
SUPERPOSITION IN CLASSES OF
ULTRADIFFERENTIABLE FUNCTIONS
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Abstract. We present a complete characterization of the classes of ul-
tradifferentiable functions that are holomorphically closed. Moreover,
we show that any class holomorphically closed is also closed under com-
position (now without restrictions on the number of variables). In this
case, we also discuss continuity and differentiability properties of the
non-linear superposition operator g → f ◦ g.

0. Introduction.

It is a well-known fact that the composition of two C∞ (respectively ana-

lytic) functions is again C∞ (resp. analytic). Mainly motivated by the study

of (the regularity of) elementary solutions of linear partial differential op-

erators with constant coefficients, several intermediate classes of functions

between real analytic and C∞ functions have been introduced and studied

during the last century, and hence it is natural to investigate whether these

new classes of functions, known as classes of ultradifferentiable functions,

are closed by composition. The first result in this direction seems to be due

to M. Gevrey, who introduced a scale of intermediate spaces, the so-called

Gevrey classes, and showed that the composition of two functions in a given

class remains in the same class.

A class F of real or complex valued functions is said to be inverse closed

if 1/f remains in the class whenever f is in the class and it does not vanish,

and it is said to be holomorpically closed if F ◦ f ∈ F for every f ∈ F and

for each function F which is holomorphic on a complex neighborhood of the

range of f.

The problem of characterizing the Denjoy-Carleman classes which were

inverse closed, or equivalently holomorphically closed, was posed by P.
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2 SUPERPOSITION OPERATORS

Malliavin [19]. In the non-quasianalytic setting and for 2π-periodic func-

tions the problem was solved by W. Rudin [27], and later extended to general

Denjoy-Carleman classes on R by Boman and Hörmander [6].

Similar results were obtained by Roumieu [26], who studied conditions

on a sequence (Np)p∈N in order to guarantee that f ◦ g ∈ E{Mp} provided

that f ∈ E{Mp}, g ∈ E{Np} and E{Np} ⊂ E{Mp} with continuous inclusion. In

particular, taking Np = p!, he showed that f ◦ g ∈ E{Mp} if f ∈ E{Mp} and

g is real-analytic. Then, he was able to define N−dimensional manifolds of

class (Np)p∈N and also functions of class (Mp)p∈N on these manifolds.

More recently Siddiqui and Ider [29] studied the inverse closed spaces

of ultradifferentiable function of Roumieu type (with uniform bounds on

R and without requiring logarithmic convexity for the defining sequence),

and Bruna [9] considered the same problem for some classes of Beurling

type. Using almost analytic extensions, Petzsche and Vogt [25] showed

that the classes of ultradifferentiable functions considered by Björck [3] are

holomorphically closed. Almost analytic extensions were the main tool used

by Dynkin [11] to show that several classes of smooth functions were closed

by composition. We also refer to [1, 2], where some results concerning the

continuity of the non-linear superposition operator are included.

We will present a complete characterization of the classes of ultradiffer-

entiable functions on the real line that are holomorphically closed. Our

approach to the classes of ultradifferentiable functions is the one of Braun,

Meise and Taylor [8]. In particular, our result applies to the most relevant

cases considered by Komatsu [16]. As follows from our results, the behaviour

of a given non-quasianalytic class of Beurling type with respect to the prob-

lem of being holomorphically closed is similar to that of the corresponding

class of Roumieu type. Moreover, we show that any class holomorphically

closed is also closed under composition (now without restrictions on the

number of variables). In this case, we also discuss differentiability proper-

ties of the non-linear superposition operator g → f ◦ g.

1. Preliminaries

First we introduce the spaces of functions and most of the notation that

will be used in the sequel. All definitions are taken from [8].

Definition 1.1. Let ω : [0,∞[→ [0,∞[ be a continuous function which is

increasing and satisfies ω(0) = 0 and ω(1) > 0. Then ω is called a weight

function if it satisfies the following conditions:

(α) ω(et) ≤ L(1 + ω(t)) for some L ≥ 1 and for all t > 0.
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(β)

∫ ∞

1

ω(t)

t2
dt < ∞.

(γ) log(t) = o(ω(t)) as t tends to ∞.

(δ) ϕ : t → ω(et) is convex.

A weight ω is equivalent to a sub-additive weight if, and only if, ω has

property

(α0) ∃C1 ∃t0 > 0 ∀λ ≥ 1 ∀t ≥ t0 :

ω(λt) ≤ λC1ω(t).

The above condition should be compared with [25, page 19] and [23, lemma

1]. The Young conjugate of ϕ is defined by ϕ∗(x) = supy>0{xy − ϕ(y)}.

Definition 1.2. Let ω be a weight function and let Ω be an open set in RN .

We define,

E(ω)(Ω) := {f ∈ C∞(Ω) :‖ f ‖K,λ< ∞, for every K ⊂⊂ Ω, and everyλ > 0},
and

E{ω}(Ω) := {f ∈ C∞(Ω) : for every K ⊂⊂ Ω, there existsλ > 0 such that

‖ f ‖K,λ< ∞},
where

‖ f ‖K,λ:= sup
x∈K

sup
α∈Nn

0

| f (α)(x) | exp(−λϕ∗(
| α |
λ

)).

E(ω)(Ω) is endowed with its natural Fréchet topology, while E{ω}(Ω) is a

projective limit of (LB) spaces.

