Compactness of time-frequency localization

operators on $L^2(\mathbb{R}^d)$

Carmen Fernández and Antonio Galbis

Departamento de Análisis Matemático Universidad de Valencia Doctor Moliner 50 46100 Burjasot (Valencia), Spain Carmen.Fdez-Rosell@uv.es ; Antonio.Galbis@uv.es

Author to whom mail should be sent:

Antonio Galbis (e-mail: antonio.galbis@uv.es)

Departamento de Análisis Matemático

Universidad de Valencia

C/Dr. Moliner, 50; 46100-Burjasot (Valencia) Spain

Abstract

In this paper, we consider localization operators on $L^2(\mathbb{R}^d)$ defined by symbols in a subclass of the modulation space $M^{\infty}(\mathbb{R}^{2d})$. We show that these operators are compact and that this subclass is "optimal" for compactness.

Key words: Localization operator, compact operator, Short-time Fourier transform, Modulation space2000 MSC: 47G30, 47B10, 46F05

¹ The research of the authors was partially supported by MEC and FEDER, Project MTM2004-02262, by MCYT and MURST-MIUR Acción Integrada HI 2003-0066 and by AVCIT Grupos 03/050.

1 Introduction.

The localization operators were introduced by Daubechies [8] in 1988 to localize a signal both in time and frequency. The localization operators are also known in some cases as Toeplitz operators or anti-Wick operators. If f(t)represents a signal, its Fourier transform $\hat{f}(\omega)$ represents the distribution of frequencies ω in the signal, but it does not give any information about "when" these frequencies appear. To overcome this difficulty, following an idea due to Gabor, one can consider a cut-off, or window, function $\varphi(t)$ localized around the origin and to analyze the frequencies around a fixed time x, that is, we consider the Fourier transform of $\overline{\varphi(t-x)}f(t)$ thus obtaining a function both of time and frequency

$$V_{\varphi}f(x,\omega) = \int f(t)\overline{\varphi(t-x)}e^{-2\pi i\omega t}dt,$$

which is called *short time Fourier transform* of f (or STFT) with respect to the window φ .

The signal f can be reconstructed from its STFT by the formula

$$f(t) = \int \int V_{\varphi} f(x, \omega) \varphi(t - x) e^{2\pi i \omega t} dx d\omega$$

provided that $||\varphi||_{L^2} = 1$. It is often convenient, before reconstructing the signal, to modify $V_{\varphi}f$ by multiplying by a suitable function F. In this way, what we recover is a filtered version of the original signal f,

$$L_{\varphi}^{F}f(t) = \int \int F(x,\omega)V_{\varphi}f(x,\omega)\varphi(t-x)e^{2\pi i\omega t}dxd\omega,$$

where the integral is interpreted in a weak sense.

Operators as above are called localization operators with symbol F and

window φ . These operators were traditionally defined on L^2 or on some Sobolev spaces, but they can be defined on more general spaces, the so-called modulation spaces. Boundedness and Schatten-class conditions of localization operators have been investigated in [6,7] where it is shown that the sufficient conditions obtained there are, in some sense, optimal. Concerning compactness, as far as we know, only sufficient conditions are given, usually as a consequence of the fact that functions (or distributions) with compact support define compact localization operators (see for instance [2]).

In this paper, we consider localization operators on $L^2(\mathbb{R}^d)$ defined by symbols in a subclass of the modulation space $M^{\infty}(\mathbb{R}^{2d})$. We show that these operators are compact and that this subclass is "optimal" for compactness. We also recover the necessary conditions in [7] although our methods are completely different from those in [7].

2 Notation and Preliminaries

We use brackets $\langle f, g \rangle$ to denote the extension to $\mathcal{S}'(\mathbb{R}^d) \times \mathcal{S}(\mathbb{R}^d)$ of the inner product $\langle f, g \rangle = \int f(t)\overline{g(t)}dt$ on $L^2(\mathbb{R}^d)$ and parenthesis (f, g) to denote the bilinear form which defines the dual pair $(\mathcal{S}'(\mathbb{R}^d), \mathcal{S}(\mathbb{R}^d))$. That is, $\langle f, g \rangle = (f, \overline{g})$.

The modulation and translation operators are defined by

$$M_{\omega}f(t) = e^{2\pi i\omega t}f(t)$$
 and $T_xf(t) = f(t-x)$.

For a non-zero $\varphi \in \mathcal{S}(\mathbb{R}^d)$ and a tempered distribution $f \in \mathcal{S}'(\mathbb{R}^d)$, the short-time Fourier transform (STFT) of f with respect to the window φ , is given by

$$V_{\varphi}f(x,\omega) = \langle f, M_{\omega}T_x\varphi \rangle$$

Clearly, $V_{\varphi}f$ is a continuous function on \mathbb{R}^{2d} . In what follows, all the windows used in the STFT and in the localization operators are assumed to be in $\mathcal{S}(\mathbb{R}^d) \setminus \{0\}.$

Modulation space norms are measures of the time-frequency concentration of a function or distribution. The modulation spaces are defined as follows: Given a non-zero window $\varphi \in \mathcal{S}(\mathbb{R}^d)$ and $1 \leq p, q \leq \infty$, the space $M^{p,q}(\mathbb{R}^d)$ consists of all tempered distributions $f \in \mathcal{S}'(\mathbb{R}^d)$ such that $V_{\varphi}f \in L^{p,q}(\mathbb{R}^{2d})$ and it is endowed with the norm

$$||f||_{M^{p,q}} := ||V_{\varphi}f||_{L^{p,q}} = (\int_{\mathbb{R}^d} (\int_{\mathbb{R}^d} |V_{\varphi}f(x,\omega)|^p dx)^{q/p} d\omega)^{1/q}.$$

For p = q, we simply write M^p .

