

and the convolution operator La is the differential operator a(D).
Let Λ∗ be the set of all accumulation points of {−argλ |λ ∈ C, a(λ) = 0}. For z ∈ C, ϕ ∈ R

we define a ray

H+
z (ϕ) := {w ∈ C |Re((w − z)e−iϕ) = 0 and Im((w − z)e−iϕ) > 0}.
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By [14], ϕ ∈ R is called a direction of right-hand quasinonconvexity of G if there is z ∈ G∩(∂G)
such that either there exists w ∈ ((∂G)\G) ∩ H+

z (ϕ) with [z, w] ⊂ ∂G or H+
z (ϕ) ⊂ G ∩ (∂G).

Using H+
z (ϕ + π) instead of H+

z (ϕ) we get the definition of a direction ϕ ∈ R of left-hand
quasinonconvexity of G.

The following result is a partial case of the Theorem 3 of Maltsev [14]. For an interval G this
statement was obtained also by Napalkov, Rudakov [19] and Korobeinik [13].

3.9. Theorem. If the operator La : H(G+B) → H(G) is surjective, then there is a 2π-periodic
function γ : R → (0, π/2) such that (ν − γ(ν), ν) ∩ Λ∗ = ∅ for each direction ν ∈ R of left-
hand quasinonconvexity of G and (ν, ν + γ(ν)) ∩ Λ∗ = ∅ for each direction ν ∈ R of right-hand
quasinonconvexity of G.

The following statement was proved in Melikhov, Momm [18, Proposition 1.16] under the
assumption that Q is C-strictly convex at the relative boundary of ω. Its proof in this article
is essentially the same as in [18]. We give the details for the convenience of the reader.

3.10. Proposition. Suppose that Q ⊂ CN is convex, locally closed and has a neighbourhood
basis of domains of holomorphy. If each nonzero differential operator P (D) : H(Q) → H(Q) is
surjective then Q is strictly convex at the relative boundary of ω.

Proof. To argue by contradiction we treat the case N = 1 first. If Q ⊂ C is locally closed
and not strictly convex at the relative boundary of ω, then there is a supporting line R for
Q such that I := R ∩ Q is not compact. After a shift and a rotation we may assume that
R is the real line and that zero is an interior point of I. By our assumption, one of the sets
I± := I ∩ {z ∈ C | ± Re z > 0} is not compact. Without restriction we assume that I+ is not
compact. Then we choose a sequence (zn)n∈N in C in such a way that

∑
n∈N |zn|−1 converges

and that for each k ∈ N the set {n ∈ N | arg zn = −π
2 + 1

k} is infinite. Then the function
P : C → C, defined by P (z) :=

∏
n∈N(1 − z/zn) is an entire function of order at most one and

zero type. Now note that in the notation of Definition 3.8 we have H+
0 (−π/2) ∩ I = I+. Hence

our assumption on I+ implies that −π/2 is a direction of right hand quasiconvexity of Q. By
the choice of (zn)n∈N, the set Λ∗ of all accumulation points of {− arg λ | P (λ) = 0} contains
{−π

2 + 1
k | k ∈ N}. Consequently, Λ∗ ∩ (−π/2,−π/2 + ε) 6= ∅ for each ε > 0. By Theorem 3.9,

this implies that the operator P (D) is not surjective on H(Q). This proves the proposition for
N = 1.

To complete the proof we assume now that N ≥ 2 and that there is a supporting hyperplane
R for Q such that R ∩ Q is not compact. Since R ∩ Q is convex, after a shift, we can assume
that there is a real line S in CN such that 0 is an interior point of S ∩ R ∩ G and such that
S ∩R∩G is not compact. Choosing appropriate coordinates, we may assume that the complex
line generated by S is C × {0}. Then Q′ := Q ∩ (C × {0}) can be considered as a subset of C.
Obviously, Q′ is convex and locally closed but not strictly convex at the relative boundary of
ω′ := Q′ ∩ ∂rQ

′. Hence the case N = 1 implies the existence of a differential operator P ( ∂
∂z1

) on
H(Q′) which is not surjective. In particular, we can choose g ∈ H(Q′) which is not in the range
of P ( ∂