The elements of E(ω)(Ω) (resp. E{ω}(Ω)) are called ω-ultradifferentiable

functions of Beurling (resp. Roumieu) type. We write E∗(Ω), where ∗ can

be either (ω) or {ω}.We put

D∗(K) = {f ∈ E∗(Ω) : suppf ⊂ K}
and

D∗(Ω) := ind
j→
D∗(Kj)

where (Kj)j∈N denotes a fundamental sequence of compact sets of Ω.

We mention that ω(t) := |t|1/d (d > 1) are weight functions satisfying

property (α0) and that the corresponding Roumieu class is the Gevrey class

with exponent d.

From now on, the elements in E∗(Ω) will be, in general, real valued and we

will write E∗(Ω;C) for complex valued functions. We will denote by H(U)

the space of holomorphic functions on an open subset U ⊂ C and by A(R)

the space of real analytic functions.
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2. The one variable case.

The aim of this section is to characterize, in terms of the weight function

ω, the classes of ultradifferentiable functions on the real line which are

holomorphically closed. For some spaces of ultradifferentiable functions of

Beurling type, this was done by Bruna [9]. Petzsche and Vogt [25] showed

that this is the case for both the Beurling and the Roumieu case if the weight

function is (equivalent to a) sub-additive, using almost analytic extensions.

Our next proposition is an easy application of the Faà di Bruno formula.

Proposition 2.1. Let us assume that ω satisfies (α0) and let f, g ∈ E∗(R)

be given. Then f ◦ g ∈ E∗(R). Moreover,

(1) In the case ∗ = {ω}: For every λ > 0 and C1 > 0 there exist

µ > 0 and C2 > 0 such that the condition ‖ g ‖K,2λ≤ C1 implies

‖ f ◦ g ‖K,µ≤ C2 ‖ f ‖g(K),λ .

(2) In the case ∗ = (ω): For every m ∈ N and C1 > 0 there exist

` ∈ N and C2 > 0 such that the condition ‖ g ‖K,m≤ C1 implies

‖ f ◦ g ‖K,m≤ C2 ‖ f ‖g(K),` .

Proof: We fix a compact subset K ⊂ R and we take λ > 0 and C1 > 0

such that

sup
x∈K

|g(j)(x)| ≤ C1 exp(2λϕ∗(
j

2λ
)), j = 0, 1, . . . .

We apply the Faà di Bruno formula (see e.g. [17, 1.3.1]) to get

(f ◦ g)(n)(x) =
∑ n!

k1! . . . kn!
f (k)(g(x))

(
g′(x)

1!

)k1

. . .

(
g(n)(x)

n!

)kn

where the sum is extended over all (k1, . . . , kn) such that k1+2k2+. . .+nkn =

n and k := k1 + . . . + kn.

From the convexity of ϕ∗ one easily gets that

exp(2λϕ∗(
j

2λ
)) ≤ Dλ exp(λϕ∗(

j − 1

λ
))

and hence

∣∣∣∣
g(j)(x)

j!

∣∣∣∣
kj

≤
(

C1
e2λϕ∗( j

2λ
)

j!

)kj

≤ (CλDλ)
kj

(
eλϕ∗( j−1

λ
)

(j − 1)!

)kj

.

Since ω satisfies condition (α0) we can assume, without loss of general-

ity, that ω is sub-additive ([25, 1.1]). In this case, the sequence aj :=
1
j!

exp(λϕ∗( j
λ
)) satisfies

ajak ≤ aj+k (2.1)
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(see [13, Lemma 3.3]). Consequently

∣∣∣∣
g(j)(x)

j!

∣∣∣∣
kj

≤ (C1Dλ)
kj

eλϕ∗(
(j−1)kj

λ
)

((j − 1)kj)!
.

Since
∑n

j=1(j − 1)kj = n − k we have, after applying 2.1 once again and

taking Bλ := C1Dλ,

n∏
j=1

∣∣∣∣
g(j)(x)

j!

∣∣∣∣
kj

≤ (Bλ)
k eλϕ∗(n−k

λ
)

(n− k)!

for all x ∈ K.

(a) The Roumieu case ∗ = {ω}.
We can assume λ small enough so that

C :=‖ f ‖g(K),λ< +∞.

Then

|(f ◦ g)(n)(x)| ≤ C
∑

n!
k1!...kn!

eλϕ∗( k
λ
)(Bλ)

k eλϕ∗( n−k
λ

)

(n−k)!

≤ C(Bλ)
n
∑

k!
k1!...kn!

eλϕ∗(n
λ

)

= CBn
λeλϕ∗(n

λ
)2n−1,

using the fact that
∑

k!
k1!...kn!

= 2n−1 and ϕ∗(n−k
λ

)+ϕ∗( k
λ
) ≤ ϕ∗(n

λ
). We now

consider s ∈ N such that (2Bλ)
n ≤ ens and we take L ≥ 1 as in (α). Then,

for µ := λL−s we obtain [14, 1.1.18]

λϕ∗(
n

λ
) + ns ≤ µϕ∗(

n

µ
) + µ

s∑
j=1

Lj.

Hence

|(f ◦ g)(n)(x)| ≤ C2Ceµϕ∗(n
µ

)

for some C2 > 0 and for all x ∈ K, n ∈ N and we conclude that f ◦ g ∈
E{ω}(R).