 $M^{p,q}(\mathbb{R}^d)$ is a Banach space and its definition is independent of the choice of the window φ . M^2 is exactly L^2 , and weighted versions produce, among others, the Sobolev spaces (see [6,9]). In the case $1 \leq p, q < \infty$, the Schwartz class $\mathcal{S}(\mathbb{R}^d)$ is dense in $M^{p,q}(\mathbb{R}^d)$ and its dual can be identified with $M^{p',q'}(\mathbb{R}^d)$ for 1/p+1/p'=1, 1/q+1/q'=1. We refer to [9] for the necessary background on modulation spaces.

The following spaces are defined and studied en [1]: We denote by $M^{0,0}(\mathbb{R}^d)$ or simply $M^0(\mathbb{R}^d)$ the closed subspace of $M^{\infty}(\mathbb{R}^d)$ consisting of all $f \in \mathcal{S}'(\mathbb{R}^d)$ such that $V_{\varphi}f$ vanishes at infinity, and we denote by $M^{0,q}(\mathbb{R}^d)$ and $M^{p,0}(\mathbb{R}^d)$, for $p, q < \infty$ the closed normed subspaces of $M^{\infty,q}(\mathbb{R}^d)$ and $M^{p,\infty}(\mathbb{R}^d)$ respectively defined by

$$M^{0,q}(\mathbb{R}^d) := M^{0,0}(\mathbb{R}^d) \cap M^{\infty,q}(\mathbb{R}^d)$$

and

$$M^{p,0}(\mathbb{R}^d) := M^{0,0}(\mathbb{R}^d) \cap M^{p,\infty}(\mathbb{R}^d).$$

The Schwartz class $\mathcal{S}(\mathbb{R}^d)$ is dense in $M^0(\mathbb{R}^d)$, $M^{0,q}(\mathbb{R}^d)$ and $M^{p,0}(\mathbb{R}^d)$ and the following dualities hold for $1 \leq p, q < \infty$:

$$(M^{p,0}(\mathbb{R}^d))^* = M^{p',1}, \ (M^{0,q}(\mathbb{R}^d))^* = M^{1,q'}(\mathbb{R}^d) \text{ and } (M^{0,0}(\mathbb{R}^d))^* = M^{1,1}(\mathbb{R}^d).$$

Given $F \in \mathcal{S}(\mathbb{R}^{2d})$ and $\varphi, \psi, g \in \mathcal{S}(\mathbb{R}^d)$ $(\varphi, \psi \neq 0)$ we define the localization operator $L^F_{\varphi,\psi}$ as

$$(L^F_{\varphi,\psi})(g)(t) := \int_{\mathbb{R}^{2d}} F(x,\omega) V_{\varphi}g(x,\omega) e^{2\pi i t \omega} \psi(t-x) dx d\omega.$$

Then, for every $f \in \mathcal{S}(\mathbb{R}^d)$ we obtain

$$\int (L_{\varphi,\psi}^F)(g)(t)\overline{f(t)}dt = \int_{\mathbb{R}^{2d}} F(x,\omega)V_{\varphi}g(x,\omega)\overline{V_{\psi}f(x,\omega)}dxd\omega,$$

that is,

$$\left\langle (L_{\varphi,\psi}^F)(g), f \right\rangle = \left(F, V_{\varphi}g\overline{V_{\psi}f} \right).$$

The identity above permits to consider localization operators defined by symbols $F \in \mathcal{S}'(\mathbb{R}^{2d})$ and windows $\varphi, \psi \in \mathcal{S}(\mathbb{R}^d)$. Then $L^F_{\varphi,\psi}$ is a continuous and linear operator $L^F_{\varphi,\psi} : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$.

For $F \equiv 1$ and provided that $\langle \varphi, \psi \rangle = 1$ the localization operator is just the identity [9, 3.2.3]. In general, localization operators act as follows: given a signal f, with $V_{\varphi}f$ one identifies the frequencies of the signal present in small intervals, and, after filtering through the symbol F, reconstruct a filtered signal. In case φ and ψ are equal to the gaussian $2^{\frac{d}{4}}e^{-\pi x^2}$, the operator $L^F_{\varphi,\psi}$ is called anti-Wick operator. Localization operators are special pseudodifferential operators. In fact, $L^F_{\varphi,\psi}$ can also be interpreted as a Weyl operator L_{σ} with Weyl symbol $\sigma = F * W(\psi, \varphi)$ where $W(\psi, \varphi)(x, \omega) = \int \psi(x + \frac{t}{2})\overline{\varphi(x - \frac{t}{2})} e^{-2\pi i \omega t} dt$ is the Wigner transform of $\psi, \varphi \in \mathcal{S}(\mathbb{R}^d)$, which belongs to $\mathcal{S}(\mathbb{R}^{2d})$ and $L_{\sigma} : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ is given by ([4])

$$\langle L_{\sigma}f,g\rangle = \langle \sigma, W(g,f)\rangle$$

By $L(L^2(\mathbb{R}^d)) = L(L^2(\mathbb{R}^d), L^2(\mathbb{R}^d))$ we denote the space of all continuous linear operators on the Hilbert space $L^2(\mathbb{R}^d)$ and $K(L^2(\mathbb{R}^d), L^2(\mathbb{R}^d)) =$ $K(L^2(\mathbb{R}^d))$ is the space of all compact linear operators on $L^2(\mathbb{R}^d)$. For every $T \in K(L^2(\mathbb{R}^d))$ and all $n \in \mathbb{N}_0$ the singular numbers $s_n(T)$ of T have the following interpretation (see for instance [12, 16.5])

$$s_n(T) = \inf\{||T - B|| : B \in L(L^2(\mathbb{R}^d)) \text{ and } \dim \operatorname{Im}(B) \le n\}.$$

The sequence $(s_n(T))_n$ is a null sequence. For $1 \le p < \infty$, the Schatten class S_p is the space of compact operators with singular values in ℓ_p . For p = 1 we get the space of trace class or nuclear operators on $L^2(\mathbb{R}^d)$.