∂z1
). By the definition of H(Q′) there exists an open neighbourhood Ω′ in C of Q′ such

that g is in H(Ω′). Now we use the hypothesis to choose a domain of holomorphy X which is
a neighbourhood of Q and satisfies X ∩ (C× {0}) ⊂ Ω′ × {0}. Since X ∩ (C× {0}) is a closed
subvariety of X it follows from Hörmander [12, Notions 4.2.12] that there exists G ∈ H(X) such
that G(z1, 0) = g(z1) for each (z1, 0) ∈ X0 := X ∩ (C× {0}). Now note that for each F ∈ H(Q)
which satisfies P (D)F = G we have P

(
∂

∂z1

)
(F |X0) = g in contradiction to the choice of g.

Hence P (D) is not surjective on H(Q). By contradiction, this completes the proof. ¤
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3.11. Theorem. Let Q ⊂ CN be a convex locally closed set. Suppose that Q has a neighbourhood
basis of domains of holomorphy. If V H(CN ) is a topological subspace of HV (CN ), then Q is
strictly convex at the relative boundary of ω.

Proof. Suppose that V H(CN ) is a topological subspace of HV (CN ). By Lemma 3.5 for each
nonzero entire function P ∈ A0 the multiplication operator MP = P (D)t : V H(CN ) → V H(CN )
is an injective topological homomorphism. Since the space H(Q) is reflexive, an application of
the Hahn-Banach theorem gives that P (D) : H(Q) → H(Q) is surjective for each such P . By
Proposition 3.10, Q is strictly convex at the relative boundary of ω. ¤
3.12. Remark. (a) If a convex and locally closed set Q ⊂ CN is C-strictly convex at the relative
boundary of ω (for example this is the case if N = 1) then Q has a neighbourhood basis of
domains of holomorphy. In fact, by Martineau [15, Lemme 3 of the proof of Théorème 1.2] (see
also the proof of Melikhov, Momm [18, Proposition 1.16]) if Q is C-strictly convex at the relative
boundary of ω, then Q has a neighbourhood basis of linearly convex open sets, hence a basis
of domains of holomorphy. An open convex set in CN is linearly convex if its complement is a
union of complex hyperplanes.

(b) If Q is a convex and locally closed subset of RN then also Q has a neighbourhood basis of
domains of holomorphy.

In fact, let U be an open neighbourhood of Q in CN . By a lemma of Cartan [8, Proposition
1], U ∩ RN has a neighbourhood basis U of domains of holomorphy. Hence there exists V ∈ U
such that V ⊂ U . Since Q ⊂ U ∩ RN ⊂ V then V is a neighbourhood of Q.

As in Bonet, Meise, Melikhov [6, Corollary 7 (a)], on account of Remark 3.12 (b), we obtain
the following statement.

3.13. Corollary. Let Q be a convex subset of RN which is locally closed. The weighted inductive
limit V H(CN ) is a topological subspace of its projective hull HV (CN ) if and only if Q is compact.

Problem: Which locally closed convex sets Q have a neighbourhood basis of domains of
holomorphy ?

A necessary and sufficient condition for the algebraic equality V H(C) = HV (C) in the case of
a bounded convex locally closed set Q in C is presented in Bonet, Meise, Melikhov [6, Theorem
8]. The algebraic identity V H(CN ) = HV (CN ) also holds in case Q is a convex open subset of
RN as it was proved in Bonet, Meise, Melikhov [7, Theorem 3.4]. This is the case of the Fourier
Laplace transform of the space of analytic functionals. The characterization of the algebraic
identity V H(CN ) = HV (CN ) for a general locally closed convex set Q remains open. We plan
to return to this question in the future.

4. Spaces of continuous functions

The weighted (LF)-space of continuous functions V C(CN ) and its projective hull CV (CN ) as-
sociated with the sequence V = (vn,k)n,k∈N of Section 2 are defined by replacing entire functions
by continuous ones:

CVn(CN ) := {f ∈ C(CN ) | ‖f‖k := sup
z∈CN

vn,k(z)|f(z)| < ∞ for all k ∈ N}, n ∈ N;

V C(CN ) := ind
n→ CVn(CN );

CV (CN ) := {f ∈ C(CN ) | ‖f‖v := sup
v∈V

v(z)|f(z)| < ∞ for all v ∈ V }.