(b) The Beurling case ∗ = (ω).

We fix m ∈ N and we find ` ∈ N and D̃m such that

`ϕ∗(
k

`
) + k log Bm ≤ D̃m + mϕ∗(

k

m
)

for all k. Let us denote D :=‖ f ‖g(K),` . Since |f (k)(g(x))| ≤ De`ϕ∗( k
`
) for

all x ∈ K, k ∈ N0, we have (taking λ = m in the estimates above)

|(f ◦ g)(n)(x)| ≤ ∑
n!

k1!...kn!
De`ϕ∗( k

`
)(Bm)k emϕ∗( n−k

m )

(n−k)!

≤ De
eDm

∑
n!

k1!...kn!
emϕ∗( k

m
) emϕ∗( n−k

m )

(n−k)!

≤ DC2e
mϕ∗( n

m
)2n−1
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for all x ∈ K, n ∈ N0 (and for some C2 > 0 depending on m). Hence

f ◦ g ∈ E(ω)(R).

The use of almost analytic extensions as in [25], gives a different proof

of the above Proposition in the Roumieu setting. With the same argument

we recover [25, 3.6].

Proposition 2.2. For a weight with the property (α0), the conditions f ∈
H(C) and g ∈ E∗(R;C) imply f ◦ g ∈ E∗(R;C).

Now we analyze the necessity of condition (α0). According to a theorem

of Mitiagin, Zelazko and Rolewicz [20] (see also [12]), a Fréchet algebra A

(over the field K of real or complex numbers) is locally m-convex if, and

only if, for every a ∈ A and for every entire function φ(z) =
∑∞

n=0 cnzn

(with coefficients cn ∈ K), the series
∑∞

n=0 cnan converges in A. The next

argument is taken from [9].

Let us assume that the Fréchet algebra E(ω)(R;C) is holomorphically

closed. Then, by [20], E(ω)(R;C) is a locally m-convex algebra. Therefore

we find a continuous multiplicative seminorm q, positive constants C, B, a

and k ∈ N such that for each f ∈ E(ω)(R;C) and each m ∈ N,

||fm||[−1,1],1 ≤ Cq(fm) ≤ C(q(f))m ≤ C(B||f ||[−a,a],k)
m

in particular, for ft(x) := eitx the inequalities above imply that

exp(ω(tm)− log(tm)) ≤ CBm exp(mkω(t)).

It easily follows that ω satisfies (α0).

In order to get a similar result for the Roumieu classes we need a different

argument since, as shown in [31], there are (non metrizable) commutative

algebras in which all entire functions operate but which are not locally

multiplicative convex.

We observe that the Beurling class E(ω)(R;C) is contained in the Roumieu

class E{ω}(R;C). Hence, the next proposition implies that the condition (α0)

is necessary in order that the conditions h ∈ H(C) and f ∈ E∗(R;C) imply

h ◦ f ∈ E∗(R;C), ∗ being (ω) or {ω}.
For a test function ϕ ∈ D(ω)(R) we put

Pk(ϕ) := sup
t∈R

sup
j∈N0

|ϕ(j)(t)|e−kϕ∗( j
k
).

Proposition 2.3. Let ω be a weight function and let us assume that, for

any h ∈ H(Ω) and f ∈ E(ω)(R;C), the condition f(R) ⊂ Ω implies h ◦ f ∈
E{ω}(R;C). Then, ω satisfies condition (α0).
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Proof: We fix an increasing sequence (tj), 0 < tj < tj+1 < 1, and, for

each j ∈ N we select ψj ∈ D(ω)[tj, tj+1], 0 ≤ ψj ≤ 1, a test function which

is constant equal to 1 on a neighborhood of bj := 1
2
(tj + tj+1).

Let us assume that ω does not satisfy property (α0). Then, there are two

increasing sequences (kn) ⊂ N and (ξn) ⊂ R such that

ω(knξn)

knω(ξn)
≥ n2

and ξn is large enough so that
∑∞

n=1 e−nω(ξn) < 1 and

∞∑
n=1

e−ω(ξn)Pn(ψn) < +∞.

We consider an := e−nω(ξn), define fn(t) := ane
iξn(t−bn), n ∈ N, and prove

that f :=
∑∞

n=1 fnψn ∈ D(ω)[0, 1]. In fact, for any m ∈ N there are C > 0

and k ∈ N such that

Pm(fnψn) ≤ CPk(fn)Pk(ψn) , n ∈ N.

Since

Pk(fn) = |an| sup
j∈N0

|ξn|je−kϕ∗( j
k
) ≤ e−(n−k)ω(ξn)

then
∞∑

n=k+1

Pm(fnψn) ≤ C

∞∑

n=k+1

e−(n−k)ω(ξn)Pn(ψn)

≤ C

∞∑

n=k+1

e−ω(ξn)Pn(ψn) < +∞.

This shows that the series
∑∞

n=1 fnψn converges to a function f ∈ D(ω)[0, 1]

and f(R) ⊂ D.

