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Abstract. In this paper we introduce pseudodifferential operators (of
infinite order) in the frame of non quasianalytic classes of Beurling type.
We prove that such an operator with (distributional) kernel in a given
Beurling class D′

(ω) is pseudo-local and can be locally decomposed, mod-
ulo a smoothing operator, as the composition of a pseudodifferential
operator of finite order and an ultradifferential operator with constant
coefficients in the sense of Komatsu, both of them with kernel in the
same class D′

(ω). We also develop the corresponding symbolic calculus.

0. Introduction.

The theory of pseudodifferential operators grew out of the study of singu-

lar integral operators, and developed after 1965 with the systematic studies

of Kohn-Nirenberg [18], Hörmander [14] and others.

The study of several problems in classes of (non-quasianalytic) ultradif-

ferentiable functions has received also recently much attention. These are

intermediate classes between real analytic functions and the class of all

C∞-functions. There are essentially two ways to introduce them, the the-

ory of Komatsu [16], in which one looks at the growth of the derivatives

on compact sets, and the theory developed by Björk [2] in 1966, following

the ideas previously announced by Beurling, in which one pays attention to

the growth of the Fourier transforms. We will work with ultradifferentiable

functions as defined by Braun, Meise and Taylor [8]. Their point of view

permits a unified treatment of both theories, contains the most relevant

cases of Komatsu’s theory and it is strictly larger than Beurling-Björk’s

one.

Pseudodifferential operators (of finite or infinite order) on Gevrey classes

have been extensively studied by many authors ([5], [6], [15], [20], [25] among

others). We refer to [23] for an excellent introduction to this topic. For

more general classes of ultradifferentiable functions, following the approach

of Komatsu, we refer to [21]. All of them deal with spaces of Roumieu type.
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These are spaces with a topological structure similar to that of the space of

real analytic functions.

The purpose of this paper is to introduce pseudodifferential operators

(p.d.o.) in the frame of ultradifferentiable functions of Beurling type, that

is, spaces whose topology looks like the one of C∞. Our aim is to estab-

lish the basic theory in order to be able to face in the future topics like

for instance hypoellipticity, Fourier integral operators, etc. As in [9] the

pseudodifferential operators of (ω)-class are defined as limits of operators

with kernel in E(ω)(Ω × Ω). With this point of view, it is immediate that

the class of pseudodifferential operators is closed under taking adjoints and

that every p.d.o. of (ω)-class admits a continuous and linear extension

A : E ′(ω)(Ω) → D′
(ω)(Ω). We prove that such an operator shrinks (ω)-singular

supports (theorem 2.18). Many operators are pseudodifferential operators

according to our definition. In particular, we mention the linear partial dif-

ferential operators with variable coefficients in a suitable class of functions,

the (ω)-smoothing operators and the ultradifferential operators in the sense

of Komatsu. The convolution operator with an elementary solution of a

given elliptic ultradifferential operator with constant coefficients is also a

pseudodifferential operator. However not every convolution operator is a

p.d.o.

Since the class of p.d.o. has to be also closed under products of operators,

and we need to express this property in terms of the symbols, we develop

the symbolic calculus.

The class of pseudodifferential operators of (ω)-class contains the (ω)-

smoothing operators, operators of finite order and ultradifferential operators

of (ω)-class, and, as a consequence of 2.14 and 3.13, every pseudodifferential

operator of (ω)-class can be locally expressed, up to a (ω)-smoothing op-

erator, as the composition of an ultradifferential operator of (ω)-class with

constant coefficients and a p.d.o. of (ω)-class and finite order. As far as we

know there is no similar result in the Gevrey (Roumieu) setting.

1. Notation and Preliminaries

In this section we introduce the classes of functions, the classes of ampli-

tudes/symbols and we establish some preliminary lemmata.

Definition 1.1. ([8]) A weight function is an increasing continuous func-

tion ω : [0,∞[→ [0,∞[ with the following properties:

(α) there exists L ≥ 0 with ω(2t) ≤ L(ω(t) + 1) for all t ≥ 0,

(β)
∫∞

1
ω(t)
t2
dt <∞,

(γ) log(t) = o(ω(t)) as t tends to ∞,
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(δ) ϕ : t→ ω(et) is convex.

For z ∈ Cp we put ω(z) := ω(|z|), where |z| := sup |zk|.
The Young conjugate ϕ∗ : [0,∞[→ R of ϕ is given by ϕ∗(s) := sup{st −
ϕ(t), t ≥ 0}. Here ϕ is related to ω via point (δ) of Definition 1.1.

There is no loss of generality to assume that ω vanishes on [0, 1]. Then ϕ∗

has only non-negative values, it is convex, ϕ∗(t)/t is increasing and tends

to ∞ as t→∞ and ϕ∗∗ = ϕ. We refer to [8] for properties of ϕ∗. Moreover,

we assume that log t ≤ ω(t) for all t > 0.

Definition 1.2. ([8]) Let ω be a weight function. For an open set Ω ⊂ Rp we

let E(ω)(Ω) := {f ∈ C∞(Ω) : |f |K,λ < ∞ for every λ > 0, and every

K ⊂ Ω compact}, where |f |K,λ := supx∈K supα∈Np
0
|f (α)(x)|exp(−λϕ∗( |α|

λ
)).

E(ω)(Ω) carries the metric locally convex topology given by the sequence

of seminorms |f |Kn,λn , where (Kn) is any compact exhaustion of Ω and (λn)

is any increasing and unbounded sequence of positive numbers.

By D(ω)(K), K ⊂ Ω compact, we denote the collection of all those f ∈
E(ω)(Ω) ∩ D(K). For f ∈ D(ω)(K) we put |f |λ := |f |K,λ. Then D(ω)(Ω) =

indnD(ω)(Kn), where (Kn) is any compact exhaustion of Ω. The elements of

D′
(ω)(Ω) are called ultradistributions of Beurling type.

The space DL1,(ω)(Rp) is the set of all C∞-functions f on Rp such that

‖ f ‖1,n<∞ for each n ∈ N, where

‖ f ‖1,n:= sup
α∈Np

0

‖ f (α) ‖L1 exp(−nϕ∗( |α|
n

)).

The inclusions D(ω)(Rp) ⊂ DL1,(ω)(Rp) ⊂ E(ω)(Rp) are continuous and

have dense range.

We start with some elementary, but useful, properties of ϕ∗ that follow

from the convexity of ϕ∗ and the fact that ϕ∗(0) = 0.

Lemma 1.3. (1) For every λ, s, t > 0 we have

2λϕ∗(
s+ t

2λ
) ≤ λϕ∗(

s

λ
) + λϕ∗(

t

λ
) ≤ λϕ∗(

s+ t

λ
)

(2) Let L ∈ N be such that ω(et) ≤ L(1 + ω(t)). Then

kt+ Lkϕ∗(
t

Lk
) ≤ ϕ∗(t) +

k∑
j=1

Lj

for all t ≥ 0 and k ∈ N.