Clearly V H(CN ) is continuously included in V C(CN ) and HV (CN ) is topological subspace of
CV (CN ). The problem of topological projective description for spaces of continuous functions
has a positive answer, as we show next.
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4.1. Theorem. For every locally closed convex set Q ⊂ CN the weighted (LF)-space V C(CN )
is a topological subspace of its projective hull CV (CN ).

Proof. For each n the sequence Vn := (vn,k)k∈N is increasing and lim|z|→∞ vn,k(z)/vn,k+1(z) = ∞
for all k. Hence for every n the weighted Fréchet space CVn(CN ) coincides with the Fréchet
space

C(Vn)0(CN ) := {f ∈ C(CN ) | vn,k|f | vanishes at infinity for all k ∈ N}.
By Bierstedt, Meise, Summers [3, Theorem 1.3] V C(CN ) is a topological subspace of its projec-
tive hull CV (CN ). ¤

To investigate the problem of algebraic projective description for spaces of continuous func-
tions we observe first that, by Bierstedt, Bonet [2, Proposition 2.4 and Theorem 2.7], the alge-
braic equality V C(CN ) = CV (CN ) is equivalent to the following condition (wQ) on the weights,
which was originally introduced by Vogt [21, Sect. 5]; see also Bierstedt, Bonet [2, § 2, Definition
1]:

(4.1) ∀n ∈ N ∃m ≥ n, k ∈ N ∀µ ≥ m, l ∈ N ∃L ∈ N, C > 0

vm,l ≤ C max(vn,k, vµ,L),
i.e.,

exp(−Hm(z)− |z|/l) ≤ C max(exp(−Hn(z)− |z|/k), exp(−Hµ(z)− |z|/L)), z ∈ CN .

Let S := {z ∈ CN | |z| = 1}.
4.2. Lemma. The condition (wQ) (i.e., (4.1)) is equivalent to

∀n ∈ N ∃m ≥ n, k ∈ N∀µ ≥ m, l ∈ N∃L ∈ N∀a ∈ S

(4.2) Hm(a) +
1
l
≥ min

(
Hn(a) +

1
k
,Hµ(a) +

1
L

)
.

Proof. Condition (4.2) implies condition (4.1) since support functions are positively homoge-
neous.

Suppose that condition (4.1) holds. Then

∀n ∈ N∃m ≥ n, k ∈ N∀µ ≥ m, l ∈ N∃L ∈ N, C > 0∀t > 0, a ∈ S

tHm(a) + t/l ≥ −log C + min(tHn(a) + t/k, tHµ(a) + t/L),
hence

Hm(a) + 1/l ≥ −(log C)/t + min(Hn(a) + 1/k, Hµ(a) + 1/L).
Letting t →∞, we obtain (4.2). ¤

4.3. Notation. The convex hull of a set D ⊂ CN is denoted by conv(D). Let (ωn)n∈N be
a compact exhaustion of ω such that ωn ⊂ ωn+1 for all n ∈ N. We can suppose that Qn =
conv(ωn ∪Kn), where (Kn)n∈N is a fundamental system of (convex) compact subsets of intrQ
with Kn ⊂ Kn+1 for each n ∈ N; see Melikhov, Momm [18, Lemma 1.2]. We define the following
sets of supporting directions:

Sωn := {a ∈ S | ∃z ∈ ωn : Re〈z, a〉 = HQ(a)}, n ∈ N, Sω := {a ∈ S | ∃z ∈ ω : Re〈z, a〉 = HQ(a)}.
If intQ 6= ∅, then for a ∈ S and n ∈ N the equality Hn(a) = HQ(a) holds if and only if a ∈ Sωn .
Indeed, let a ∈ Sωn . Then there is z ∈ ωn with HQ(a) = Re〈z, a〉. From ωn ⊂ Qn ⊂ Q it
follows that Re〈z, a〉 ≤ Hωn(a) ≤ Hn(a) ≤ HQ(a) and Hn(a) = HQ(a). Conversely, assume that
Hn(a) = HQ(a). Since Qn = conv(Kn ∪ ωn) the equality Hn(a) = max{HKn(a),Hωn(a)} holds.
The inclusion Kn ⊂ intQ implies that HKn(b) < HQ(b) for each b ∈ S. Consequently Hωn(a) =
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HQ(a). Since the set ωn is compact there exists z ∈ ωn such that Hωn(a) = sup
t∈ωn

Re〈t, a〉 =

Re〈z, a〉. Hence HQ(a) = Re〈z, a〉 and a ∈ Sωn .
For a set A ⊂ S we put as in Melikhov, Momm [18]

FA := {z ∈ ω | ∃a ∈ A : Re〈z, a〉 = HQ(a)}.

