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Abstract

In this paper, we consider localization operators on L2(Rd) defined by symbols in

a subclass of the modulation space M∞(R2d). We show that these operators are

compact and that this subclass is ”optimal” for compactness.
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1 Introduction.

The localization operators were introduced by Daubechies [8] in 1988 to

localize a signal both in time and frequency. The localization operators are

also known in some cases as Toeplitz operators or anti-Wick operators. If f(t)

represents a signal, its Fourier transform f̂(ω) represents the distribution of

frequencies ω in the signal, but it does not give any information about ”when”

these frequencies appear. To overcome this difficulty, following an idea due to

Gabor, one can consider a cut-off, or window, function ϕ(t) localized around

the origin and to analyze the frequencies around a fixed time x, that is, we

consider the Fourier transform of ϕ(t− x)f(t) thus obtaining a function both

of time and frequency

Vϕf(x, ω) =
∫
f(t)ϕ(t− x)e−2πıωtdt,

which is called short time Fourier transform of f (or STFT) with respect to

the window ϕ.

The signal f can be reconstructed from its STFT by the formula

f(t) =
∫ ∫

Vϕf(x, ω)ϕ(t− x)e2πıωtdxdω

provided that ||ϕ||L2 = 1. It is often convenient, before reconstructing the

signal, to modify Vϕf by multiplying by a suitable function F. In this way,

what we recover is a filtered version of the original signal f ,

LFϕf(t) =
∫ ∫

F (x, ω)Vϕf(x, ω)ϕ(t− x)e2πıωtdxdω,

where the integral is interpreted in a weak sense.

Operators as above are called localization operators with symbol F and
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window ϕ. These operators were traditionally defined on L2 or on some Sobolev

spaces, but they can be defined on more general spaces, the so-called modu-

lation spaces. Boundedness and Schatten-class conditions of localization op-

erators have been investigated in [6,7] where it is shown that the sufficient

conditions obtained there are, in some sense, optimal. Concerning compact-

ness, as far as we know, only sufficient conditions are given, usually as a con-

sequence of the fact that functions (or distributions) with compact support

define compact localization operators ( see for instance [2]).

In this paper, we consider localization operators on L2(Rd) defined by

symbols in a subclass of the modulation space M∞(R2d). We show that these

operators are compact and that this subclass is ”optimal” for compactness.

We also recover the necessary conditions in [7] although our methods are

completely different from those in [7].

2 Notation and Preliminaries

We use brackets 〈f, g〉 to denote the extension to S ′(Rd) × S(Rd) of the

inner product 〈f, g〉 =
∫
f(t)g(t)dt on L2(Rd) and parenthesis (f, g) to denote

the bilinear form which defines the dual pair
(
S ′(Rd),S(Rd)

)
. That is, 〈f, g〉 =

(f, g) .

The modulation and translation operators are defined by

Mωf(t) = e2πıωtf(t) and Txf(t) = f(t− x).

For a non-zero ϕ ∈ S(Rd) and a tempered distribution f ∈ S ′(Rd), the

short-time Fourier transform (STFT) of f with respect to the window ϕ, is
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given by

Vϕf(x, ω) = 〈f,MωTxϕ〉 .

Clearly, Vϕf is a continuous function on R2d. In what follows, all the windows

used in the STFT and in the localization operators are assumed to be in

S(Rd) \ {0}.

Modulation space norms are measures of the time-frequency concentration

of a function or distribution. The modulation spaces are defined as follows:

Given a non-zero window ϕ ∈ S(Rd) and 1 ≤ p, q ≤ ∞, the space Mp,q(Rd)

consists of all tempered distributions f ∈ S ′(Rd) such that Vϕf ∈ Lp,q(R2d)

and it is endowed with the norm

||f ||Mp,q := ||Vϕf ||Lp,q = (
∫
Rd

(
∫
Rd

|Vϕf(x, ω)|pdx)q/pdω)1/q.

For p = q, we simply write Mp.

Mp,q(Rd) is a Banach space and its definition is independent of the choice

of the window ϕ . M2 is exactly L2, and weighted versions produce, among

others, the Sobolev spaces (see [6,9]). In the case 1 ≤ p, q <∞, the Schwartz

class S(Rd) is dense in Mp,q(Rd) and its dual can be identified with Mp′,q′(Rd)

for 1/p+1/p′ = 1, 1/q+1/q′ = 1. We refer to [9] for the necessary background

on modulation spaces.