Let L ∈ N be such that ω(et) ≤ L(1+ω(t)). Then |α|+nLϕ∗( |α|
nL

) ≤ nL+

nϕ∗( |α|
n

). Therefore, if qK,n(f) := supx∈K supα∈Np
0
e−|α||f (α)(x)|exp(−nϕ∗( |α|

n
))

then

qK,n(f) ≤ |f |K,n ≤ enLqK,nL(f)
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from where it follows that the topology of E(ω)(Ω) can also be described by

the system of seminorms {qK,n}.

Lemma 1.4. For every n, k ∈ N and t ≥ 1 we have

(1) tk ≤ enϕ∗( k
n

)enω(t),

(2) infj∈N0 t
−jekϕ∗( j

k
) ≤ e−kω(t)+log t.

The following result permits us to split R into intervals in which the

infimum in 1.4 is attained in a finite set.

Lemma 1.5. Fix k,N ∈ N and assume k
N
ϕ∗(N

k
) ≤ log t < k

N+1
ϕ∗(N+1

k
).

Then

(1) min0≤j≤N t
−jekϕ∗( j

k
) ≤ e−kω(t)+log t,

(2) t−Ne2kϕ∗( N
2k

) ≤ e−kω(t)+log t.

Proof: (1) Since ϕ∗(t)
t

is an increasing function, we have that log t <
k
j
ϕ∗( j

k
) (and, consequently, t−jekϕ∗( j

k
) > 1) for every j ≥ N + 1. Now the

conclusion follows from lemma 1.4.

(2) We already know that t−(N−l)ekϕ∗(N−l
k

) ≤ e−kω(t)+log t for some l =

0, 1, . . . , N (1.4). Then, using that k
l
ϕ∗( l

k
) ≤ log t, we obtain

t−Ne2kϕ∗( N
2k

) ≤ t−(N−l)t−lekϕ∗(N−l
k

)ekϕ∗( l
k
)

≤ e−kω(t)+log t.

The definition of symbol in [13, 23, 25] motivates our next definition.

As we will check in 2.11, for the limit case ω(t) = log(1 + t) we recover

the symbols in [13] whereas for the Gevrey weights ω(t) = td, 0 < d < 1,

our definition is what can be reasonably expected if one translates to the

Beurling setting the definition of symbol of Gevrey class (Roumieu setting)

which is in [23, 25]. The introduction of symbols of type (ρ, δ) perhaps

makes ’uncomfortable’ the reading of the paper but it seems convenient for

the construction of parametrices of hypoelliptic operators. See proposition

2.12.

Definition 1.6. Let Ω be an open set in Rp, 0 ≤ δ < ρ ≤ 1, d := ρ − δ

and let us assume that ω(t) = o(td) as t → ∞. An amplitude in Sm,ω
ρ,δ (Ω)

is a function a(x, y, ξ) in C∞(Ω× Ω× Rp) such that for every compact set

Q ⊂ Ω×Ω there are R ≥ 1 and a sequence Cn > 0, n ∈ N, with the property

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ Cne

(ρ−δ)nϕ∗( |α+β+γ|
n

)emω(ξ)(1 + |ξ|)|α+γ|δ−|β|ρ (∗)

for every n ∈ N, (x, y) ∈ Q, log( |ξ|
R

) ≥ n
|β|ϕ

∗( |β|
n

).

For |β| = 0 the estimate holds for every ξ ∈ Rp.

In the case a(x, y, ξ) = p(x, ξ), the function p(x, ξ) is usually called a

symbol.
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Since ϕ∗ is convex, we may take the estimate e(ρ−δ)nϕ∗( |α+γ|
n

)+(ρ−δ)nϕ∗( |β|
n

)

instead of e(ρ−δ)nϕ∗( |α+β+γ|
n

) in (∗) (see lemma 1.3).

Some examples will be given in 2.11.

Remark 1.7. We would like to make some comments on the requirement

ω(t) = o(td) in the definition of amplitude.

(1) If ρ = 1 and δ = 0, this does not mean any restriction on the weight

function ω. For other values of ρ and/or δ, this extra assumption means

that E(ω)(Ω) contains, as a continuously and densely embedded subspace,

the Gevrey class Γ{
1
d
}(Ω) and it ensures that j! = O(e(ρ−δ)nϕ∗( j

n
)) as j goes

to infinity for every n ∈ N. As it is shown in [22], if ω is a weight function

for which an extension of the classical Borel’s theorem holds, then E(ω)(Ω)

contains Γ{s}(Ω) for some s > 1.

(2) If ω(t) = (log(1 + t))s, s > 1, for t big enough then ω(t) = o(td) for

every 0 < d < 1, whereas if ω(t) = t(log t)−a (a > 1), then E(ω)(Ω) does not

contain any Gevrey class.

Lemma 1.8. Let a(x, y, ξ) be an amplitude in Sm,ω
ρ,δ (Ω). Then for every

compact set Q ⊂ Ω× Ω there exists a sequence Cn > 0, n ∈ N, such that

|Dα
xD

γ
ya(x, y, ξ)| ≤ Cne

(ρ−δ)nϕ∗( |α|
n

)e(ρ−δ)nϕ∗( |γ|
n

)|ξ|δ|α+γ|emω(ξ)

for every (x, y) ∈ Q and |ξ| ≥ 1.

Proof: We put B := (2δ)( 1
ρ−δ

) and we take k ∈ N with B ≤ ek and L ∈ N
such that ω(et) ≤ L(1 + ω(t)) for all t ≥ 0. Finally we fix n ∈ N and we

take ` := 2nLk. According to definition 1.6 there is C > 0 such that, for all

(x, y) ∈ Q and |ξ| ≥ 1 we have

|Dα
xD

γ
ya(x, y, ξ)| ≤ Ce(ρ−δ)`ϕ∗( |α+γ|

`
)(2|ξ|)δ|α+γ|emω(ξ).

An application of lemma 1.3 gives k|α + γ| + `ϕ∗( |α+γ|
`

) ≤ A + nϕ∗( |α|
n

) +

nϕ∗( |γ|
n

) for some constant A > 0. Since 2δ|α+γ| ≤ ek(ρ−δ)|α+γ|, we conclude

that

|Dα
xD

γ
ya(x, y, ξ)| ≤ CeAe(ρ−δ)nϕ∗( |α|

n
)e(ρ−δ)nϕ∗( |γ|

n
)|ξ|δ|α+γ|emω(ξ).