The following lemma was obtained in Melikhov, Momm [18, Lemma 3.4 and 3.5] for a bounded
convex locally closed set Q ⊂ CN .

4.4. Lemma. If a convex locally closed set Q ⊂ CN is strictly convex at the relative boundary
of ω, then the following assertions hold:

(i) The set Sω is open in S.
(ii) If A ⊂ Sω is compact then FA is also compact.
(iii) (Sωn)n∈N is a compact exhaustion of Sω.

Proof. If intQ = ∅, then Q is compact, ω = ∂rQ and Sω = S. Obviously the assertions (i), (ii)
and (iii) hold.

If intQ is not empty then we argue as follows:

(i): If ω = ∂Q then Sω = S and Sω is open in S.
Let ω 6= ∂Q. We fix a ∈ Sω and z ∈ ω with Re〈z, a〉 = HQ(a). We will prove first that there

is a neighbourhood U of a in S such that

(4.3) sup
c∈U

sup
w∈(∂Q)\ω

Re〈w, c〉 < HQ(a).

We suppose the contrary. Then there are an ∈ S, wn ∈ (∂Q)\ω such that limn→∞ an = a and

(4.4) Re〈an, wn〉 ≥ HQ(a)− 1
n

for all n ∈ N.

Assume that (wn)n∈N is bounded. We choose a subsequence (wns)s∈N and w ∈ ∂Q with
lims→∞wns = w. Since the set (∂Q)\ω is closed then w ∈ (∂Q)\ω. From (4.4) it follows that
Re〈a,w〉 ≥ HQ(a) and consequently Re〈a,w〉 = HQ(a). Hence [z, w] ⊂ ∂Q but w /∈ Q. This
contradicts the strict convexity of Q at the relative boundary of ω.

Let now (wn)n∈N be unbounded. We select a subsequence (wns)s∈N with lims→∞ |wns | = ∞.
Without loss of generality we can assume that the sequence vs := |wns − z|−1(wns − z), s ∈ N,
converges to b ∈ S. Since Q is convex, for each α > 0 and for all s ∈ N such that α < |wns − z|
the point zα,s := z + αvs belongs to Q. Hence z + αb ∈ Q for all α > 0. Note that, by (4.4),

Re〈ans , zα,s〉 =
(

1− α

|wns − z|
)

Re〈ans , z〉+
α

|wns − z|Re〈ans , wns〉 ≥

≥
(

1− α

|wns − z|
)

Re〈ans , z〉+
α

|wns − z|
(

HQ(a)− 1
ns

)
.

(4.5)

Passing to the limit for fixed α > 0 as s →∞ in (4.5) we obtain that

Re〈a, z + αb〉 ≥ HQ(a), i.e., Re〈a, z + αb〉 = HQ(a).

Consequently z + αb ∈ ∂Q for all α > 0. Since Q is strictly convex at the relative boundary
of ω, we have z + αb ∈ ω for each α > 0. Hence the intersection of the supporting hyperplane
{w ∈ CN |Re〈a,w〉 = HQ(a)} to Q with Q is unbounded. This contradicts the strict convexity
of Q at the relative boundary of ω. Thus there is a neighbourhood U of a in S such that the
relation (4.3) holds.
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We will show now that there is a neighbourhood of a in S on which HQ is finite. Assume
that there are an ∈ S, n ∈ N, such that limn→∞ an = a and HQ(an) = ∞ for all n ∈ N. Then
for each n ∈ N there exists wn ∈ Q with Re〈an, wn〉 > n. From

|wn| ≥ |〈an, wn〉| ≥ |Re〈an, wn〉| > n for all n ∈ N
it follows that limn→∞ |wn| = ∞. We select a subsequence (wns)s∈N and b ∈ S which satisfies
lims→∞ |wns − z|−1(wns − z) = b. For zα,s as above we have