The following spaces are defined and studied en [1]: We denote byM0,0(Rd)

or simply M0(Rd) the closed subspace of M∞(Rd) consisting of all f ∈ S ′(Rd)

such that Vϕf vanishes at infinity, and we denote by M0,q(Rd) and Mp,0(Rd),

for p, q <∞ the closed normed subspaces of M∞,q(Rd) and Mp,∞(Rd) respec-

tively defined by

M0,q(Rd) := M0,0(Rd) ∩M∞,q(Rd)
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and

Mp,0(Rd) := M0,0(Rd) ∩Mp,∞(Rd).

The Schwartz class S(Rd) is dense in M0(Rd),M0,q(Rd) and Mp,0(Rd) and

the following dualities hold for 1 ≤ p, q <∞:

(Mp,0(Rd))∗ = Mp′,1, (M0,q(Rd))∗ = M1,q′(Rd) and (M0,0(Rd))∗ = M1,1(Rd).

Given F ∈ S(R2d) and ϕ, ψ, g ∈ S(Rd) (ϕ, ψ 6= 0) we define the localization

operator LFϕ,ψ as

(LFϕ,ψ)(g)(t) :=
∫

R2d

F (x, ω)Vϕg(x, ω)e2πitωψ(t− x)dxdω.

Then, for every f ∈ S(Rd) we obtain

∫
(LFϕ,ψ)(g)(t)f(t)dt =

∫
R2d

F (x, ω)Vϕg(x, ω)Vψf(x, ω)dxdω,

that is, 〈
(LFϕ,ψ)(g), f

〉
=

(
F, VϕgVψf

)
.

The identity above permits to consider localization operators defined by

symbols F ∈ S ′(R2d) and windows ϕ, ψ ∈ S(Rd). Then LFϕ,ψ is a continuous

and linear operator LFϕ,ψ : S(Rd) → S ′(Rd).

For F ≡ 1 and provided that 〈ϕ, ψ〉 = 1 the localization operator is

just the identity [9, 3.2.3]. In general, localization operators act as follows:

given a signal f , with Vϕf one identifies the frequencies of the signal present

in small intervals, and, after filtering through the symbol F , reconstruct a

filtered signal. In case ϕ and ψ are equal to the gaussian 2
d
4 e−πx

2
, the op-

erator LFϕ,ψ is called anti-Wick operator. Localization operators are special

pseudodifferential operators. In fact, LFϕ,ψ can also be interpreted as a Weyl
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operator Lσ with Weyl symbol σ = F ∗ W (ψ, ϕ) where W (ψ, ϕ)(x, ω) =∫
ψ(x + t

2
)ϕ(x− t

2
)e−2πıωtdt is the Wigner transform of ψ, ϕ ∈ S(Rd), which

belongs to S(R2d) and Lσ : S(Rd) → S ′(Rd) is given by ([4])

〈Lσf, g〉 = 〈σ,W (g, f)〉 .

By L(L2(Rd)) = L(L2(Rd), L2(Rd)) we denote the space of all continu-

ous linear operators on the Hilbert space L2(Rd) and K(L2(Rd), L2(Rd)) =

K(L2(Rd)) is the space of all compact linear operators on L2(Rd). For every

T ∈ K(L2(Rd)) and all n ∈ N0 the singular numbers sn(T ) of T have the

following interpretation (see for instance [12, 16.5])

sn(T ) = inf{||T −B|| : B ∈ L(L2(Rd)) and dim Im(B) ≤ n}.

The sequence (sn(T ))n is a null sequence. For 1 ≤ p <∞, the Schatten class

Sp is the space of compact operators with singular values in `p. For p = 1 we

get the space of trace class or nuclear operators on L2(Rd).

The trace of a nuclear operator T ∈ L(L2(Rd)) representable as T =∑∞
n=1 〈·, gn〉 fn, where

∑∞
n=1 ||fn||2||gn||2 < +∞, is given by

Trace T :=
∞∑
n=1

〈fn, gn〉 .

The dual of the space K(L2, L2) of compact operators can be identified

with the space S1 of nuclear operators on L2 via trace duality:

S1 →
(
K(L2, L2)

)∗
, R 7→ (T 7→ Trace(T ◦R)) .

Also the dual of S1 is identified with the space of all bounded operators. In

general, (Sp)
∗ (1 < p <∞) [11, 20.2.6] is isomorphic to Sp′ , where p and p′ are
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conjugate, via trace duality. We refer to [12] for standard notation concerning

Banach spaces.