Proposition 1.9. Let a(x, y, ξ) be an amplitude in Sm,ω
ρ,δ (Ω) and let f ∈

D(ω)(Ω) be given. For every compact set K ⊂ Ω and n, λ ∈ N there is a

constant C > 0 such that

|
∫
Dα

xa(x, y, ξ)f(y)e−iyξdy| ≤ Ce−λω(ξ)enϕ∗( |α|
n

)

for every x ∈ K, ξ ∈ Rp. Moreover, a similar estimate holds if we replace

the amplitude a(x, y, ξ) by the function b(x, y, ξ) := a(x, y, ξ)eixξ.
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Proof: For every s, n ∈ N there is C > 0 such that

|Dα
xD

γ
ya(x, y, ξ)| ≤ Ce(ρ−δ)snϕ∗( |α|

sn
)e(ρ−δ)snϕ∗( |γ|

sn
)|ξ|δ|α+γ|emω(ξ)

for every x ∈ K, y ∈ suppf and |ξ| ≥ 1.

Since ϕ∗(t)
t

is an increasing function we get (ρ−δ)snϕ∗( |α|
sn

) ≤ (ρ−δ)nϕ∗( |α|
n

).

From 1.4 we deduce |ξ|δ|α|e−δnϕ∗( |α|
n

) ≤ enδω(ξ), from where it follows

|Dα
xD

γ
ya(x, y, ξ)| ≤ Ceρnϕ∗( |α|

n
)e(ρ−δ)snϕ∗( |γ|

sn
)|ξ|δ|γ|e(m+nδ)ω(ξ)

for every x ∈ K, y ∈ suppf and |ξ| ≥ 1.

We now fix ξ ∈ Rp, |ξ| ≥ 1, and we take 1 ≤ k ≤ p with |ξ| = |ξk|. For

every j ∈ N we have, after integrating by parts,∫
Dα

xa(x, y, ξ)f(y)e−iyξdy =
1

ξj
k

∫
Dj

yk
(Dα

xa(x, y, ξ)f(y))e−iyξdy.

Hence, for every j, s ∈ N, we have, for some constant C which only depends

on n, s and on the Lebesgue measure of the support of f ,

|
∫
Dα

xa(x, y, ξ)f(y)e−iyξdy| ≤

C|f |sneρnϕ∗( |α|
n

)e(m+nδ)ω(ξ)
∑j

l=0

(j

l

)
e(ρ−δ)snϕ∗( l

sn )

|ξ|l−δl
esnϕ∗(

j−l
sn )

|ξ|j−l .

Let us consider the natural number N such that

sn

N
ϕ∗(

N

sn
) ≤ log(

|ξ|
21/(ρ−δ)

) <
sn

N + 1
ϕ∗(

N + 1

sn
).

Then, for every l < j ≤ N , we have e
sn
j−l

ϕ∗( j−l
sn

) ≤ e
sn
N

ϕ∗( N
sn

) ≤ |ξ|, hence

esnϕ∗(
j−l
sn )

|ξ|j−l ≤ 1, which implies, since 0 < ρ−δ ≤ 1, esnϕ∗(
j−l
sn )

|ξ|j−l ≤
(

esnϕ∗(
j−l
sn )

|ξ|j−l

)ρ−δ

and
e(ρ−δ)snϕ∗( l

sn
)

|ξ|(ρ−δ)l

esnϕ∗( j−l
sn

)

|ξ|j−l
≤

(esnϕ∗( j
sn

)

|ξ|j
)(ρ−δ)

(see lemma 1.3). We finally deduce

|
∫
Dα

xa(x, y, ξ)f(y)e−iyξdy| ≤

C|f |sne(δn+m)ω(ξ)enϕ∗( |α|
n

)
∑j

l=0

(j

l

)(
esnϕ∗(

j
sn )

|ξ|j
)(ρ−δ)

≤ C|f |sne(δn+m)ω(ξ)enϕ∗( |α|
n

)
(

esnϕ∗(
j

sn )

(
|ξ|

21/(ρ−δ)
)j

)(ρ−δ)

for every j ≤ N. It follows from lemma 1.5 that

|
∫
Dα

xa(x, y, ξ)f(y)e−iyξdy| ≤

C|f |sne(δn+m)ω(ξ)enϕ∗( |α|
n

)e
−sn(ρ−δ)ω(

|ξ|
21/(ρ−δ)

)+log(
|ξ|

21/(ρ−δ)
)
.

Now it suffices to choose s large enough. The corresponding estimate for

the function b(x, y, ξ) can be deduced with a similar argument.
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2. Pseudodifferential operators

In this section we define pseudodifferential operators on non-quasianalytic

classes of Beurling type. Our approach is as in [9], that is, pseudodifferen-

tial operators on D(ω)(Ω) are obtained as limits of operators with kernels in

E(ω)(Ω×Ω). We examine several examples showing that the class of pseudo-

differential operators contains enough elements and we show that they are

pseudolocal.

It is easy to see from the definition of amplitude that {a(., ., ξ); |ξ| ≤ T}
is a bounded set in E(ω)(Ω×Ω) for every T > 0, from where we easily deduce

the following

Lemma 2.1. Let a(x, y, ξ) be an amplitude in Sm,ω
ρ,δ (Ω) and let Ψ ∈ D(ω)(Rp)

be given. Then

(1) K(x, y) :=
∫
a(x, y, ξ)ei(x−y)ξΨ(ξ)dξ belongs to E(ω)(Ω× Ω),

(2) B : D(ω)(Ω) → E(ω)(Ω), B(f)(x) :=
∫
K(x, y)f(y)dy, is a continuous

and linear operator.

Let Ψ ∈ D(ω)(Rp) be a test function such that Ψ(ξ) = 1 for |ξ| ≤ 1 and

Ψ(ξ) = 0 for |ξ| ≥ 2. We put

(Aδf)(x) :=

∫ ∫
a(x, y, ξ)ei(x−y)ξf(y)Ψ(δξ)dydξ.

Theorem 2.2. Let a(x, y, ξ) be an amplitude in Sm,ω
ρ,δ (Ω). Then

(1) For every f ∈ D(ω)(Ω) there exists A(f) := E(ω)(Ω)− limδ→0+Aδ(f)

and

A : D(ω)(Ω) → E(ω)(Ω)

is a continuous and linear operator,

(2) (Af)(x) =
∫ ( ∫

a(x, y, ξ)ei(x−y)ξf(y)dy
)
dξ.

Proof: (1) We fix a compact set K ⊂ Ω and n ∈ N. We put

I(x, ξ) :=

∫
a(x, y, ξ)f(y)ei(x−y)ξdy

and we apply proposition 1.9 to get a constant C > 0 such that

|Dα
xI(x, ξ)|e−nϕ∗( |α|

n
) ≤ Ce−ω(ξ)

for every x ∈ K, α ∈ Np
0 and ξ ∈ Rp.