By hypothesis,

Tf : H(D) → E{ω}(R;C), h → h ◦ f

is a well-defined continuous and linear map (by the closed graph theorem [15,

5.4.1]). Since B := {zk} is a bounded set inH(D) then Tf (B) = {fk : k ∈ N}
is a bounded set in E{ω}(R;C). Since f = fn in a neighborhood of bn we

have, for some µ > 0,

sup
n∈N

sup
k∈N

sup
j∈N

|(fk
n)(j)(bn)|e−µϕ∗( j

µ
) < +∞,

which implies,

sup
n∈N

sup
k∈N

sup
j∈N

ak
n|ξnk|je−µϕ∗( j

µ
) < +∞.

As µ
2
ω(knξn) ≤ supj∈N

(
j log |knξn| − µϕ∗( j

µ
)
)

, we deduce

−nknω(ξn) +
µ

2
ω(knξn) ≤ C
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for some constant C > 0 and for all n ∈ N. This contradicts the selection

of (kn) and (ξn).

3. From one to several variables

In the previous section we have obtained a complete characterization of

those non-quasianalytic classes of ultradifferentiable functions which are

holomorphically closed in terms of the weight function, and have shown

that these classes are closed by composition. Now, we want to extend

this result for higher dimensions. One could try to compute the partial

derivatives of a composition of two functions. An explicit expression of the

partial derivatives of f ◦ g for several variables, that is a multivariate Faà

di Bruno formula is given in [10]. However it seems too cumbersome. In

this section we provide a one-dimensional characterization of the classes

of ultradifferentiable functions of N variables, which should be compared

with [11, Theorem 1] and [21]. This permits us (in combination with tensor

product techniques) to analyze a composition f ◦ (g1, . . . , gk), where f ∈
E∗(Rk) and g1, . . . , gk ∈ E∗(RN). Let us recall that, as shown independently

by Bochnak [4] and Siciak [28], a C∞ function that is real analytic on every

line must be real analytic.

We start with the following result which can be found in [30, p. 226].

Lemma 3.1. Let P (t) =
n∑

j=0

ajt
j be a polynomial of degree less than or

equal to n. Then,

|aj| ≤ nj

j!
max
−1≤t≤1

|P (t)|.

An induction argument gives

Lemma 3.2. Let P (x) =
∑

|α|=k

aαxα, x ∈ RN , be a homogeneous polynomial

of degree k. Then

|aα| ≤ ekN max
||x||∞=1

|P (x)|.

Proof: We proceed by induction on the dimension N. For N = 1 this is

obvious. Let us assume that the lemma is true for homogeneous polynomials

on RN−1, N ≥ 2.

Now we put x = (y, t) ∈ RN−1 × R, α = (β, j), and

P (x) =
k∑

j=0

(
∑

|β|=k−j

a(β,j)y
β)tj.
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We denote M := max||x||∞=1 |P (x)| and we fix y ∈ RN−1 with ||y||∞ = 1.

For every −1 ≤ t ≤ 1 we have∣∣∣∣∣∣

k∑
j=0

(
∑

|β|=k−j

a(β,j)y
β)tj

∣∣∣∣∣∣
≤ M,

and we can apply Lemma 3.1 to get

max
||y||∞=1

∣∣∣∣∣∣
∑

|β|=k−j

a(β,j)y
β

∣∣∣∣∣∣
≤ Mek,

and the estimate holds for each 0 ≤ j ≤ k. Since
∑

|β|=k−j a(β,j)y
β is a

homogeneous polynomial of degree k − j in N − 1 variables, we obtain by

hypothesis

|a(β,j)| ≤ e(k−j)(N−1)Mek ≤ MekN

and the proof is finished.

In the next result fa,v(t) := f(a + tv), t ∈ R, and ||v||1 :=
∑N

j=1 |vj|.

Proposition 3.3. Let f ∈ D(RN) and B := {fa,v : a ∈ RN , ||v||1 = 1} be

given. Then f ∈ D(ω)(RN) (resp. f ∈ D{ω}(RN)) if and only if

sup
h∈B

||h||[−1,1],λ < +∞ (3.2)

for every λ > 0 (resp. for some λ > 0).

Proof: Let us assume f ∈ D∗(RN) and |f |λ < ∞, where

|f |λ := sup
x∈RN

sup
α∈NN

0

|f (α)(x)|e−λϕ∗( |α|
λ

).

We fix a ∈ RN , ||v||1 = 1 and we take ϕ := fa,v. Then

ϕ(k)(t) =
N∑

i1,...,ik=1

vi1 · · · vikDi1...ikf(a + tv).

Hence

|ϕ(k)(t)| ≤ |f |λ
N∑

i1,...,ik=1

|vi1 · · · vik |eλϕ∗( k
λ
) = |f |λ eλϕ∗( k

λ
) ||v||k1 = |f |λ eλϕ∗( k

λ
),

and

sup
|t|≤1

sup
k∈N0

|ϕ(k)(t)|e−λϕ∗( k
λ
) ≤ |f |λ

for every a ∈ RN and v ∈ RN with ||v||1 = 1.

Conversely, let us assume that B satisfies the condition (3.2). Given v =

(v1, . . . , vn) and α = (α0, . . . , αn) we put vα := vα0
1 · · · vαn

n . By assumption,

in the Beurling case, for each λ there is M > 0 (there are λ,M in the

Roumieu case) such that
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sup
−1≤t≤1

∣∣∣∣∣
N∑

i1,...,ik=1

vi1 · · · vikDi1...ikf(a + tv)

∣∣∣∣∣ e−λϕ∗( k
λ
) ≤ M

for all a ∈ RN and v ∈ RN with ||v||1 = 1. This means

sup
−1≤t≤1

|
∑

|α|=k

vα k!