The trace of a nuclear operator $T \in L(L^2(\mathbb{R}^d))$ representable as $T = \sum_{n=1}^{\infty} \langle \cdot, g_n \rangle f_n$, where $\sum_{n=1}^{\infty} ||f_n||_2 ||g_n||_2 < +\infty$, is given by

Trace
$$T := \sum_{n=1}^{\infty} \langle f_n, g_n \rangle$$
.

The dual of the space $K(L^2, L^2)$ of compact operators can be identified with the space S_1 of nuclear operators on L^2 via trace duality:

$$S_1 \to \left(K(L^2, L^2) \right)^*, \quad R \mapsto \left(T \mapsto \operatorname{Trace}(T \circ R) \right).$$

Also the dual of S_1 is identified with the space of all bounded operators. In general, $(S_p)^*$ $(1 [11, 20.2.6] is isomorphic to <math>S_{p'}$, where p and p' are conjugate, via trace duality. We refer to [12] for standard notation concerning Banach spaces.

3 Results

Sufficient conditions for compactness of localization operators or pseudodifferential operators are given for instance in [1–3,5], but to our knowledge no characterization of compact localization operators is available in the literature. In this section we introduce a subclass of symbols and we show that each localization operator with symbol in this class and windows in $\mathcal{S}(\mathbb{R}^d)$ belongs to $K(L^2(\mathbb{R}^d))$. Conversely, we will show that this is the "optimal" class for compactness of the localization operator on $L^2(\mathbb{R}^d)$.

In what follows, we fix two windows $\varphi, \psi, \in \mathcal{S}(\mathbb{R}^d)$ and we assume $F \in M^{\infty}(\mathbb{R}^{2d})$.

The following result is essentially known ([2]), but we include a proof for the sake of completeness.

Proposition 3.1 Let E and F be two Banach spaces and let $T : E \to F$ be a continuous linear map admitting the following factorization $T = Q \circ S_1$ where $Q : S(\mathbb{R}^d) \to F$ and $S_1 : E \to S(\mathbb{R}^d)$ are continuous and linear. Then T is a compact operator.

Proof: Let us denote by B_E the closed unit ball of E. Then $S_1(B_E)$ is bounded in $\mathcal{S}(\mathbb{R}^d)$, hence it is relatively compact, since $\mathcal{S}(\mathbb{R}^d)$ is a Fréchet-Montel space ([14, p.235]). Now, the continuity of Q shows that $T(B_E)$ is relatively compact. **Corollary 3.2** If $F \in \mathcal{S}(\mathbb{R}^{2d})$ and $\varphi, \psi \in \mathcal{S}(\mathbb{R}^d)$, then the operator $L^F_{\varphi,\psi}$ is compact.

Proof: It is clear that $L^F_{\varphi,\psi}(f) \in \mathcal{S}(\mathbb{R}^d)$ for each $f \in L^2(\mathbb{R}^d)$. Thus, it can be factorized as above.

We recall the following result, which explains why $M^{\infty}(\mathbb{R}^{2d})$ is the optimal class for boundedness of the localization operators on $L^2(\mathbb{R}^d)$.

Theorem 3.3 ([6]) If $F \in M^{\infty}(\mathbb{R}^{2d})$ then $L^{F}_{\varphi,\psi}$ can be extended to a bounded operator

$$L^F_{\varphi,\psi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$$

with norm $||L^F_{\varphi,\psi}|| \leq C||F||_{M^{\infty}}||\varphi||_{M^1}||\psi||_{M^1}$ and for some constant C > 0.

Conversely, if $F \in \mathcal{S}'(\mathbb{R}^{2d})$ and $L^F_{\varphi,\psi}$ is a bounded operator on $L^2(\mathbb{R}^d)$ for each pair of windows $\varphi, \psi \in \mathcal{S}(\mathbb{R}^d)$ with norm estimate

$$||L^{F}_{\varphi,\psi}|| \leq C||\varphi||_{M^{1}}||\psi||_{M^{1}}$$

for some constant C depending on F but not on the windows, then $F \in M^{\infty}(\mathbb{R}^{2d})$.

Then, fixing the windows φ, ψ , the previous theorem gives a continuous linear map

$$T_{\varphi,\psi}: M^{\infty}(\mathbb{R}^{2d}) \to L(L^2(\mathbb{R}^d), L^2(\mathbb{R}^d))$$

 $F \to L^F_{\varphi,\psi}$

The basic idea to get compactness is as follows: Localization operators with symbols and also windows in the Schwartz class are compact and, since compact operators are a closed subspace of the space of all bounded operators and the Schwartz class is dense in M^0 , localization operators with symbols in M^0 are also compact. However, if we take $F = \delta$ then the corresponding localization operator is compact (it is a rank one operator) although F is not in M^0 since for $\varphi \in \mathcal{S}(\mathbb{R}^d)$ we have $V_{\varphi}\delta(x,\omega) = \varphi(x)$, which does not tend to zero when x is fixed and $|\omega|$ goes to infinity. Note that the previous statement that $\delta \notin M^0$ does not contradicts the fact that δ is the weak limit in $\mathcal{E}'(\mathbb{R}^d)$ of a sequence of test functions, since $\mathcal{E}'(\mathbb{R}^d)$ is not contained in M^{∞} (see for instance the calculations in [6, Proposition 3.6]).

It follows that the operators given by symbols in M^0 do not exhaust the class of compact localization operators. The example just mentioned suggest the condition in our next results.