3 Results

Sufficient conditions for compactness of localization operators or pseudodif-

ferential operators are given for instance in [1–3,5], but to our knowledge no

characterization of compact localization operators is available in the literature.

In this section we introduce a subclass of symbols and we show that each lo-

calization operator with symbol in this class and windows in S(Rd) belongs

to K(L2(Rd)). Conversely, we will show that this is the ”optimal” class for

compactness of the localization operator on L2(Rd).

In what follows, we fix two windows ϕ, ψ,∈ S(Rd) and we assume F ∈

M∞(R2d).

The following result is essentially known ([2]), but we include a proof for

the sake of completeness.

Proposition 3.1 Let E and F be two Banach spaces and let T : E → F be a

continuous linear map admitting the following factorization T = Q ◦ S1 where

Q : S(Rd) → F and S1 : E → S(Rd) are continuous and linear. Then T is a

compact operator.

Proof: Let us denote by BE the closed unit ball of E. Then S1(BE) is

bounded in S(Rd), hence it is relatively compact, since S(Rd) is a Fréchet-

Montel space ([14, p.235]). Now, the continuity of Q shows that T (BE) is

relatively compact.
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Corollary 3.2 If F ∈ S(R2d) and ϕ, ψ ∈ S(Rd), then the operator LFϕ,ψ is

compact.

Proof: It is clear that LFϕ,ψ(f) ∈ S(Rd) for each f ∈ L2(Rd). Thus, it can

be factorized as above.

We recall the following result, which explains whyM∞(R2d) is the optimal

class for boundedness of the localization operators on L2(Rd).

Theorem 3.3 ([6]) If F ∈M∞(R2d) then LFϕ,ψ can be extended to a bounded

operator

LFϕ,ψ : L2(Rd) → L2(Rd)

with norm ||LFϕ,ψ|| ≤ C||F ||M∞||ϕ||M1 ||ψ||M1 and for some constant C > 0.

Conversely, if F ∈ S ′(R2d) and LFϕ,ψ is a bounded operator on L2(Rd) for

each pair of windows ϕ, ψ ∈ S(Rd) with norm estimate

||LFϕ,ψ|| ≤ C||ϕ||M1||ψ||M1

for some constant C depending on F but not on the windows, then F ∈

M∞(R2d).

Then, fixing the windows ϕ, ψ, the previous theorem gives a continuous

linear map

Tϕ,ψ : M∞(R2d) → L(L2(Rd), L2(Rd))

F → LFϕ,ψ

The basic idea to get compactness is as follows: Localization operators

with symbols and also windows in the Schwartz class are compact and, since

compact operators are a closed subspace of the space of all bounded operators
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and the Schwartz class is dense in M0, localization operators with symbols

in M0 are also compact. However, if we take F = δ then the corresponding

localization operator is compact (it is a rank one operator) although F is not

in M0 since for ϕ ∈ S(Rd) we have Vϕδ(x, ω) = ϕ(x), which does not tend to

zero when x is fixed and |ω| goes to infinity. Note that the previous statement

that δ /∈ M0 does not contradicts the fact that δ is the weak limit in E ′(Rd)

of a sequence of test functions, since E ′(Rd) is not contained in M∞ (see for

instance the calculations in [6, Proposition 3.6]).

It follows that the operators given by symbols in M0 do not exhaust the

class of compact localization operators. The example just mentioned suggest

the condition in our next results.

Lemma 3.4 Let F ∈M∞(Rd) and g0 ∈ S(Rd) be given with the property that

lim
|x|→∞

sup
|ξ|≤R

|Vg0F (x, ξ)| = 0 for every R > 0. Then F ∗ H ∈ M0,1(Rd) for any

H ∈ S(Rd).

To show this lemma we recall the following convolution relation

Lemma 3.5 [6, 2.4] Let g0 ∈ S(Rd) and g := g0 ∗ g0 be given. Let us assume

1
p1

+ 1
p2
− 1 = 1

r
and 1

q1
+ 1

q2
= 1

s
. Then, for any f ∈ Mp1,q1(Rd) and h ∈

Mp2,q2(Rd), we have f ∗ h ∈M r,s(Rd) and

Vg(f ∗ h)(·, ω) = Vg0f(·, ω) ∗ Vg0h(·, ω).