α!
f (α)(a + tv)| ≤ Meλϕ∗( k

λ
)

whenever a ∈ RN and v ∈ RN with ||v||1 = 1 in particular, taking t = 0,

sup
||v||1=1

|
∑

|α|=k

vα k!

α!
f (α)(a)| ≤ Meλϕ∗( k

λ
).

Since P (v) :=
∑

|α|=k vα k!
α!

f (α)(a) is a homogeneous polynomial of degree k

in RN , an application of the Lemma 3.2 yields

|f (α)(a)| ≤ ekNNkMeλϕ∗( k
λ
)

for a ∈ RN and |α| = k. We put λ = µL2N for the constant L ≥ 1 as in

(α). As in the proof of 2.1 , it follows that [14, 1.1.18]

sup
x∈RN

sup
α∈NN

0

|f (α)(x)|e−µϕ∗( |α|
µ

) < ∞.

Corollary 3.4. Let us assume that ω satisfies (α0) and let be given real-

valued functions f ∈ E∗(R) and g ∈ E∗(RN). Then f ◦ g ∈ E∗(RN).

Proof: We fix χ ∈ D∗(RN) and we consider f ◦ (χg)− f(0) ∈ D(RN).

The proposition above implies that {(χg)a,v : a ∈ RN , ||v||1 = 1} is

a bounded set in E∗(R) and then, the proof of Proposition 2.1 gives that

{(f ◦χg)a,v : a ∈ RN , ||v||1 = 1} is a bounded set in E∗(R). Applying again

the previous proposition we conclude that f ◦ (χg)− f(0) ∈ D∗(RN). Since

χ is arbitrary we deduce that f ◦ g ∈ E∗(RN).

Proposition 3.5. Let ω be a weight function satisfying (α0), let f ∈ E∗(Rk)

and real valued functions g1, . . . , gk ∈ E∗(RN) be given. Then f◦(g1, . . . , gk) ∈
E∗(RN).

Proof: For every 1 ≤ j ≤ k we consider the linear and continuous

operator

Cj : E∗(R) → E∗(RN), ϕ → ϕ ◦ gj.

Let B denote the k−linear and continuous map

B : E∗(RN)× · · · × E∗(RN) −→ E∗(RN), B(ψ1, . . . , ψk) = ψ1 · · ·ψk,

and ∆ : E∗(RN) ⊗π · · · ⊗π E∗(RN) → E∗(RN) the induced map. Then,

S := ∆ ◦ (C1 ⊗ · · · ⊗ Ck) is a continuous and linear map

S : E∗(R)⊗π · · · ⊗π E∗(R) −→ E∗(RN).
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Moreover, for f = ϕ1 ⊗ · · · ⊗ ϕk we have

S(f)(x) = ∆(C1ϕ1 ⊗ · · · ⊗ Ckϕk)(x)
= ϕ1(g1(x)) · · ·ϕk(gk(x))
= f((g1(x), . . . , gk(x)).

Since E∗(R)⊗π . . .k)⊗πE∗(R) is a topological vector dense subspace of E∗(Rk),

[8, 8.1] we may extend S as a continuous and linear map S̃ : E∗(Rk) →
E∗(RN), and since each f ∈ E∗(Rk) can be approximated by elements in

E∗(R)⊗π . . .k) ⊗π E∗(R), we have that S̃(f) = f ◦ (g1, . . . , gk). In particular

f ◦ (g1, . . . , gk) ∈ E∗(RN), as desired.

Corollary 3.6. Let ω be a weight function satisfying (α0). Let Ω ⊂ RN

be open. Let g1, . . . , gk ∈ E∗(Ω) be real valued functions such that g =

(g1, . . . , gk) satisfies g(Ω) ⊂ U and U ⊂ Rk is open. Then f ◦ (g1, . . . , gk) ∈
E∗(Ω) for each f ∈ E∗(U).

Proof: Fix x0 ∈ Ω and take ψ ∈ D∗(Ω) identically 1 on a neighborhood

of x0. Let χ ∈ D∗(U) be identically 1 on a neighborhood of g(x0). As we have

seen, h = (χ)◦(ψg) ∈ E∗(RN). Since h and f ◦g coincide on a neighborhood

of x0, the conclusion follows.

Corollary 3.7. Let ω and σ be two weights such that

∫ ∞

1

ω(st)

t2
dt = O(σ(s))

as s →∞. If f ∈ E(σ)(Rk) (resp. E{σ}(Rk)) and g1, . . . , gk ∈ E(σ)(RN) (resp.

E{σ}(RN)) then f ◦ (g1, . . . , gk) ∈ E(ω)(RN) (resp. E{ω}(RN)).

Proof: We put

τ(s) :=

∫ ∞

1

ω(st)

t2
dt = s

∫ ∞

s

ω(t)

t2
dt.

Then, τ is a sub-additive weight function and ω ≤ τ = O(σ). The conclusion

follows.

Summarizing all the previous results we obtain

Theorem 3.8. Let ω be a weight function. The following conditions are

equivalent:

(1) ω satisfies condition (α0).

(2) For each g = (g1, . . . , gk) : Ω ⊂ RN → Rk such that gj ∈ E∗(Ω) and

g(Ω) ⊂ U ⊂ Rk and for each f ∈ E∗(U), one has f ◦ g ∈ E∗(Ω).