Lemma 3.4 Let $F \in M^{\infty}(\mathbb{R}^d)$ and $g_0 \in \mathcal{S}(\mathbb{R}^d)$ be given with the property that $\lim_{|x|\to\infty} \sup_{|\xi|\leq R} |V_{g_0}F(x,\xi)| = 0 \text{ for every } R > 0. \text{ Then } F * H \in M^{0,1}(\mathbb{R}^d) \text{ for any}$ $H \in \mathcal{S}(\mathbb{R}^d).$

To show this lemma we recall the following convolution relation

Lemma 3.5 [6, 2.4] Let $g_0 \in \mathcal{S}(\mathbb{R}^d)$ and $g := g_0 * g_0$ be given. Let us assume $\frac{1}{p_1} + \frac{1}{p_2} - 1 = \frac{1}{r}$ and $\frac{1}{q_1} + \frac{1}{q_2} = \frac{1}{s}$. Then, for any $f \in M^{p_1,q_1}(\mathbb{R}^d)$ and $h \in M^{p_2,q_2}(\mathbb{R}^d)$, we have $f * h \in M^{r,s}(\mathbb{R}^d)$ and

$$V_g(f*h)(\cdot,\omega) = V_{g_0}f(\cdot,\omega)*V_{g_0}h(\cdot,\omega).$$

Proof of Lemma 3.4: Since $V_{g_0}H \in \mathcal{S}(\mathbb{R}^{2d})$ then for every $N \in \mathbb{N}$ there is $C_N > 0$ such that

$$|V_{g_0}H(t,\omega)| \le C_N (1+|\omega|)^{-2N} (1+|t|)^{-N}.$$

Consequently, for $g = g_0 * g_0$, we obtain

$$\begin{aligned} |V_g(F * H)(x, \omega)| &= |(V_{g_0}F(\cdot, \omega) * V_{g_0}H(\cdot, \omega))(x)| \\ &\leq C_N(1+|\omega|)^{-2N} \int_{\mathbb{R}^d} |V_{g_0}F(x-t, \omega)| \frac{1}{(1+|t|)^N} dt. \end{aligned}$$

We take N large enough so that $\int_{\mathbb{R}^d} \frac{dt}{(1+|t|)^N} < +\infty$ (for instance, N = d+1).

Now, given $\epsilon > 0$ there is $R_1 > 0$ such that $|\omega| \ge R_1$ implies

$$(1+|\omega|)^{-N} C_N ||F||_{M^{\infty}} \int_{\mathbb{R}^d} \frac{dt}{(1+|t|)^N} \le \epsilon.$$

Then

$$(1+|\omega|)^N |V_g(F*H)(x,\omega)| \le \epsilon$$

for all $x \in \mathbb{R}^d$ and $|\omega| \ge R_1$. We now choose $\delta > 0$ small enough so that

$$\delta + C_N \delta \int_{\mathbb{R}^d} \frac{dt}{(1+|t|)^N} \le \epsilon.$$

Since $\lim_{|x|\to\infty} \sup_{|\xi|\leq R_1} |V_{g_0}F(x,\xi)| = 0$ then there is $R_2 > 0$ such that

$$\int_{|t|>R_2} \frac{dt}{(1+|t|)^N} \le \frac{\delta}{C_N ||F||_{M^{\infty}}}$$

and $|V_{g_0}F(x,\omega)| \leq \delta$ whenever $|x| \geq R_2$ and $|\omega| \leq R_1$. Consequently, for $|x| \geq 2R_2$ and $|\omega| \leq R_1$, we obtain that

$$(1+|\omega|)^N |V_g(F*H)(x,\omega)|$$

is less than or equal to

$$\delta + C_N \left(1 + |\omega| \right)^{-N} \int_{|t| \le R_2} |V_{g_0} F(x - t, \omega)| \frac{1}{(1 + |t|)^N} dt$$

$$\leq \delta + C_N \delta \int_{\mathbb{R}^d} \frac{dt}{(1+|t|)^N}$$

 $\leq \epsilon$.

Hence, $|x| \ge 2R_2$ gives

$$(1+|\omega|)^N |V_g(F*H)(x,\omega)| \le \epsilon$$

for all $\omega \in \mathbb{R}^d$. That is,

$$\int_{\mathbb{R}^d} |V_g(F * H)(x, \omega)| d\omega \le \epsilon \int_{\mathbb{R}^d} \frac{d\omega}{(1 + |\omega|)^N}$$

for all $|x| \ge 2R_2$. We conclude that

$$\lim_{|x|\to\infty}||V_g(F*H)(x,\cdot)||_{L^1}=0$$

which implies that $F * H \in M^{\infty,1}(\mathbb{R}^d)$. Moreover, the previous estimates give that $V_g(F * H)$ vanishes at infinity and $F * H \in M^{0,1}$ ([1, def. 2.1]).

We observe that lemma 3.4 does not hold for arbitrary $F \in M^{\infty}$. In fact, if we consider $F \equiv 1 \in M^{\infty}$ and $H \in S(\mathbb{R}^d)$ with $\int H = 1$ then F * H is constant equal to 1 and

$$V_g(F * H)(x, \omega) = e^{-2\pi i \omega x} \hat{\overline{g}}(\omega).$$

That is, for a fixed ω , the function of x, $|V_g(F * H)(x, \omega)|$ is a constant different from zero and, consequently, $F * H \notin M^0$.

The sufficient conditions in [3, 4.6, 4.7] in the case p = q = 2 are particular cases of our following result. In the proof we make use of the representation of localization operators as Weyl operators.

Proposition 3.6 Let $g \in \mathcal{S}(\mathbb{R}^{2d})$ be given. If $\lim_{|x|\to\infty} \sup_{|\xi|\leq R} |V_g F(x,\xi)| = 0$ for

every R > 0, then $L^F_{\varphi,\psi} : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is a compact operator.