Proof of Lemma 3.4: Since Vg0H ∈ S(R2d) then for every N ∈ N there

is CN > 0 such that

|Vg0H(t, ω)| ≤ CN(1 + |ω|)−2N(1 + |t|)−N .
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Consequently, for g = g0 ∗ g0, we obtain

|Vg(F ∗H)(x, ω)| = | (Vg0F (·, ω) ∗ Vg0H(·, ω)) (x)|

≤ CN(1 + |ω|)−2N
∫
Rd

|Vg0F (x− t, ω)| 1

(1 + |t|)N
dt.

We take N large enough so that
∫
Rd

dt

(1 + |t|)N
< +∞ (for instance, N = d+1).

Now, given ε > 0 there is R1 > 0 such that |ω| ≥ R1 implies

(1 + |ω|)−N CN ||F ||M∞

∫
Rd

dt

(1 + |t|)N
≤ ε.

Then

(1 + |ω|)N |Vg(F ∗H)(x, ω)| ≤ ε

for all x ∈ Rd and |ω| ≥ R1. We now choose δ > 0 small enough so that

δ + CNδ
∫
Rd

dt

(1 + |t|)N
≤ ε.

Since lim
|x|→∞

sup
|ξ|≤R1

|Vg0F (x, ξ)| = 0 then there is R2 > 0 such that

∫
|t|>R2

dt

(1 + |t|)N
≤ δ

CN ||F ||M∞

and |Vg0F (x, ω)| ≤ δ whenever |x| ≥ R2 and |ω| ≤ R1. Consequently, for

|x| ≥ 2R2 and |ω| ≤ R1, we obtain that

(1 + |ω|)N |Vg(F ∗H)(x, ω)|

is less than or equal to

δ + CN (1 + |ω|)−N
∫

|t|≤R2

|Vg0F (x− t, ω)| 1

(1 + |t|)N
dt
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≤ δ + CNδ
∫
Rd

dt

(1 + |t|)N

≤ ε.

Hence, |x| ≥ 2R2 gives

(1 + |ω|)N |Vg(F ∗H)(x, ω)| ≤ ε

for all ω ∈ Rd. That is,

∫
Rd

|Vg(F ∗H)(x, ω)|dω ≤ ε
∫
Rd

dω

(1 + |ω|)N

for all |x| ≥ 2R2. We conclude that

lim
|x|→∞

||Vg(F ∗H)(x, ·)||L1 = 0

which implies that F ∗H ∈M∞,1(Rd). Moreover, the previous estimates give

that Vg(F ∗H) vanishes at infinity and F ∗H ∈M0,1 ([1, def. 2.1]).

We observe that lemma 3.4 does not hold for arbitrary F ∈M∞. In fact,

if we consider F ≡ 1 ∈ M∞ and H ∈ S(Rd) with
∫
H = 1 then F ∗ H is

constant equal to 1 and

Vg(F ∗H)(x, ω) = e−2πiωxĝ(ω).

That is, for a fixed ω, the function of x, |Vg(F ∗H)(x, ω)| is a constant different

from zero and, consequently, F ∗H /∈M0.

The sufficient conditions in [3, 4.6,4.7] in the case p = q = 2 are particular

cases of our following result. In the proof we make use of the representation

of localization operators as Weyl operators.

Proposition 3.6 Let g ∈ S(R2d) be given. If lim
|x|→∞

sup
|ξ|≤R

|VgF (x, ξ)| = 0 for
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every R > 0, then LFϕ,ψ : L2(Rd) → L2(Rd) is a compact operator.

Proof: We put H := W (ψ, ϕ) ∈ S(R2d). Then σ := F ∗H ∈ M0,1(R2d) and

LFϕ,ψ is compact since it coincides with the Weyl operator Lσ and we use [1,

2.3].

Theorem 3.7 [6, 3.4] The map Tϕ,ψ restricted to M1(R2d) takes values in the

space of trace class operators and

Tϕ,ψ : M1(R2d) → S1 , F 7→ LFϕ,ψ,

is continuous.

Now, we look at the transpose map T tϕ,ψ : L
(
L2(Rd)

)
→M∞(R2d), which

assigns to every bounded linear operator on L2(Rd) a symbol in M∞(R2d). We

are particularly interested in the action of T tϕ,ψ on compact operators and on

localization operators.

Since compact linear operators on L2(Rd) can be approximated by finite

rank operators, we get

Lemma 3.8 T tϕ,ψ (K(L2, L2)) is contained in M0(R2d).