(3) For every g ∈ E∗(R) and f ∈ H(Ω), Ω ⊂ C open, the condition

g(R) ⊂ Ω implies f ◦ g ∈ E∗(R).



12 SUPERPOSITION OPERATORS

4. The non-linear superposition operator

In this section we will show that whenever composition is defined (in the

frame of ultradifferentiable functions) the non-linear superposition operator

E∗ → E∗, g → f ◦ g

is continuous. Some differentiability properties are also studied. From now

on we will assume that ω satisfies (α0).

The next Lemma follows easily from the estimates in the previous sec-

tions. Here (Kn) denotes a fundamental sequence of compact sets in RN ,

pn := n ‖ · ‖Kn,n, which is a fundamental sequence of seminorms in E(ω)(RN)

and (qn) is a fixed fundamental sequence of seminorms in E(ω)(R).

Lemma 4.1. For all k there is m such that for each C1 there exists ` so that

if f ∈ E(ω)(R) and g ∈ E(ω)(RN) satisfies pm(g) ≤ C1, then pk(f ◦g) ≤ q`(f).

Proposition 4.2. The map

E(ω)(Rk)× (E(ω)(RN))k −→ E(ω)(RN)
(f, g1, . . . , gk) → f ◦ (g1, , . . . , gk)

is continuous.

Proof: Without loss of generality we assume that f is real valued. Fix

a compact convex subset K in E(ω)(RN). By the continuity of the product

in E(ω)(RN), given L ∈ N we find r such that

pL(h1 · · ·hk) ≤ pr(h1) · · · pr(hk).

For this r we take m as in Lemma 4.1 and C1 := maxh∈Kpm(h). Applying

again the Lemma 4.1 we find ` with

pr(f ◦ h) ≤ p`(f), ∀h ∈ K.

Let g := (g1, . . . , gk) ∈ Kk and f1, . . . fk ∈ E(ω)(R) be given and put f =

f1 ⊗ · · · ⊗ fk ∈ E(ω)(Rk). Then f ◦ g = (f1 ◦ g1) · · · (fk ◦ gk) hence

pL(f ◦ g) ≤ pr(f1 ◦ g1) · · · pr(fk ◦ gk) ≤ q`(f1) · · · q`(fk).

Define Cg : E(ω)(R)⊗k) · · · E(ω)(R) −→ E(ω)(RN) by Cg(f) = f ◦ g. Cg is a

linear map and by the estimates above, it is continuous. In fact, the family

{Cg : g ∈ Kk} is equicontinuous. Since E(ω)(R) ⊗k) · · · E(ω)(R) is a dense

subspace of E(ω)(Rk), we conclude that {Cg : g ∈ Kk} is also equicontinuous

as a family of operators from E(ω)(Rk) to E(ω)(RN), that is, if (r`)` is a

fundamental sequence of seminorms in E(ω)(Rk) for each m there is ` so

that

pm(f ◦ g) ≤ r`(f)

for each g ∈ Kk.
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We take g := (g1, . . . , gk), h := (h1, . . . , hk) ∈ Kk, then

f(g(x))− f(h(x)) =
k∑

j=1

(gj(x)− hj(x)) ·
∫ 1

0

(Djf ◦ αt)(x)dt

where αt(x) = h(x) + t(g(x) − h(x)) ∈ Kk for each 0 ≤ t ≤ 1. We easily

deduce that for each L there is m:

pL(f ◦ g − f ◦ h) ≤ ∑k
j=1 pm(gj(x)− hj(x)) · ∫ 1

0
pm(Djf ◦ αt)dt

≤ ∑k
j=1 r`(Djf)pm(gj − hj).

Therefore, for a fix compact L in E(ω)(Rk) there is M so that f1, f2 ∈ L and

g, h ∈ Kk implies

pL(f1 ◦ g − f2 ◦ h) ≤ pL(f1 ◦ g − f1 ◦ h) + pL((f1 − f2) ◦ h) ≤

M
∑k

j=1 pm(gj − hj) + r`(f1 − f2).

The proof is complete since E(ω)(Rk)× (E(ω)(RN))k is metrizable.

Next we analyze the Roumieu case.

Lemma 4.3. Let B be a bounded set in E{ω}(RN). For each continuous

seminorm p in E{ω}(RN) there is a continuous seminorm q in E{ω}(R) such

that p(f ◦ g) ≤ q(f) for every f ∈ E{ω}(R) and each g ∈ B.

Proof. For a fix L ⊂⊂ RN define L̃ := {a + v : a ∈ L, ‖ v ‖1= 1}.
Since B is bounded in E{ω}(RN) there is a compact set K in R such that⋃{g(L̃) : g ∈ B} ⊂ K. The set C := {ga,v : g ∈ B, a ∈ L, ‖ v ‖1= 1} is a

bounded set in E{ω}(R). We define C1(λ) := sup{‖ h ‖[−1,1],2λ: h ∈ C} which

is finite if λ is small enough (0 < λ ≤ λ0). Using Proposition 2.1 we find

C2(λ) and µ(λ) such that

‖ f ◦ h ‖[−1,1],µ(λ)≤ C2(λ) ‖ f ‖h([−1,1]),λ≤ C2(λ) ‖ f ‖K,λ

for all h ∈ C; that is, for every g ∈ B, every a ∈ L and ‖ v ‖= 1 we have

‖ (f ◦ g)a,v ‖[−1,1],µ(λ)≤ C2(λ) ‖ f ‖K,λ .