Proof: We put $H := W(\psi, \varphi) \in \mathcal{S}(\mathbb{R}^{2d})$. Then $\sigma := F * H \in M^{0,1}(\mathbb{R}^{2d})$ and $L^F_{\varphi,\psi}$ is compact since it coincides with the Weyl operator L_{σ} and we use [1, 2.3].

Theorem 3.7 [6, 3.4] The map $T_{\varphi,\psi}$ restricted to $M^1(\mathbb{R}^{2d})$ takes values in the space of trace class operators and

$$T_{\varphi,\psi}: M^1(\mathbb{R}^{2d}) \to S_1 , F \mapsto L^F_{\varphi,\psi},$$

is continuous.

Now, we look at the transpose map $T_{\varphi,\psi}^t : L\left(L^2(\mathbb{R}^d)\right) \to M^\infty(\mathbb{R}^{2d})$, which assigns to every bounded linear operator on $L^2(\mathbb{R}^d)$ a symbol in $M^\infty(\mathbb{R}^{2d})$. We are particularly interested in the action of $T_{\varphi,\psi}^t$ on compact operators and on localization operators.

Since compact linear operators on $L^2(\mathbb{R}^d)$ can be approximated by finite rank operators, we get

Lemma 3.8 $T_{\varphi,\psi}^t(K(L^2,L^2))$ is contained in $M^0(\mathbb{R}^{2d})$.

Proof: Since $(M^1(\mathbb{R}^{2d}))^* = M^\infty(\mathbb{R}^{2d})$ and M^0 is a closed subspace of M^∞ we only have to prove that $T^t_{\varphi,\psi}(S) \in M^0$ for any finite rank operator $S : L^2 \to L^2$. To do this, we fix a finite rank operator

$$S := \sum_{k=1}^{N} \langle \cdot, g_k \rangle f_k$$

where $f_k, g_k \in L^2$. Then, for any $F \in M^1(\mathbb{R}^{2d})$ we have

$$(T^t_{\varphi,\psi}(S), F) = (S, T_{\varphi,\psi}(F)) = \operatorname{Trace}(S \circ L^F_{\varphi,\psi}).$$

Since the adjoint operator of $L^F_{\varphi,\psi}$ is $L^{\overline{F}}_{\psi,\varphi}$, then

$$S \circ L^F_{\varphi,\psi} = \sum_{k=1}^N \left\langle \cdot, L^{\overline{F}}_{\psi,\varphi} g_k \right\rangle f_k$$

and

$$\left(T_{\varphi,\psi}^t(S),F\right) = \sum_{k=1}^N \left\langle f_k, L_{\psi,\varphi}^{\overline{F}}g_k \right\rangle = \sum_{k=1}^N \int_{\mathbb{R}^d} f_k \overline{L_{\psi,\varphi}^{\overline{F}}g_k}.$$

On the other hand, for $F \in \mathcal{S}(\mathbb{R}^{2d})$ we have

$$\int_{\mathbb{R}^d} f_k \overline{L^{\overline{F}}_{\psi,\varphi} g_k} = \int_{\mathbb{R}^{2d}} F(x,\omega) \overline{V_{\psi} g_k(x,\omega)} V_{\varphi} f_k(x,\omega) dx d\omega.$$

Hence

$$T_{\varphi,\psi}^t(S) = \sum_{k=1}^N \overline{V_{\psi}g_k} \cdot V_{\varphi}f_k,$$

which is an element of $L^1(\mathbb{R}^{2d}) \subset M^0(\mathbb{R}^{2d})$. The proof is finished.

Our aim now is to find the relation between the symbol $F \in M^{\infty}(\mathbb{R}^{2d})$ of the localization operator $L^{F}_{\varphi,\psi}$ and the symbol we obtain as the image of $L^{F}_{\varphi,\psi}$ by $T^{t}_{\varphi,\psi}$. In the next lemma, (x_{j}, ω_{j}) are points in the partition we get when we divide the cube $[a, b]^{2d}$ into k^{2d} equal cubes.

Lemma 3.9 Let $F \in \mathcal{D}(\mathbb{R}^{2d})$ be a test function with support contained in $[a, b]^{2d}$. Then $L^F_{\varphi, \psi}$ is the limit in the space $L\left(L^2(\mathbb{R}^d), L^2(\mathbb{R}^d)\right)$ of the sequence of finite rank operators

$$S_k: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$$

defined by

$$S_k := \left(\frac{b-a}{k}\right)^{2d} \sum_{j=1}^{k^{2d}} F(x_j, \omega_j) \left\langle \cdot, M_{\omega_j} T_{x_j} \varphi \right\rangle M_{\omega_j} T_{x_j} \psi.$$

Proof: In fact, since for every $f \in L^2(\mathbb{R}^d)$ the map $\mathbb{R}^{2d} \to L^2(\mathbb{R}^d)$ given by

 $(x,\omega)\mapsto M_{\omega}T_{x}f$ is continuous, we conclude that

$$(x,\omega) \mapsto F(x,\omega) \langle \cdot, M_{\omega} T_x \varphi \rangle M_{\omega} T_x \psi$$

is a uniformly continuous map

$$\Phi: [a,b]^{2d} \to L_b\left(L^2(\mathbb{R}^d), L^2(\mathbb{R}^d)\right).$$

Then $L^F_{\varphi,\psi}: L^2 \to L^2$ is the vector integral

$$L^F_{\varphi,\psi} = \int\limits_{[a,b]^{2d}} \Phi(x,\omega) dx d\omega,$$

and the conclusion follows since each S_k is a Riemann sum of the integral. ${\scriptstyle \bullet}$