Proof: Since
(
M1(R2d)

)∗
= M∞(R2d) and M0 is a closed subspace of M∞ we

only have to prove that T tϕ,ψ(S) ∈M0 for any finite rank operator S : L2 → L2.

To do this, we fix a finite rank operator

S :=
N∑
k=1

〈·, gk〉 fk

where fk, gk ∈ L2. Then, for any F ∈M1(R2d) we have

(
T tϕ,ψ(S), F

)
= (S, Tϕ,ψ(F )) = Trace(S ◦ LFϕ,ψ).
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Since the adjoint operator of LFϕ,ψ is LFψ,ϕ, then

S ◦ LFϕ,ψ =
N∑
k=1

〈
·, LFψ,ϕgk

〉
fk

and (
T tϕ,ψ(S), F

)
=

N∑
k=1

〈
fk, L

F
ψ,ϕgk

〉
=

N∑
k=1

∫
Rd

fkLFψ,ϕgk.

On the other hand, for F ∈ S(R2d) we have

∫
Rd

fkLFψ,ϕgk =
∫

R2d

F (x, ω)Vψgk(x, ω)Vϕfk(x, ω)dxdω.

Hence

T tϕ,ψ(S) =
N∑
k=1

Vψgk · Vϕfk,

which is an element of L1(R2d) ⊂M0(R2d). The proof is finished.

Our aim now is to find the relation between the symbol F ∈M∞(R2d) of

the localization operator LFϕ,ψ and the symbol we obtain as the image of LFϕ,ψ

by T tϕ,ψ. In the next lemma, (xj, ωj) are points in the partition we get when

we divide the cube [a, b]2d into k2d equal cubes.

Lemma 3.9 Let F ∈ D(R2d) be a test function with support contained in

[a, b]2d. Then LFϕ,ψ is the limit in the space L
(
L2(Rd), L2(Rd)

)
of the sequence

of finite rank operators

Sk : L2(Rd) → L2(Rd)

defined by

Sk := (
b− a

k
)2d

k2d∑
j=1

F (xj, ωj)
〈
·,Mωj

Txj
ϕ

〉
Mωj

Txj
ψ.

Proof: In fact, since for every f ∈ L2(Rd) the map R2d → L2(Rd) given by
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(x, ω) 7→MωTxf is continuous, we conclude that

(x, ω) 7→ F (x, ω) 〈·,MωTxϕ〉MωTxψ

is a uniformly continuous map

Φ : [a, b]2d → Lb
(
L2(Rd), L2(Rd)

)
.

Then LFϕ,ψ : L2 → L2 is the vector integral

LFϕ,ψ =
∫

[a,b]2d

Φ(x, ω)dxdω,

and the conclusion follows since each Sk is a Riemann sum of the integral.

Proposition 3.10 For every F ∈M∞(R2d) we have

T tϕ,ψ
(
LFϕ,ψ

)
= F ∗

(
VψϕVϕψ

)
.

Proof: In fact, let us first assume that F ∈ D(R2d) is a test function with

support contained in [a, b]2d. Then

T tϕ,ψ(LFϕ,ψ) = lim
k→∞

T tϕ,ψ(Sk).

According to lemma 3.8 and after applying ([9, 3.1.3]) we get

T tϕ,ψ(Sk) = (
b− a

k
)2d

k2d∑
j=1

F (xj, ωj)Vψ
(
Mωj

Txj
ϕ

)
Vϕ

(
Mωj

Txj
ψ

)

= (
b− a

k
)2d

k2d∑
j=1

F (xj, ωj)
(
VψϕVϕψ

)
(x− xj, ω − ωj).
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Consequently T tϕ,ψ(LFϕ,ψ)(x, ω) is given by

lim
k→∞

(
b− a

k
)2d

k2d∑
j=1

F (xj, ωj)
(
VψϕVϕψ

)
(x− xj, ω − ωj)

=
∫

R2d

F (y, ς)
(
VψϕVϕψ

)
(x− y, ω − ς)dydς

= F ∗
(
VψϕVϕψ

)
(x, ω).

To finish we consider an arbitrary F ∈ M∞(R2d). Since M∞(R2d) is the

bidual of M0(R2d) and D(R2d) is a dense subspace of M0(R2d) we can find

a net (Fj) consisting of test functions which converges to F in the weak ∗

topology σ(M∞,M1).