Therefore, it follows from (the proof of) Proposition 2.3 that there are r(λ)

and C3(λ) satisfying

‖ (f ◦ g) ‖L,r(λ)≤ C3(λ)supa∈L,‖v‖=1 ‖ (f ◦ g)a,v ‖[−1,1],µ(λ)≤ C(λ) ‖ f ‖K,λ,

(0 < λ ≤ λ0) where C(λ) = C1(λ)C2(λ), and the inequality holds for

arbitrary f ∈ E{ω}(R) and g ∈ B. Moreover the map λ → r(λ) is an

increasing bijection from ]0,∞[ onto itself.
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Now, given a continuous seminorm in E{ω}(RN) there exists a compact set

L in RN such that p is a continuous seminorm in E{ω}(L) and consequently,

p ≤ infnMn ‖ ‖L,r(1/n) for some sequence (Mn)n. It suffices to take

q := infnMnC(1/n) ‖ ‖K,1/n

to conclude.

Theorem 4.4. For each f ∈ E{ω}(Rk) the non-linear superposition operator

Tf : (E{ω}(RN))k −→ E{ω}(RN), (g1, . . . , gk) → f ◦ (g1, , . . . , gk)

is continuous.

Proof. Using Lemma 4.3 we may show as in the proof of Proposition 4.2

that Tf maps bounded sets into bounded sets. On the other hand, it is easy

to see that Tf is continuous if and only if Tf : (D{ω}(RN))k −→ E{ω}(RN) is

continuous. Since D{ω}(RN) is an LN− space with compact linking maps

(also called Silva space), by [24, 8.5.28] it is enough to see that Tf restricted

to (D{ω}(RN))k is sequentially continuous. This follows from the fact that

bounded sets are compact and that the non-linear operator is continuous in

the C∞-setting.

Once we have seen that the composition operator is continuous whenever

it is well defined, we would like to study differentiability properties of the

operator. Unfortunately, it seems that a satisfactory differential calculus

stops at the level of Banach spaces. For instance, as it is stated in [18] ”if

one looks for infinitely often differentiable mappings, then one ends up with

6 inequivalent notions..” We will consider smooth mappings, that is

Definition 4.5. ([18]) Let E be a locally convex space. A curve c : R→ E

is called differentiable if the derivative c′(t) := lims→0
1
s
(c(t + s) − c(t)) at

t exists for all t. A curve c : R → E is called smooth if all the iterated

derivatives exist. If F is another locally convex space, a map f : E → F is

called smooth if it maps smooth curves in E to smooth curves in F.

As Boman [5] showed, the smooth mappings on RN in the previous sense

are exactly the usual smooth mappings.

Proposition 4.6. Let f ∈ E∗(R) be given. The map

Tf : E∗(RN) → E∗(RN) , g → f ◦ g

is smooth.

Proof: We put E := E∗(RN) and we fix α ∈ C∞(R, E). We will proceed

by induction on n to show that Tf ◦ α ∈ Cn(R, E) and
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(Tf ◦ α)(n)(t) =
∑ n!

k1! . . . kn!

(
f (k) ◦ α(t)

) (
α′(t)
1!

)k1

. . .

(
α(n)(t)

n!

)kn

.

(4.3)

Let us assume n = 1 and let β(t) = f ◦ α(t). Given s, t ∈ R (s 6= t) we note

that, Propositions 4.2 and 4.4, ξ → f ′ ◦ (ξα(t)+(1− ξ)α(s)) is a continuous

function from [0, 1] to E. Consider the vector valued integral

us :=

∫ 1

0

f ′ ◦ (ξα(t) + (1− ξ)α(s))dξ ∈ E.

Since β(t)(x) − β(s)(x) = f(α(t)(x)) − f(α(s)(x)) = (α(t)(x) − α(s)(x)) ·
us(x) then

β(t)− β(s)

t− s
=

α(t)− α(s)

t− s
· us.

Since for each continuous seminorm p in E,

p(us − f ′ ◦ α(t)) ≤
∫ 1

0

P (f ′ ◦ (ξα(t) + (1− ξ)α(s))− f ′α(t))dξ,

goes to zero as s → t, we conclude

lim
s→t

β(t)− β(s)

t− s
= (f ′ ◦ α(t))α′(t),

with convergence in the topology of E. Hence the statement is proved for

n = 1. Let us now assume that 4.3 holds for derivatives of order less than

or equal to n. After replacing f by f (k), we have already proved that the

function R→ E, t → f (k) ◦α(t) has derivative (f (k+1) ◦α(t))α′(t). It follows

from 4.3 that Φ : t → (Tf ◦ α)(n)(t) is derivable. In order to evaluate the

derivative we fix x ∈ RN and we put γ : R→ R, γ(t) := 〈δx, α(t)〉 = α(t)(x).

We now observe that

〈δx, Φ(t)〉 =
∑

n!
k1!...kn!

f (k)(γ(t))
(

γ′(t)
1!

)k1

. . .
(

γ(n)(t)
n!

)kn

= (f ◦ γ)(n)(t).

Finally, an application of Fàa di Bruno formula gives 4.3 for n + 1.