Then, for 0 < δ2 < δ1 < 1 we can estimate

qK,n(Aδ1f − Aδ2f) ≤ C
∫
|ξ|≥ 1

δ1

e−ω(ξ)|Ψ(δ1ξ)−Ψ(δ2ξ)|dξ

from where it follows that there exists the limitA(f) := E(ω)(Ω)−limδ→0+Aδ(f).

An application of the uniform boundedness principle gives the continuity of

A : D(ω)(Ω) → E(ω)(Ω).
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(2) We observe that

(Af)(x) = lim
n→∞

∫ ( ∫
a(x, y, ξ)f(y)e−iyξdy

)
eixξΨ(

ξ

n
)dξ.

Since for every k ∈ N there is C > 0 such that |
∫
a(x, y, ξ)f(y)e−iyξdy| ≤

Ce−kω(ξ) for every ξ ∈ Rp, we can apply the Dominated Convergence The-

orem to conclude that (Af)(x) =
∫ ( ∫

a(x, y, ξ)ei(x−y)ξf(y)dy
)
dξ.

Definition 2.3. The operator A : D(ω)(Ω) → E(ω)(Ω) introduced in the

theorem 2.2 is called pseudodifferential operator of (ω)-class associated to

the amplitude a(x, y, ξ).

In the case a(x, y, ξ) = p(x, ξ) the pseudodifferential operator A is denoted

by P (x,D) and we have

P (x,D)f =

∫
p(x, ξ)eixξf̂(ξ)dξ

for every f ∈ D(ω)(Ω). It is clear that the expression above makes sense for

f ∈ D(ω)(Rp), and even for a wider class of functions.

Proposition 2.4. The operator P (x,D) associated to a symbol p(x, ξ) in

Sm,ω
ρ,δ (Ω) can be extended to DL1,(ω)(Rp) and the extension is linear and con-

tinuous taking values in E(ω)(Ω).

Proof: Given f ∈ DL1,(ω)(Rp) and k ∈ N , its Fourier transform satisfies

sup
ξ∈Rp

|f̂(ξ)|ekω(ξ) ≤ C ‖ f ‖1,k+1

for some constant C depending only on the weight ω (see [12, 1.1.23]).

Hence, the integral above is convergent also for f ∈ DL1,(ω)(Rp). Thus

P (x,D) can be extended to DL1,(ω)(Rp), and the extension is linear.

Given a compact subset K of Ω and α ∈ Np
0,

|Dα
x (P (x,D)f)| ≤

∑
β≤α

(α

β

) ∫
|D̂βf(ξ)||Dα−β

x p(x, ξ)|dξ.

As in 1.9, there is a sequence of constants (Cn) such that

|Dγ
xp(x, ξ)| ≤ Cne

nϕ∗( |γ|
n

)e(m+nδ)ω(ξ)

for every multi-index γ, each x ∈ K and ξ ∈ Rp. Moreover, we deduce from

the properties of ϕ∗ that

sup
ξ∈Rp

|D̂βf(ξ)|e(n+m)ω(ξ) ≤ C ‖ Dβf ‖1,n+m+1≤ C ‖ f ‖1,2n+2m+2 e
nϕ∗( |β|

n
).

Therefore,

qK,n(P (x,D)f) ≤ CCn ‖ f ‖1,2n+2m+2

∫
e−ω(ξ)dξ,

for n large enough, which finishes the proof.
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Theorem 2.5. The pseudodifferential operator A associated to an ampli-

tude a(x, y, ξ) in Sm,ω
ρ,δ (Ω) admits a continuous and linear extension E ′(ω)(Ω) →

D′
(ω)(Ω).

Proof: We consider b(x, y, ξ) := a(y, x,−ξ), which is an amplitude in

Sm,ω
ρ,δ (Ω), and we denote by B : D(ω)(Ω) → E(ω)(Ω) the associated pseu-

dodifferential operator. To conclude we only have to show that the trans-

posed operator Bt of B is the desired extension of A. To do this, we put

(Bδf)(x) :=
∫ ∫

b(x, y, ξ)ei(x−y)ξf(y)Ψ(δξ)dydξ. Then it is easy to prove

that
∫
ϕ(BδΦ) =

∫
(Aδϕ)Φ and an application of Theorem 2.2(i) gives the

conclusion.

Corollary 2.6. Let A : D(ω)(Ω) → E(ω)(Ω) be the pseudodifferential op-

erator with amplitude a(x, y, ξ). Then At|D(ω)(Ω) : D(ω)(Ω) → E(ω)(Ω) is a

pseudodifferential operator with amplitude a(y, x,−ξ).

Theorem 2.7. The extension P (x,D) : E ′(ω)(Ω) → D′
(ω)(Ω) of the pseudo-

differential operator P (x,D) is given by

< P (x,D)µ, ψ >=

∫
µ̂(ξ)

( ∫
eixξp(x, ξ)ψ(x)dx

)
dξ.

Proof: Since < P (x,D)ϕ, ψ >=
∫
ϕ̂(ξ)

( ∫
eixξp(x, ξ)ψ(x)dx

)
dξ for every

ϕ, ψ ∈ D(ω)(Ω), we only have to prove that P (x,D) : E ′(ω)(Ω) → D′
(ω)(Ω)

is a well defined, continuous and linear operator. To do this we first fix

µ ∈ E ′(ω)(Ω) and we let B be a bounded set in D(ω)(Ω). By the Paley-

Wiener theorem ([8, 7.4]) there are constants A > 0 and D > 0 such

that |µ̂(ξ)| ≤ DeAω(ξ) for every ξ ∈ Rp. Now we take k := A + 1 and we

apply (the proof of) Proposition 1.9 to find a constant C > 0 such that

|
∫
eixξp(x, ξ)ψ(x)dx| ≤ Ce−kω(ξ) for every ψ ∈ B. Then we have

|µ̂(ξ)
( ∫

eixξp(x, ξ)ψ(x)dx
)
| ≤ CDe−ω(ξ),

from where it follows that P (x,D)µ : D(ω)(Ω) → C is bounded on bounded

sets and, consequently, P (x,D)µ ∈ D′
(ω)(Ω). Moreover the estimates just

obtained also show that P (x,D) : E ′(ω)(Ω) → D′
(ω)(Ω) transforms bounded

sets of E ′(ω)(Ω) into weakly bounded sets in D′
(ω)(Ω) and we conclude that

P (x,D) is continuous.

The correspondence between amplitudes and operators is not one-to-one,

that is, two different amplitudes may define the same operator (see example

2.11(4) below). The situation is much better for symbols.