Proposition 3.10 For every $F \in M^{\infty}(\mathbb{R}^{2d})$ we have

$$T_{\varphi,\psi}^t\left(L_{\varphi,\psi}^F\right) = F * \left(\overline{V_{\psi}\varphi}V_{\varphi}\psi\right).$$

Proof: In fact, let us first assume that $F \in \mathcal{D}(\mathbb{R}^{2d})$ is a test function with support contained in $[a, b]^{2d}$. Then

$$T^t_{\varphi,\psi}(L^F_{\varphi,\psi}) = \lim_{k \to \infty} T^t_{\varphi,\psi}(S_k).$$

According to lemma 3.8 and after applying ([9, 3.1.3]) we get

$$T_{\varphi,\psi}^t(S_k) = \left(\frac{b-a}{k}\right)^{2d} \sum_{j=1}^{k^{2d}} F(x_j,\omega_j) \overline{V_{\psi}\left(M_{\omega_j}T_{x_j}\varphi\right)} V_{\varphi}\left(M_{\omega_j}T_{x_j}\psi\right)$$

$$= \left(\frac{b-a}{k}\right)^{2d} \sum_{j=1}^{k^{2d}} F(x_j, \omega_j) \left(\overline{V_{\psi}\varphi}V_{\varphi}\psi\right) (x-x_j, \omega-\omega_j).$$

Consequently $T^t_{\varphi,\psi}(L^F_{\varphi,\psi})(x,\omega)$ is given by

$$\lim_{k \to \infty} \left(\frac{b-a}{k}\right)^{2d} \sum_{j=1}^{k^{2d}} F(x_j, \omega_j) \left(\overline{V_{\psi}\varphi}V_{\varphi}\psi\right) \left(x - x_j, \omega - \omega_j\right)$$

$$= \int_{\mathbb{R}^{2d}} F(y,\varsigma) \left(\overline{V_{\psi}\varphi} V_{\varphi}\psi \right) (x-y,\omega-\varsigma) dy d\varsigma$$

$$= F * \left(\overline{V_{\psi}\varphi} V_{\varphi}\psi \right)(x,\omega).$$

To finish we consider an arbitrary $F \in M^{\infty}(\mathbb{R}^{2d})$. Since $M^{\infty}(\mathbb{R}^{2d})$ is the bidual of $M^0(\mathbb{R}^{2d})$ and $\mathcal{D}(\mathbb{R}^{2d})$ is a dense subspace of $M^0(\mathbb{R}^{2d})$ we can find a net (F_j) consisting of test functions which converges to F in the weak *topology $\sigma(M^{\infty}, M^1)$.

We now show that $L^F_{\varphi,\psi}$ is the $\sigma(L(L^2, L^2), S_1)$ -limit of the net $L^{F_j}_{\varphi,\psi}$. To do this we fix a nuclear operator

$$S := \sum_{n=1}^{\infty} \langle \cdot, g_n \rangle f_n$$

where $\sum_{n=1}^{\infty} ||f_n||_{L^2} ||g_n||_{L^2} < +\infty$. Then

$$\left(L^{F}_{\varphi,\psi} - L^{F_{j}}_{\varphi,\psi}, S\right) = \operatorname{Trace}\left(L^{F-F_{j}}_{\varphi,\psi} \circ S\right)$$

$$=\sum_{n=1}^{\infty}\left\langle F-F_{j},\overline{V_{\psi}g_{n}}V_{\varphi}f_{n}\right\rangle .$$

Since the series $h := \sum_{n=1}^{\infty} \overline{V_{\psi}g_n} V_{\varphi} f_n$ is absolutely converging in $M^1(\mathbb{R}^{2d})$ ([6,

(5.2]) we conclude that

$$\left(L_{\varphi,\psi}^F - L_{\varphi,\psi}^{F_j}, S\right) = \left\langle F - F_j, h \right\rangle,\,$$

hence

$$\lim_{j} \left(L_{\varphi,\psi}^{F} - L_{\varphi,\psi}^{F_{j}}, S \right) = 0.$$

Consequently

$$T_{\varphi,\psi}^t\left(L_{\varphi,\psi}^F\right) = \sigma(M^\infty, M^1) - \lim_j T_{\varphi,\psi}^t\left(L_{\varphi,\psi}^{F_j}\right)$$

$$= \sigma(M^{\infty}, M^{1}) - \lim_{j} \left(F_{j} * \left(\overline{V_{\psi} \varphi} V_{\varphi} \psi \right) \right).$$

In particular, for every $g \in \mathcal{S}(\mathbb{R}^{2d})$ we have

$$\left(T_{\varphi,\psi}^{t}\left(L_{\varphi,\psi}^{F}\right),g\right) = \lim_{j}\left(F_{j}*\left(\overline{V_{\psi}\varphi}V_{\varphi}\psi\right),g\right)$$

$$= \left(F * \left(\overline{V_{\psi}\varphi}V_{\varphi}\psi\right), g\right)$$

since $(\overline{V_{\psi}\varphi}V_{\varphi}\psi) * g \in \mathcal{S}(\mathbb{R}^{2d})$ and (F_j) converges to F weakly in $\mathcal{S}'(\mathbb{R}^{2d})$.

Proposition 3.11 Let $F \in M^{\infty}(\mathbb{R}^{2d})$ be a symbol such that

$$L^F_{\varphi,\psi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$$

is a compact operator. Then

$$F * \left(\overline{V_{\psi}\varphi} V_{\varphi}\psi \right) \in M^0(\mathbb{R}^{2d}).$$

This necessary condition for compactness gives some information as the following example shows. **Example 3.12** Let $F \in M^{\infty}(\mathbb{R}^{2d})$, $F \neq 0$, be a periodic distribution. Then $L^{F}_{\varphi,\psi}: L^{2}(\mathbb{R}^{d}) \to L^{2}(\mathbb{R}^{d})$ is not a compact operator.