If the composition operator is defined by a real analytic function we may

expect a better behavior.

Definition 4.7. ([18]) Let E be a locally convex space. A curve α : R→ E

is called weakly real analytic or simply real analytic if u◦α is a real analytic

function for every u ∈ E ′, and we write α ∈ A(R, E).

A curve α : R → E is called topologically real analytic, and we write

α ∈ At(R, E), if for every t ∈ R there are ε > 0 and aj ∈ E such that

α(s) =
∑∞

j=0 aj(s− t)j for |s− t| < ε and the series converges in E.
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If F is another locally convex space, a map f : E → F is called (topo-

logically) real analytic if it maps (topologically) real analytic curves in E to

(topologically) real analytic curves in F.

In the next lemma we do not assume that the class E∗(R) is closed by

composition.

Lemma 4.8. Let f ∈ A(R) (resp. f ∈ H(C)) be given and we consider

φ : R → E∗(R) given by φ(t) := f(· + t). Then φ ∈ A(R, E∗(R))(resp. φ ∈
At(R, E∗(R))).

Proof: Fix µ ∈ E ′∗(R) and denote K := suppµ. For some ε > 0 the

function f admits an holomorphic extension to the open set Ωε := {z ∈
C | d(z, K) < ε}. We fix 0 < δ < ε

2
. Then, for every |z| < δ, f(· +

z) ∈ H∞(Ωδ) and the series
∑∞

n=0
f (n)(·)

n!
zn converges to f(·+ z) in H∞(Ωδ).

Consequently, U := Ωδ ∩ R satisfies K ⊂ U and
∑∞

n=0
f (n)(·)

n!
tn converges to

f(·+ t) in E(ω)(U) for every |t| < δ. From where it follows

〈µ, φ(t)〉 =
∞∑

n=0

〈µ, f (n)〉
n!

tn

for |t| < δ. The same argument shows that µ ◦ φ(t) is real-analytic in a

neighborhood of any point.

If f is an entire function, we already know that φ is weakly analytic, and

from the Cauchy inequalities it is easy to see that for every compact interval

I in R and every continuous seminorm q in E(ω)(R) and each m ∈ N we have

sup
t∈I

sup
j∈N

q(φ(j)(t))

j!mj
< ∞,

and we use [7, Prop. 10] to conclude. In the Roumieu case, we have that

E(ω)(R) ↪→ E{ω}(R) continuously and continuous linear operators are topo-

logically real analytic .

Proposition 4.9. Let f ∈ A(R) be given and assume that E∗(R) is closed

by composition. Then, the map

Tf : E∗(RN) → E∗(RN) , g → f ◦ g

is real-analytic. If f is an entire function, then Tf is topologically real

analytic.

Proof: Put E := E(∗)(RN) and fix α ∈ A(R, E). We have to show that

β := Tf ◦α ∈ A(R, E). We already proved that β ∈ C∞(R, E) and for every

continuous seminorm p in E) there is a continuous seminorm q in E such

that

p(β(n)(t)) ≤
∑ n!

k1! . . . kn!
q
(
f (k) ◦ α(t)

) (
q(α′(t))

1!

)k1

. . .

(
q(α(n)(t))

n!

)kn

.
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We denote vm(j) := 1
mj and we fix a compact interval I ⊂ R. We apply [7,

Prop. 10] to find m ∈ N (which depends on q in the weakly analytic case

and which does not depend on q if α topologically real analytic) with the

property

sup
t∈I

sup
j∈N

q(α(j)(t))

j!
vm(j) ≤ C < +∞.

Since {α(t) : t ∈ I} is a bounded set in E, by Lemmas 4.1 or 4.3 there is a

continuous seminorm r on E such that

q(f (k) ◦ α(t)) ≤ r(f (k))

for all k ∈ N and t ∈ I. We apply Lemma 4.8 (since φ(n)(0) = f (n)) and [7,

Prop. 10] to find m large enough so that

sup
k∈N

r(f (k))

k!
vm(k) ≤ D < +∞.

Here m is independent of r if f is entire. Hence, for every t ∈ I, we have

p(β(n)(t)) ≤
∑ n!

k1! . . . kn!
(Dmkk!)(Cm)k1 . . . (Cmn)kn

= D
∑ n!

k1! . . . kn!
mkk!Ckmn.

Here we used that k1 + . . . + kn = k and k1 + . . . + nkn = n. Consequently

p(β(n)(t))
n!

vm(n) ≤ D
∑

n!
k1!...kn!

(mC)k

≤ D(2mC)n.

We finally take ` ∈ N, ` > 2m2C and we obtain

sup
t∈I

sup
n∈N

p(β(n)(t))

n!
v`(n) ≤ D,

where ` depends on the seminorm if α ∈ A(R, E) and f is real-analytic,

whereas ` is independent on the seminorm in case α ∈ At(R, E) anf f is an

entire function. We apply again [7, Prop. 10] to finish the proof.
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[6] J. Boman, L. Hörmander; Classes of infinitely differentiable functions,
(mimeographed notes) Stockholm, 1962.



18 SUPERPOSITION OPERATORS

[7] J. Bonet, P. Domanski; Real Analytic Curves in Fréchet Spaces and Their Duals,
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[24] P. Pérez, J. Bonet; Barrelled locally convex spaces North-Holland Mathematics Stud-
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