We now show that LFϕ,ψ is the σ(L(L2, L2), S1)-limit of the net L
Fj

ϕ,ψ. To

do this we fix a nuclear operator

S :=
∞∑
n=1

〈·, gn〉 fn

where
∑∞
n=1 ||fn||L2||gn||L2 < +∞. Then

(
LFϕ,ψ − L

Fj

ϕ,ψ, S
)

= Trace
(
L
F−Fj

ϕ,ψ ◦ S
)

=
∞∑
n=1

〈
F − Fj, VψgnVϕfn

〉
.

Since the series h :=
∞∑
n=1

VψgnVϕfn is absolutely converging in M1(R2d) ([6,
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5.2]) we conclude that

(
LFϕ,ψ − L

Fj

ϕ,ψ, S
)

= 〈F − Fj, h〉 ,

hence

lim
j

(
LFϕ,ψ − L

Fj

ϕ,ψ, S
)

= 0.

Consequently

T tϕ,ψ
(
LFϕ,ψ

)
= σ(M∞,M1)− lim

j
T tϕ,ψ

(
L
Fj

ϕ,ψ

)

= σ(M∞,M1)− lim
j

(
Fj ∗

(
VψϕVϕψ

))
.

In particular, for every g ∈ S(R2d) we have

(
T tϕ,ψ

(
LFϕ,ψ

)
, g

)
= lim

j

(
Fj ∗

(
VψϕVϕψ

)
, g

)

=
(
F ∗

(
VψϕVϕψ

)
, g

)

since
ˇ(

VψϕVϕψ
)
∗ g ∈ S(R2d) and (Fj) converges to F weakly in S ′(R2d).

Proposition 3.11 Let F ∈M∞(R2d) be a symbol such that

LFϕ,ψ : L2(Rd) → L2(Rd)

is a compact operator. Then

F ∗
(
VψϕVϕψ

)
∈M0(R2d).

This necessary condition for compactness gives some information as the fol-

lowing example shows.
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Example 3.12 Let F ∈ M∞(R2d), F 6= 0, be a periodic distribution. Then

LFϕ,ψ : L2(Rd) → L2(Rd) is not a compact operator.

To obtain a complete characterization of compact localization operators

in terms of the symbol we need the following result on collectively compact

sets of operators.

Theorem 3.13 [13] Let E,F be Banach spaces and K ⊂ K(E,F ) a set of

compact operators. Then, K is relatively compact if, and only if, the following

two conditions are satisfied:

(i)
⋃

(R(BE) : R ∈ K) is relatively compact in F .

(ii) For every u ∈ F ′, the set {u ◦R : R ∈ K} is relatively compact in E∗.

Lemma 3.14 Let F ∈ M∞(R2d) be a symbol and let us assume that LFϕ,ψ :

L2(Rd) → L2(Rd) is a compact operator for every ϕ, ψ ∈ S(Rd). Then, for

every ϕ, ψ ∈ S(Rd) and R > 0 the set

K := {LMωF
ϕ,ψ : |ω| ≤ R}

is relatively compact in K(L2, L2).

Proof: According to [6, p.126], for ω = (ω1, ω2) ∈ R2d and f ∈ L2(Rd) we

have

MωVϕf = VMω1Tω2ϕ
(Mω1T−ω2f) .

Hence

LMωF
ϕ,ψ f = LFMω1Tω2ϕ,ψ

(Mω1T−ω2f) .

In particular, each LMωF
ϕ,ψ is a compact operator. Since the map

R2d → S(Rd) , ω 7→Mω1Tω2ϕ,
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is continuous ([9, 11.2.2]) and S(Rd) is contained in M1(Rd) with continuous

inclusion, we can conclude, after applying [6, 3.2], that the set

K1 := {LFMω1Tω2ϕ,ψ
: |ω| ≤ R}

is a compact subset of K(L2, L2). We can now apply 3.13 to show that K is

relatively compact in K(L2, L2). In fact, (i) since Mω1 and T−ω2 are isometries

on L2(Rd) we get that

{Mω1T−ω2f : ||f ||L2 ≤ 1 , |ω| ≤ R}

is a subset of the unit ball of L2(Rd). Since K1 is a compact set of compact

operators we deduce that

K = {LFMω1Tω2ϕ,ψ
◦ (Mω1T−ω2)}

transforms the unit ball into a relatively compact subset of L2(Rd). Moreover,

(ii) the adjoint map of LMωF
ϕ,ψ is given by L

M−ωF
ψ,ϕ and, for any f ∈ L2(Rd),

we can proceed as in (i) to conclude that the set

{LM−ωF
ψ,ϕ f : |ω| ≤ R}

is relatively compact in L2(Rd).