Corollary 2.8. Let p(x, ξ) and q(x, ξ) be symbols in Sm,ω
ρ,δ (Rp) defining the

same pseudodifferential operator. Then p(x, ξ) = q(x, ξ).
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Proof: We put r(x, ξ) := p(x, ξ)−q(x, ξ) and we will show that r(x, ξ) =

0. By hypothesis R(x,D) is the null operator and hence < R(x,D)δy, ψ >=

0 for every y ∈ Rp and ψ ∈ D(ω)(Rp). For a fixed ψ ∈ D(ω)(Ω) we take

I(ξ) :=
∫
eixξr(x, ξ)ψ(x)dx and we deduce from Theorem 2.7 that the

Fourier transform of the continuous function I(ξ) vanishes, from where it

follows that
∫
eixξr(x, ξ)ψ(x)dx = 0 for every ψ ∈ D(ω)(Rp) and r(x, ξ) = 0

everywhere.

In some cases it is possible to recover the symbol from the pseudodiffer-

ential operator it defines.

Proposition 2.9. Let p(x, ξ) a symbol in Sm,ω
ρ,δ (Rp) and let us assume that

p(x,D) admits a continuous and linear extension A : E(ω)(Rp) → E(ω)(Rp).

Then

p(x, ξ) =
1

(2π)p
e−ixξA(ei(.)ξ)(x).

Proof: SinceAt :E ′(ω)(Rp) →E ′(ω)(Rp) we deduce from 2.6 thatAt|D(ω)(Rp) :

D(ω)(Rp) → D(ω)(Rp) is a pseudodifferential operator defined by b(x, y, ξ) :=

p(y,−ξ). Then, for every ϕ ∈ D(ω)(Rp) we obtain

(Atϕ)(x) =

∫
eixξ

( ∫
p(y,−ξ)ϕ(y)e−iyξdy

)
dξ.

We put I(ξ) :=
∫
p(y,−ξ)ϕ(y)e−iyξdy. Then I ∈ L1 and moreover Î(−x) =

(Atϕ)(x) which implies, in particular, that Î ∈ D(ω)(Rp). Hence

< A(ei(.)ξ), ϕ > =
∫
eixξ Î(−x)dx

= (2π)pI(−ξ) = (2π)p
∫
p(x, ξ)ϕ(x)eixξdx

which finishes the proof.

In most of the forthcoming results we will need stronger conditions on

the amplitude.

Definition 2.10. Let Ω be an open set in Rp, 0 ≤ δ < ρ ≤ 1, d := ρ − δ

and let us assume ω(t) = o(td) as t → ∞. An amplitude in ASm,ω
ρ,δ (Ω) is

a function a(x, y, ξ) in C∞(Ω × Ω × Rp) such that for every compact set

Q ⊂ Ω×Ω there are R ≥ 1, B ≥ 1 and a sequence Cn > 0, n ∈ N, with the

property

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ CnB

ββ!e(ρ−δ)nϕ∗( |α+γ|
n

)emω(ξ)(1 + |ξ|)|α+γ|δ−|β|ρ

for every n ∈ N, (x, y) ∈ Q, log( |ξ|
R

) ≥ n
|β|ϕ

∗( |β|
n

).

An amplitude in ASm,ω
ρ,δ (Ω) is said to be of finite order if it satisfies the

inequalities above with (1 + |ξ|)m instead of emω(ξ).

It follows from the Stirling formula and the condition ω(t) = o(td),

d := ρ − δ, that ASm,ω
ρ,δ (Ω) ⊂ Sm,ω

ρ,δ (Ω). We observe that given two weight
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functions σ = O(ω) each amplitude of finite order with respect to ω is also

an amplitude with respect to σ, thus the corresponding pseudodifferential

operator admits a continuous linear extension to D(σ)(Ω) which takes values

in E(σ)(Ω).

Now we give examples of amplitudes and of pseudodifferential operators.

Example 2.11. (1) ω(t) := log(1 + t). This is a limit case that we are not

considering, since ω does not satisfy property γ in 1.1. Then E(ω)(Ω) =

C∞(Ω) and ϕ∗(t) = +∞ for every t > 1. It follows that a(x, y, ξ) is an

amplitude of (ω)-class in Sm,ω
ρ,δ (Ω) according to definition 1.6 if, and only if,

for every compact set K ⊂ Ω and for every α, β, γ ∈ Np
0 there is a constant

C > 0 such that

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ C(1 + |ξ|)m+δ(|α+γ|)−ρ|β|

for x, y ∈ K. This means that a(x, y, ξ) is a symbol in the sense of Grigis

and Sjöstrand [13].

(2) ω(t) := td, 0 < d < 1. Then E(ω)(Ω) is a Gevrey class of Beurling type.

In this case nϕ∗( t
n
) = t

d
log( t

nd
)− t

d
and it follows from Stirling formula that

for every n ∈ N there are positive constants An and Bn such that for every

α ∈ Np
0,

An(α!)
1
d (

1

nd
)
|α|
d ≤ enϕ∗( |α|

n
) ≤ Bn(α!)

1
d (

2p

nd
)
|α|
d .

Then, a(x, y, ξ) is an amplitude in ASm,ω
1,0 (Ω) if, and only if, for every com-

pact set K ⊂ Ω there are R ≥ 1, B ≥ 1 such that for every λ > 0 there is

C > 0 satisfying

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ CBββ!(α!)

1
d (γ!)

1
dλ|α+γ|emω(ξ)(1 + |ξ|)−|β|

for every (x, y) ∈ K and |ξ| ≥ R(βλ)
1
d .

This should be compared with the definition of amplitude of Gevrey class

(of Roumieu type) which can be viewed for instance in Rodino [23].

(3) Linear partial differential operators with coefficients in E(ω)(Ω) are

examples of pseudodifferential operators defined by symbols of finite order.

(4) Let K(x, y) ∈ E(ω)(Ω×Ω) be given. The integral operator with kernel

K, (Aϕ)(x) =
∫
K(x, y)ϕ(y)dy, is a pseudodifferential operator. In fact,

given any χ ∈ D(ω)(Rp) with
∫
χ = 1, a(x, y, ξ) := K(x, y)e−i(x−y)ξχ(ξ) is

an amplitude in AS0,ω
1,0 (Ω). This can be easily deduced from the compactness

of the support of χ and the fact that K ∈ E(ω)(Ω× Ω).

The operators T : D(ω)(Ω) → E(ω)(Ω) admitting a continuous and linear

extension T̃ : E ′(ω)(Ω) → E(ω)(Ω) are called (ω)-smoothing. These are exactly

the integral operators defined by kernels in E(ω)(Ω× Ω).