Re〈a, zα,s〉 =
(

1− α

|wns − z|
)

Re〈a, z〉+
α

|wns − z|Re〈a,wns〉 =

=
(

1− α

|wns − z|
)

HQ(a) +
α

|wns − z|Re〈a− ans , wns〉+
α

|wns − z|Re〈ans , wns〉 ≥

≥
(

1− α

|wns − z|
)

HQ(a)− α

|wns − z| |a− ans ||wns |+
αns

|wns − z| ≥

≥
(

1− α

|wns − z|
)

HQ(a)− α

|wns − z| |a− ans ||wns |.
Passing to the limit for fixed α > 0 as s → ∞ we obtain that Re〈a, z + αb〉 ≥ HQ(a). Since
z+αb ∈ Q we conclude that Re〈a, z+αb〉 = HQ(a) and z+αb ∈ ω for all α > 0. This contradicts
the strict convexity of Q at the relative boundary of ω. Thus there is a neighbourhood of a in S
on which HQ is finite. Since the function HQ is convex and positively homogeneous on CN there
exists an open convex neighbourhood V of a in CN such that HQ is finite on V . By Hörmander
[12, 2.1.22] HQ is continuous on V . Consequently, by (4.3), there is a neighbourhood W ⊂ U of
a in S with

sup
w∈(∂Q)\ω

Re〈w, c〉 < HQ(c) < ∞ for all c ∈ W.

The last inequality implies W ⊂ Sω. This means that Sω is open in S.

(ii): We fix a sequence (wn)n∈N ⊂ FA and select an ∈ A with HQ(an) = Re〈an, wn〉. There
are a subsequence (ans)s∈N and a ∈ A such that lims→∞ ans = a. We choose z ∈ ω with
Re〈a, z〉 = HQ(a). Since HQ < ∞ on Sω there is a convex neighbourhood of a in CN on which
the convex function HQ is continuous.

We suppose that (wns)n∈N is unbounded. Without loss of generality lims→∞ |wns | = ∞ and
the sequence (|wns − z|−1(wns − z))s∈N converges to a point b ∈ S. For each α > 0, for large
s ∈ N the point zα,s := z + α|wns − z|−1(wns − z) belongs to Q and the following inequalities
hold:

Re〈a, zα,s〉 =
(

1− α

|wns − z|
)

Re〈a, z〉+
α

|wns − z|Re〈ans , wns〉+
α

|wns − z|Re〈a− ans , wns〉 ≥

(4.6) ≥
(

1− α

|wns − z|
)

HQ(a) +
α

|wns − z|Re〈ans , wns〉 −
α

|wns − z| |a− ans ||wns |.

Since lims→∞Re〈ans , wns〉 = lims→∞HQ(ans) = HQ(a) and lims→∞ |a − ans | = 0, passing to
the limit for fixed α > 0 as s →∞ in (4.6), we obtain that Re〈a, z+αb〉 = HQ(a) for each α > 0.
As in (i) this contradicts the strict convexity of Q at the relative boundary of ω. Hence the
sequence (wns)s∈N is bounded and we can assume that (wns)s∈N converges to w ∈ ∂Q. From the
strict convexity of Q at the relative boundary of ω it follows that w ∈ ω. Thus FA is compact.

It is easy to see that each Sωn is closed in S. Now the assertion (iii) follows from (ii). ¤
4.5. Theorem. Let Q ⊂ CN is convex and locally closed. The following are equivalent:

(i) The algebraic equality V C(CN ) = CV (CN ) holds.
(i)’ The equality V C(CN ) = CV (CN ) holds algebraically and topologically.
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(ii) Q is strictly convex at the relative boundary of ω.

Proof. The conditions (i) and (i)’ are equivalent by Theorem 4.1.
(i) ⇒ (ii): We assume that Q is not strictly convex at the relative boundary of ω. Then there

is a ∈ S such that the intersection of the support hyperplane Πa := {z ∈ CN |Re〈a, z〉 = HQ(a)}
to Q with Q is not compact. Hence there exists an interval I ⊂ Q ∩ Πa which is not relatively
compact in Q. We fix n ∈ N with I ∩ Qn 6= ∅. Let m ≥ n and k ∈ N be arbitrary. There are
w ∈ I with w /∈ Qm and µ ≥ m with w ∈ Qµ. We have

Re〈w, a〉 = HQ(a) = Hm(a) = Hn(a).