Theorem 3.15 Let F ∈ M∞(R2d) and g0 ∈ S(R2d) be given. Then, the fol-

lowing conditions are equivalent:

(a) The localization operator LFϕ,ψ : L2(Rd) → L2(Rd) is compact for every

ϕ, ψ ∈ S(Rd).

(b) For every R > 0 we have

lim
|x|→∞

sup
|ξ|≤R

|Vg0F (x, ξ)| = 0.
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Proof: (b) implies (a) is the content of proposition 3.6. We proceed to prove

that (a) implies (b). To do this, we fix a non zero and even window ϕ ∈ S(Rd)

and we take ψ = ϕ and Φ := VψϕVϕψ = |Vϕϕ|2 ∈ S(R2d). Since

VΦ∗ΦF (x, ω) = 〈F,MωTx(Φ ∗ Φ)〉 = 〈M−ωF,Φ ∗ TxΦ〉

= 〈M−ωF ∗ Φ, TxΦ〉 = VΦ (M−ωF ∗ Φ) (x, 0)

and

K := {LM−ωF
ϕ,ϕ : |ω| ≤ R}

is a relatively compact subset of compact operators then we conclude that

T tϕ,ϕ(K) = {M−ωF ∗ Φ : |ω| ≤ R}

is a relatively compact subset of M0(R2d). Since {VΦ (M−ωF ∗ Φ) : |ω| ≤ R} is

relatively compact in the Banach space C0(R2d) consisting of those continuous

functions vanishing at infinity, then

lim
|x|→∞

sup
|ω|≤R

|VΦ∗ΦF (x, ω)| = lim
|x|→∞

sup
|ω|≤R

|VΦ (M−ωF ∗ Φ) (x, 0)| = 0.

Finally, it follows from the inequality [9, 11.3.3]

|Vg0F (x, ω)| ≤ ||γ||−1
L2 (|VγF | ∗ |Vg0γ|) (x, ω)

for γ = Φ ∗ Φ, that condition (b) holds.

Remark 3.16 Our methods permit to recover the necessary Schatten class

conditions in [7] as follows. Given two windows ϕ, ψ in the Schwartz class on

Rd and for 1 < p <∞ or p = 0 the map

T pϕ,ψ : Mp(R2d) → Sp , F 7→ LFϕ,ψ,

20



(here S0 := K(L2, L2)) is well-defined and continuous, and in fact we have the

norm estimate

||LFϕ,ψ||Sp ≤ B||F ||Mp ||ϕ||M1||ψ||M1

For p 6= 0 this result is part of [7, Th 1]. Clearly T pϕ,ψ|M1(R2d) coincides with

Tϕ,ψ in Theorem 3.7. Now we use that, for 1 < p <∞, (Sp)
∗ is isomorphic to

Sp′ via trace duality, therefore

(T pϕ,ψ)t : Sp′ →Mp′(R2d)

is also linear and continuous and since finite rank operators are dense in Sp′ and

the Schwartz class is dense in Mp′(R2d) we can easily conclude that (T pϕ,ψ)t =

T tϕ,ψ|Sp′ . Consequently, if M ∈ M∞(R2d) and the corresponding localization

operator LMϕ,ψ ∈ Sp′ we have F ∗ Φ ∈ Mp′(R2d) for Φ = VψϕVϕψ. Let us now

assume that LFϕ,ψ ∈ Sp′ for every pair of windows ϕ, ψ in the Schwartz class

with norm estimate

||LFϕ,ψ||Sp ≤ B||F ||Mp ||ϕ||M1||ψ||M1

where the constant B may depend on F but it is independent on the windows.

Then, from LMωF
ϕ,ψ f = LFMω1Tω2ϕ,ψ

(Mω1T−ω2f) we deduce that {LMωF
ϕ,ψ : ω ∈

R2d} is a bounded subset of Sp′ , hence {MωF ∗ Φ : ω ∈ R2d} is bounded in

Mp′(R2d) and a fortiori in Mp′,∞(R2d). Now, we may proceed as in the previous

theorem to conclude that F ∈Mp′,∞(R2d).
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