(5) Every ultradifferential operator in the sense of Komatsu [17, p. 42]

defines a pseudodifferential operator. We recall that an ultradifferential
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operator of (ω)-class in the sense of Komatsu is an operator G(x,D) :=∑
α∈Np

0
aα(x)Dα such that aα ∈ E(ω)(Ω) and that satisfies the following con-

dition: there exists m ∈ N such that for every compact set K ⊂ Ω and for

every n ∈ N there is Cn > 0 with

sup
x∈K

|Dβaα(x)| ≤ Cne
nϕ∗( |β|

n
)e−mϕ∗( |α|

m
)

for every α, β ∈ Np
0.

It is easy to prove that p(x, ξ) := 1
(2π)p

∑
α∈Np

0
aα(x)ξα is a symbol in

ASk,ω
1,0 (Ω) for some k ≥ m. Moreover, for every ϕ ∈ D(ω)(Ω) we have

G(x,D)ϕ =
1

(2π)p

∑
α∈Np

0

aα(x)

∫
eixξξαϕ̂(ξ)dξ = P (x,D)ϕ.

Examples of ultradifferential operators in the sense of Komatsu are the

partial differential operators with coefficients in the class E(ω)(Ω) as well as

the ultradifferential operators with constant coefficients ([7]). In this case

G(z) :=
∑

α∈Np
0
aαz

α is an entire function satisfying log |G(z)| = O(ω(z)).

Therefore an application of the Paley-Wiener’s theorem ([8, 7.3]) gives the

existence of an element µ ∈ E ′(ω)(Rp) with support {0} such that G(D)ϕ =

µ ∗ ϕ for every ϕ ∈ D(ω)(Rp).

(6) If f ∈ E(ω)(Ω) then a(x, y, ξ) := (2π)−pf(x) ∈ AS0,ω
1,0 (Ω). Thus the

operator ϕ→ fϕ is a pseudodifferential operator.

(7) Let f ∈ D(ω)(R) be a test function with suppf = [−1, 1] and f(0) 6= 0.

We put ϕ := fχ[0,+∞[ which is an ultradistribution with compact support

and sing(ω) suppϕ = {0}. Then ϕ̂(ξ) is a symbol and the pseudodifferential

operator associated to it is the operator ψ → 2π(ϕ ∗ ψ). (See the comment

after Theorem 2.18.)

We first observe that, for every N ∈ N we have

ϕ̂(ξ) =
N∑

k=0

f (k)(0)

(iξ)k+1
+

1

(iξ)N+1

∫ 1

0

f (N+1)(t)e−itξdt.

This follows after integrating by parts N times in ϕ̂(ξ) =
∫ 1

0
f(t)e−itξdt,

using the fact that f and all its derivatives vanish at point t = 1.

Hence

ϕ̂(N)(ξ) =
∑N

k=0(−1)N f (k)(0)
(iξ)k+1N !

(N+k

k

)
1

ξN

+ 1
ξN iN+1

∑N
k=0

(N

k

)
(N+k)!

N !
(−1)k 1

ξk+1

∫ 1

0
(−it)N−kf (N+1)(t)e−itξdt.

For every n ∈ N we put Cn := |f |n and let us assume that log |ξ| ≥ n
N
ϕ∗(N

n
).

Then, for every k ≤ N we have |f (k)(0)|
|ξ|k ≤ Cn and

|
N∑

k=0

(−1)N f
(k)(0)

(iξ)k+1
N !

(N+k

k

) 1

ξN
| ≤ Cn4NN !

|ξ|N+1
.
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Moreover, since |ξ|k+1 ≥ enϕ∗( k
n

) ≥ εk! for some ε > 0, there is Dn > 0 with

|
N∑

k=0

(N

k

)(N + k)!

N !
(−1)k 1

ξk+1

∫ 1

0

(−it)N−kf (N+1)(t)e−itξ| ≤ Dn8Nenϕ∗(N+1
n

).

We conclude that

|ϕ̂(N)(ξ)| ≤ AnB
N |ξ|−Nenϕ∗(N

n
)

for some An > 0 , B > 0 and for every log |ξ| ≥ n
N
ϕ∗(N

n
).

Our next example is less obvious. It shows that the class of operators

under consideration contains not only ultradifferential operators but also

parametrices under some extra assumptions.

Proposition 2.12. Let ω be a weight, ω(t) = o(td), d < 1, and let G(D)

be an (ω)-ultradifferential operator with constant coefficients such that G(ξ)

does not vanish on Rp. If one of the two following conditions is satisfied:

(1) G(D) is elliptic,

or

(2) G(D) : E(ω)(Rp) → E(ω)(Rp) is surjective and it is {td}-hypoelliptic,
then, there exists a pseudodifferential operator of (ω)-class P : D(ω)(Rp) →
E(ω)(Rp) such that G(D) ◦ P gives the identity on D(ω)(Rp).

Proof: (1) We know from [11, Thms 3,4] and [3, 2.1] that there exists a

constant A > 0 such that the entire function G has no zeros in {z ∈ Cp :

|Imz| ≤ A|Rez|} and

|G(ξ)| ≥ Ae−
1
A

ω(ξ), ξ ∈ Rp.

Applying the minimum-modulus theorem of Chou [10, II.2.1] as in [3, 2.6,

2.8], we may find a new constant C > 0 such that

|G(z)|−1 ≤ CeCω(z)

for z ∈ Cp with |Imz| ≤ |Rez|/C. Since 1/G is holomorphic in {z ∈
Cp : |Imz| < |Rez|/C}, we conclude from the Cauchy inequalities that

((2π)pG)−1 ∈ ASm,ω
1,0 (Rp), for some m. The pseudodifferential operator P

defined by this symbol is the convolution operator defined by a fundamental

solution of G(D), hence it satisfies G(D) ◦Pϕ = ϕ, for every ϕ ∈ D(ω)(Rp).

To prove (2), we may proceed as before taking into account that there is

a constant A > 0 such that G(ξ) 6= 0 whenever |Imz| ≤ A|Rez|d [3, 3.3]. In

this case, the operator P is defined by a symbol in ASm,ω
d,0 (Rp).

We recall that a continuous linear operator T : D(ω)(Ω) → E(ω)(Ω) is

properly supported if the support of its kernel is a proper set in Ω×Ω. As

for C∞, this implies that T can be extended as a continuous linear map

from E(ω)(Ω) to E(ω)(Ω).
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Remark 2.13. Observe that the solution operator P in 2.12 does not admit

a continuous and linear extension P̃ : E(ω)(Rp) → D′
(ω)(Rp) ([4, Prop. 8]),

therefore it is not properly supported.

We already know that partial differential operators with coefficients in

E(ω)(Ω) and ultradifferential operators are examples of pseudodifferential

operators. Next we see that in most cases pseudodifferential operators of

(ω)-class can be expressed as the composition of an ultradifferential oper-

ator of (ω)-class and a finite order pseudodifferential operator. The argu-

ment depends on the possibility of constructing ultradifferential operators

on Beurling spaces which are elliptic in a very strong sense. See for instance

[7, 19].