Fix b ∈ S and c ∈ R such that the hyperplane Re〈z, b〉 = c separates w and Qm, i.e.

Re〈w, b〉 > c > Hm(b).

Let bs := a + s−1b, as := |bs|−1bs, s ∈ N. For all s ≥ 2

Hµ(as) ≥ Re〈w, as〉 =
1
|bs|(Re〈w, a〉+

1
s
Re〈w, b〉) >

1
|bs|(Hm(a) + Hm(s−1b)) =

(4.7) =
1
|bs|Hm(bs) = Hm(as).

Since lims→∞ as = a in CN , we have

lim
s→∞(Hm(as)−Hn(as)) = Hm(a)−Hn(a) = 0.

We fix p ∈ N such that

Hm(ap)−Hn(ap) <
1
2k

.

Then for all l ≥ 2k

(4.8) Hm(ap) +
1
l

< Hn(ap) +
1
2k

+
1
l
≤ Hn(ap) +

1
k
.

Since, by (4.7), Hµ(ap) > Hm(ap) there is l ≥ 2k with

(4.9) Hm(ap) +
1
l

< Hµ(ap).

For this l, by (4.8) and (4.9), for every L ∈ N

Hm(ap) +
1
l

< min
(

Hn(ap) +
1
k
; Hµ(ap) +

1
L

)
.

Consequently the conditions (4.2) and, by Lemma 4.2, (wQ), are not satisfied. By Bierstedt,
Bonet [2, Proposition 2.4 and Theorem 2.7], V C(CN ) is a proper subset of CV (CN ).

(ii) ⇒ (i): Let Q be strictly convex at the relative boundary of ω. If intQ = ∅ then Q is
compact and (4.2) (hence (wQ)) holds. Suppose now that intQ 6= ∅ and fix n ∈ N. We will
show at first that there is m ∈ N such that

Hm(a) = HQ(a) for every a ∈ S with Hm(a) < Hn(a) +
1
m

.

We suppose the contrary, i.e. for each m ∈ N there is am ∈ S with

(4.10) Hm(am) < Hn(am) +
1
m

and Hm(am) < HQ(am).

Since Qm = conv(Km ∪ ωm) (see Notation 4.3) then Hm = max{HKm ;Hωm} for all m ∈ N.
Because HKm > HKn + 1/m on S for large m ∈ N, from (4.10) it follows that

(4.11) Hn(am) = Hωn(am) for large m ∈ N.
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There exists a subsequence (ams)s∈N which converges to a ∈ S. The equality (4.11) and the
continuity of Hn imply that Hn(a) = Hωn(a). By (4.10) am /∈ Sωm for all m ∈ N.

By Lemma 4.4 Sω is open (in S) and (Sωm)m∈N is a compact exhaustion of Sω. Hence, if
a ∈ Sω, there is l ∈ N such that ams ∈ Sωl

for large s. This contradicts ams /∈ Sωms
for all s ∈ N.

Consequently a /∈ Sω and Hn(a) < HQ(a). Hence there are w ∈ Q with ε := Re〈a,w〉−Hn(a) > 0
and s0 such that

Re〈ams , w〉 > Hn(ams) + ε/2 for all s > s0.

We select s ∈ N such that s > s0, ms > 2/ε and w ∈ Qms . Then

Hms(ams) ≥ Re〈w, ams〉 > Hn(ams) + 1/ms,

which contradicts (4.10).
Hence there is m ≥ n such that the following implication holds:

a ∈ S, Hm(a) < Hn(a) +
1
m
⇒ Hm(a) = HQ(a).

Consequently, condition (4.2) holds with k := m and L := l for each l ∈ N and µ ≥ m. By
Lemma 4.2, condition (wQ) is satisfied and, by Bierstedt, Bonet [2, Proposition 2.4 and Theorem
2.7], V C(CN ) and CV (CN ) coincide algebraically. ¤
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