To obtain a complete characterization of compact localization operators in terms of the symbol we need the following result on collectively compact sets of operators.

Theorem 3.13 [13] Let E, F be Banach spaces and $\mathcal{K} \subset K(E, F)$ a set of compact operators. Then, \mathcal{K} is relatively compact if, and only if, the following two conditions are satisfied:

(i) $\bigcup (R(B_E) : R \in \mathcal{K})$ is relatively compact in F.

(ii) For every $u \in F'$, the set $\{u \circ R : R \in \mathcal{K}\}$ is relatively compact in E^* .

Lemma 3.14 Let $F \in M^{\infty}(\mathbb{R}^{2d})$ be a symbol and let us assume that $L^{F}_{\varphi,\psi}$: $L^{2}(\mathbb{R}^{d}) \to L^{2}(\mathbb{R}^{d})$ is a compact operator for every $\varphi, \psi \in \mathcal{S}(\mathbb{R}^{d})$. Then, for every $\varphi, \psi \in \mathcal{S}(\mathbb{R}^{d})$ and R > 0 the set

$$\mathcal{K} := \{ L^{M_{\omega}F}_{\varphi,\psi} : |\omega| \le R \}$$

is relatively compact in $K(L^2, L^2)$.

Proof: According to [6, p.126], for $\omega = (\omega_1, \omega_2) \in \mathbb{R}^{2d}$ and $f \in L^2(\mathbb{R}^d)$ we have

$$M_{\omega}V_{\varphi}f = V_{M_{\omega_1}T_{\omega_2}\varphi}\left(M_{\omega_1}T_{-\omega_2}f\right).$$

Hence

$$L^{M_{\omega}F}_{\varphi,\psi}f = L^F_{M_{\omega_1}T_{\omega_2}\varphi,\psi}\left(M_{\omega_1}T_{-\omega_2}f\right).$$

In particular, each $L^{M_\omega F}_{\varphi,\psi}$ is a compact operator. Since the map

$$\mathbb{R}^{2d} \to \mathcal{S}(\mathbb{R}^d) , \ \omega \mapsto M_{\omega_1} T_{\omega_2} \varphi$$

is continuous ([9, 11.2.2]) and $\mathcal{S}(\mathbb{R}^d)$ is contained in $M^1(\mathbb{R}^d)$ with continuous inclusion, we can conclude, after applying [6, 3.2], that the set

$$\mathcal{K}_1 := \{ L^F_{M_{\omega_1} T_{\omega_2} \varphi, \psi} : |\omega| \le R \}$$

is a compact subset of $K(L^2, L^2)$. We can now apply 3.13 to show that \mathcal{K} is relatively compact in $K(L^2, L^2)$. In fact, (i) since M_{ω_1} and $T_{-\omega_2}$ are isometries on $L^2(\mathbb{R}^d)$ we get that

$$\{M_{\omega_1}T_{-\omega_2}f: ||f||_{L^2} \le 1, |\omega| \le R\}$$

is a subset of the unit ball of $L^2(\mathbb{R}^d)$. Since \mathcal{K}_1 is a compact set of compact operators we deduce that

$$\mathcal{K} = \{ L^F_{M_{\omega_1} T_{\omega_2} \varphi, \psi} \circ (M_{\omega_1} T_{-\omega_2}) \}$$

transforms the unit ball into a relatively compact subset of $L^2(\mathbb{R}^d)$. Moreover,

(ii) the adjoint map of $L^{M_{\omega}F}_{\varphi,\psi}$ is given by $L^{M_{-\omega}\overline{F}}_{\psi,\varphi}$ and, for any $f \in L^2(\mathbb{R}^d)$, we can proceed as in (i) to conclude that the set

$$\{L^{M_{-\omega}\overline{F}}_{\psi,\varphi}f : |\omega| \le R\}$$

is relatively compact in $L^2(\mathbb{R}^d)$.

Theorem 3.15 Let $F \in M^{\infty}(\mathbb{R}^{2d})$ and $g_0 \in \mathcal{S}(\mathbb{R}^{2d})$ be given. Then, the following conditions are equivalent:

(a) The localization operator $L^F_{\varphi,\psi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is compact for every $\varphi, \psi \in \mathcal{S}(\mathbb{R}^d)$.

(b) For every R > 0 we have

$$\lim_{|x|\to\infty}\sup_{|\xi|\le R}|V_{g_0}F(x,\xi)|=0.$$

Proof: (b) implies (a) is the content of proposition 3.6. We proceed to prove that (a) implies (b). To do this, we fix a non zero and even window $\varphi \in \mathcal{S}(\mathbb{R}^d)$ and we take $\psi = \varphi$ and $\Phi := \overline{V_{\psi}\varphi}V_{\varphi}\psi = |V_{\varphi}\varphi|^2 \in \mathcal{S}(\mathbb{R}^{2d})$. Since

$$V_{\Phi*\Phi}F(x,\omega) = \langle F, M_{\omega}T_x(\Phi*\Phi) \rangle = \langle M_{-\omega}F, \Phi*T_x\Phi \rangle$$

$$= \langle M_{-\omega}F * \Phi, T_x\Phi \rangle = V_{\Phi} \left(M_{-\omega}F * \Phi \right) (x, 0)$$

and

$$\mathcal{K} := \{ L^{M_{-\omega}F}_{\varphi,\varphi} : |\omega| \le R \}$$

is a relatively compact subset of compact operators then we conclude that

$$T^t_{\varphi,\varphi}(\mathcal{K}) = \{ M_{-\omega}F * \Phi : |\omega| \le R \}$$

is a relatively compact subset of $M^0(\mathbb{R}^{2d})$. Since $\{V_{\Phi}(M_{-\omega}F * \Phi) : |\omega| \leq R\}$ is relatively compact in the Banach space $C_0(\mathbb{R}^{2d})$ consisting of those continuous functions vanishing at infinity, then

$$\lim_{|x|\to\infty}\sup_{|\omega|\leq R}|V_{\Phi*\Phi}F(x,\omega)| = \lim_{|x|\to\infty}\sup_{|\omega|\leq R}|V_{\Phi}\left(M_{-\omega}F*\Phi\right)(x,0)| = 0.$$

Finally, it follows from the inequality [9, 11.3.3]

$$|V_{g_0}F(x,\omega)| \le ||\gamma||_{L^2}^{-1} \left(|V_{\gamma}F| * |V_{g_0}\gamma|\right)(x,\omega)$$

for $\gamma = \Phi * \Phi$, that condition (b) holds.