Proposition 2.14. Let P (x,D) be the pseudodifferential operator associ-

ated to p(x, ξ) ∈ ASm,ω
ρ,δ (Ω). Then we may find an ultradifferential operator

G(D) of (ω)-class and a symbol q(x, ξ) ∈ ASm,ω
ρ,δ (Ω) of finite order such that

if Q(x,D) is the corresponding pseudodifferential operator, we have that

P (x,D) = Q(x,D) ◦G(D).

Proof: We take D > 0 such that Dω( ξ
2
) > mω(ξ). Let G be an even

entire function satisfying log |G(z)| = O(ω(z)) as |z| tends to infinity and

|G(z)| ≥ eDω(z) whenever |Imz| ≤ |Rez|/D (the existence of such a function

follows from [19, Corollary 1.4]). Then, 1/G is a symbol as in 2.10. Indeed,

it is clear that |1/G(ξ)| ≤ e−Dω(ξ) for ξ ∈ Rp, and since it is holomorphic in

{z ∈ Cp : |Imz| < |Rez|/D}, we conclude from the Cauchy integral formula

that, for some C > 0 and ξ large enough

|( 1

G(ξ)
)(β)| ≤ C |β|β!

e−Dω(ξ/2)

|ξ||β|
≤ C |β|β!

e−Dω(ξ/2)

|ξ|ρ|β|
.

We define q(x, ξ) = p(x,ξ)
G(ξ)

. It is easy to see that q is a symbol of finite order.

Moreover, for every ϕ ∈ D(ω)(Ω) we have

(Q(x,D) ◦G(D))(ϕ) =
∫
q(x, ξ)eixξ ̂G(D)(ϕ)(ξ)dξ

=
∫
q(x, ξ)eixξG(ξ)ϕ̂(ξ)dξ =P (x,D)(ϕ).

Remark 2.15. The ultradifferential operator G(D) : D′
(ω)(Ω) → D′

(ω)(Ω)

in the proposition above satisfies that G(D)f ∈ E(ω)(Ω) if, and only if,

f ∈ E(ω)(Ω) [3, 2.1]. Hence the decomposition given in Proposition 2.14

could be useful in order to study hypoellipticity.

We observe that each ultradifferential operator of (ω)-class acts continu-

ously from D(σ)(Ω) into E(σ)(Ω) for any weight σ ≥ ω, whereas each pseudo-

differential operator of (ω)-class and finite order is also a pseudodifferential
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operator of (τ)-class for τ ≤ ω. However one cannot expect that pseu-

dodifferential operators of infinite order of (ω)-class be pseudodifferential

operators of a different class. Roughly speaking, the p.d.o. (of infinite

order) of (ω)-class are strongly tied to the Beurling space D(ω)(Ω).

Next, we analyze the behavior of the pseudodifferential operator when

it is defined by an amplitude which does not depend on the x-variable. A

combination of the next result and proposition 2.4 will be useful to study

the composition of p.d.o.’s in theorem 3.18.

Proposition 2.16. Let b(y, ξ) be an amplitude in Sm,ω
ρ,δ (Ω), and let B be

the pseudodifferential operator associated to it. Then Bf ∈ DL1,(ω)(Rp) for

every f ∈ D(ω)(Ω) and B : D(ω)(Ω) → DL1,(ω)(Rp) is continuous.

Proof: Clearly (Bf)(x) =
∫ ( ∫

b(y, ξ)ei(x−y)ξf(y)dy
)
dξ can be defined

for each x ∈ Rp and B : D(ω)(Ω) → E(ω)(Rp) is linear and continuous.

To show that Bf ∈ DL1,(ω)(Rp) it is enough to check that Bf ∈ L1 and

that G(D)(Bf) is in L1 for each ultradifferential operator of (ω)-class ([1,

2.11]).

We denote by I(ξ) =
∫
b(y, ξ)f(y)e−iyξdy, so that (Bf)(x) =

∫
I(ξ)eixξdξ.

Then for each α ∈ Np
0,

Dα
ξ I(ξ) =

∫
f(y)Dα

ξ (b(y, ξ)e−iyξ)dy

hence, using Leibniz formula and 1.9 applied to the function yβf(y), β ≤ α

we find for every k > 0 and each multi-index α a constant Cα,k such that

|Dα
ξ I(ξ)| ≤ Cα,ke

−kω(ξ).

Therefore Dα
ξ I ∈ L1 and

xα(Bf)(x) =

∫
I(ξ)Dα

ξ (eixξ)dξ = (−1)|α|
∫
Dα

ξ I(ξ)e
ixξdξ.

Consequently, xα(Bf) is bounded for each α, thus Bf is integrable. More-

over, from 1.9, Dα
x (eixξI(ξ)) = ξαI(ξ)eixξ ∈ L1, and hence, Dα

x (Bf)(x) =∫
ξαI(ξ)eixξdξ.

Let G(D) =
∑

α aαD
α be an ultradifferential operator of (ω)-class. There

exist m ∈ N and C > 0 such that |aα| ≤ Ce−mϕ∗( |α|
m

). From the estimates

above and lemma 1.4 we conclude that

G(D)(Bf)(x) =

∫ ( ∫
b(y, ξ)G(ξ)ei(x−y)ξf(y)dy

)
dξ.

Since G(z) is an entire function and log |G(z)| = O(ω(z)) we get that

b(y, ξ)G(ξ) is an amplitude in some Sk,ω
ρ,δ (Ω). Proceeding as before, we have

G(D)(Bf) ∈ L1. The continuity of B : D(ω)(Ω) → DL1,(ω)(Rp) follows from

the closed graph theorem.
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We close this section showing that pseudodifferential operators are pseu-

dolocal, that is, they shrink singular supports. We recall that the (ω)-

singular support of an ultradistribution T ∈ D′
(ω)(Ω) is the complement of

the largest open subset U with the property that T ∈ E(ω)(U).

Let a(x, y, ξ) be an amplitude in Sm,ω
ρ,δ (Ω) with associated pseudodifferen-

tial operator A : D(ω)(Ω) → E(ω)(Ω) and letK ∈ D′
(ω)(Ω×Ω) be the kernel of

A. We consider a test function Ψ ∈ D(ω)(Rp) such that Ψ(ξ) = 1 for |ξ| ≤ 1

and Ψ(ξ) = 0 for |ξ| ≥ 2 and we put Kn(x, y) :=
∫
a(x, y, ξ)ei(x−y)ξΨ( ξ

2n )dξ.

It follows from Lemma 2.1 and Theorem 2.2 that Kn ∈ E(ω)(Ω × Ω) and

K = D′
(ω)(Ω× Ω)− limn→∞Kn.

Theorem 2.17. The (ω)-singular support of the kernel K of a pseudodif-

ferential operator A is contained in ∆ := {(x, y) ∈ Ω× Ω; x = y}.