Remark 3.16 Our methods permit to recover the necessary Schatten class conditions in [7] as follows. Given two windows φ, ψ in the Schwartz class on \mathbb{R}^d and for 1 or <math>p = 0 the map

$$T^p_{\varphi,\psi}: M^p(\mathbb{R}^{2d}) \to S_p \ , F \mapsto L^F_{\varphi,\psi},$$

(here $S_0 := K(L^2, L^2)$) is well-defined and continuous, and in fact we have the norm estimate

$$||L_{\varphi,\psi}^F||_{S_p} \le B||F||_{M^p}||\varphi||_{M^1}||\psi||_{M^1}$$

For $p \neq 0$ this result is part of [7, Th 1]. Clearly $T^p_{\varphi,\psi}|_{M^1(\mathbb{R}^{2d})}$ coincides with $T_{\varphi,\psi}$ in Theorem 3.7. Now we use that, for $1 , <math>(S_p)^*$ is isomorphic to $S_{p'}$ via trace duality, therefore

$$(T^p_{\varphi,\psi})^t: S_{p'} \to M^{p'}(\mathbb{R}^{2d})$$

is also linear and continuous and since finite rank operators are dense in $S_{p'}$ and the Schwartz class is dense in $M^{p'}(\mathbb{R}^{2d})$ we can easily conclude that $(T^p_{\varphi,\psi})^t = T^t_{\varphi,\psi}|S_{p'}$. Consequently, if $M \in M^{\infty}(\mathbb{R}^{2d})$ and the corresponding localization operator $L^M_{\varphi,\psi} \in S_{p'}$ we have $F * \Phi \in M^{p'}(\mathbb{R}^{2d})$ for $\Phi = \overline{V_{\psi}\varphi}V_{\varphi}\psi$. Let us now assume that $L^F_{\varphi,\psi} \in S_{p'}$ for every pair of windows φ, ψ in the Schwartz class with norm estimate

$$||L_{\varphi,\psi}^F||_{S_p} \le B||F||_{M^p}||\varphi||_{M^1}||\psi||_{M^1}$$

where the constant B may depend on F but it is independent on the windows. Then, from $L^{M_{\omega}F}_{\varphi,\psi}f = L^{F}_{M_{\omega_{1}}T_{\omega_{2}}\varphi,\psi}(M_{\omega_{1}}T_{-\omega_{2}}f)$ we deduce that $\{L^{M_{\omega}F}_{\varphi,\psi}: \omega \in \mathbb{R}^{2d}\}$ is a bounded subset of $S_{p'}$, hence $\{M_{\omega}F * \Phi : \omega \in \mathbb{R}^{2d}\}$ is bounded in $M^{p'}(\mathbb{R}^{2d})$ and a fortiori in $M^{p',\infty}(\mathbb{R}^{2d})$. Now, we may proceed as in the previous theorem to conclude that $F \in M^{p',\infty}(\mathbb{R}^{2d})$.

Acknowledgement. The authors are indebted to Paolo Boggiatto for bringing their attention to this topic.

References

- A. Bényi, K. Gröchenig, C. Heil, K. Okoudjou; Modulation spaces and a class of multilinear pseudodifferential operators, J. Operator Theory, to appear.
- [2] P. Boggiatto; Localization operators with L^p symbols on modulation spaces, Advances in Pseudodifferential Operators, Operator Theory: Advances and Appl., Birkhäuser, Proc. ISAAC Congress, 2003.
- [3] P. Boggiatto; Boundedness and compactness of localization operators on modulation spaces, Quaderni del Departamento di matematica, N. 15 (2004).
- [4] P. Boggiatto, E. Cordero, K. Gröchenig; Generalized Anti-Wick operators with symbols in distributional Sobolev spaces, Integr. equ. oper. theory 48 (2004), 427-442.
- [5] P. Boggiatto, A. Oliaro, M. W. Wong; Some results of L^p boundedness and compactness for localization operators, Preprint (2004).
- [6] E. Cordero, K. Gröchenig; *Time-Frequency analysis of localization operators*, Journal of Functional Analysis, **205** (2003), 107-131.
- [7] E. Cordero, K. Gröchenig; Necessary conditions for Schatten class localization operators, PAMS (To appear).
- [8] I. Daubechies; Time-frequency Localization Operators: a Geometric Phase Space Approach, IEEE Trans. Inform. Theory, 34(4) (1988), 605-612.
- [9] K. Gröchenig; Foundations of Time-Frequency Analysis, *Birkhäuser* (2001).
- [10] K. Gröchenig, C. Heil; Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory, 34 (1999), 439-457.
- [11] H. Jarchow; Locally convex spaces, B. G. Teubner (1981).

- [12] R. Meise, D. Vogt; Introduction to Functional Analysis, Clarendon Press, Oxford (1997).
- [13] W. Ruess; Compactness and collective compactness in spaces of compact operators, J. Math. Anal. Appl. 84 (2) (1981), 400-417.
- [14] L. Schwartz; Théorie des distributions, Hermann Paris (1978).