Proof: Given (x0, y0) ∈ (Ω × Ω) \∆ we take a relatively compact open

neighbourhoodQ of (x0, y0), disjoint with ∆.We show that (Kn) is a Cauchy

sequence in E(ω)(Q). Without loss of generality we may take 1 ≤ l ≤ p and

c0 > 0 such that |xl − yl| ≥ c0 for every (x, y) ∈ Q. Let R ≥ 3
c0

and a

sequence of positive constants (Ck) such that

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ Cke

(ρ−δ)kϕ∗( |α+γ|
k

)+(ρ−δ)kϕ∗( |β|
k

)(1 + |ξ|)|α+γ|δ−|β|ρemω(ξ)

for every k ∈ N, (x, y) ∈ Q and log( |ξ|
R

) ≥ k
|β|ϕ

∗( |β|
k

).

We fix k ∈ N and we take k > k to be chosen later. For every N ∈ N we

have, after integrating by parts N times,

Dα
xD

γ
y

(
Kn(x, y)−Kn+1(x, y)

)
=

∑
β≤α

∑
µ≤γ

(α

β

)(γ

µ

) (−1)N+µ

(xl − yl)N

∫
ei(x−y)ξλN,α,β,γ,µdξ

where

λN,α,β,γ,µ = DN
ξl
{ξµ+βDα−β

x Dγ−µ
y a(x, y, ξ)

(
Ψ( ξ

2n )−Ψ( ξ
2n+1 )

)
} =∑

N !
N1!N2!N3!

(µl+βl)!
(µl+βl−N1)!

ξµ+β−N1elDN2
ξl

(
Ψ( ξ

2n )−Ψ( ξ
2n+1 )

)
DN3

ξl
Dα−β

x Dγ−µ
y a(x, y, ξ),

and the last sum extends over all N1, N2, N3 such that N1 +N2 +N3 = N

and N1 ≤ µl + βl. Here el is the multi-index with 1 in the l-th position and

0 elsewhere.

The support of Ψ( ξ
2n ) − Ψ( ξ

2n+1 ) is contained in 2n ≤ |ξ| ≤ 2n+2 and this

inequality implies that |ξµ+β−N1el| ≤ |ξ||µ+β|−N1 ≤ (2n+2)|µ+β|

(2n)N1
. We also have

that |DN2
ξl

(
Ψ( ξ

2n )−Ψ( ξ
2n+1 )

)
| ≤ 2|Ψ|kekϕ∗(

N2
k

) 1
(2n)N2

.

Let N ∈ N be such that k
N
ϕ∗(N

k
) ≤ log( 2n

R1/(ρ−δ) ). Then log( |ξ|
R

) ≥ k
N3
ϕ∗(N3

k
)

and consequently, using that ϕ∗(t)
t

is increasing and lemma 1.4(1), we have
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|Dα−β
x Dγ−µ

y DN3
ξl
a(x, y, ξ)|≤

Cke
(ρ−δ)kϕ∗( |α−β+γ−µ|

k
)+(ρ−δ)kϕ∗(

N3
k

)(1 + |ξ|)|α−β+γ−µ|δ−N3ρemω(ξ) ≤

Cke
kϕ∗( |α−β+γ−µ|

k
)
(

ekϕ∗(
N3
k

)

(2n)N3

)ρ−δ
e(m+k)ω(2n+3).

Using N1! ≤ Eke
kϕ∗(

N1
k

), we deduce

|λN,α,β,γ,µ| ≤
∑

N !
N1!N2!N3!

(µl+βl)!
(µl+βl−N1)!N1!

×

2CkEk|Ψ|k ekϕ∗(
N1
k

)

(2n)N1

ekϕ∗(
N2
k

)

(2n)N2

(
ekϕ∗(

N3
k

)

(2n)N3

)(ρ−δ)×

ekϕ∗( |α−β+γ−µ|
k

)(2n+2)|µ+β|e(m+k)ω(2n+3).

Since log(2n

R
) ≥ k

N
ϕ∗(N

k
) ≥ k

Ni
ϕ∗(Ni

k
) (i = 1, 2) we have ekϕ∗(

Ni
k

)

(2n)Ni
≤ 1. On the

other hand ϕ∗(N1

k
) + ϕ∗(N2

k
) + ϕ∗(N3

k
) ≤ ϕ∗(N

k
),∑

N1+N2+N3=N
N !

N1!N2!N3!
= 3N ,

∑
N1≤µl+βl

(µl+βl)!
(µl+βl−N1)!N1!

≤ 2|µ+β|

and (2n+3)|µ+β| ≤ ekω(2n+3)+kϕ∗( |µ+β|
k

). Hence

|λN,α,β,γ,µ| ≤ 2CkEk|Ψ|k3N
(

ekϕ∗( N
k

)

(2n)N

)(ρ−δ)
ekϕ∗( |α+γ|

k
)e(m+2k)ω(2n+3)

:= IN,α,γ.

Since the support of λN,α,β,γ,µ(x, y, .) is contained in the set 2n ≤ |ξ| ≤ 2n+2,

which has measure (2n+1)p(4p − 1), we finally obtain

|Dα
xD

γ
y

(
Kn(x, y)−Kn+1(x, y)

)
| ≤ 2|α+γ|(2n+1)p(4p − 1)

1

cN0
IN,α,γ.

We put R∗ := R1/(ρ−δ). Then, using that 3
c0
≤ R, we deduce

qQ,k(Kn −Kn+1) ≤

2EkCk|Ψ|k(2n+1)p(4p − 1)
(

(R∗)Nekϕ∗( N
k

)

(2n)N

)(ρ−δ)
e(m+2k)ω(2n+3)

whenever log( 2n

R∗ ) ≥ k
N
ϕ∗(N

k
). Observe that the estimates just obtained also

hold if we replace N by j ≤ N . Now, selecting k large enough, and taking

N such that k
N
ϕ∗(N

k
) ≤ log( 2n

R∗ ) <
k

N+1
ϕ∗(N+1

k
) an application of Lemma

1.5 gives

qQ,k(Kn −Kn+1) ≤ 2CkEk|Ψ|k(2n+1)p(4p − 1)e−ω(2n)

from where it easily follows that (Kn) is a Cauchy sequence in E(ω)(Q). Thus

(x0, y0) does not belong to the (ω)-singular support of K.

As in [25] we can conclude that the pseudodifferential operators are pseu-

dolocal.
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Theorem 2.18. Let A : E ′(ω)(Ω) → D′
(ω)(Ω) be the pseudodifferential oper-

ator associated to an amplitude a(x, y, ξ) in Sm,ω
ρ,δ (Ω). Then

sing(ω) supp(Aµ) ⊂ sing(ω) supp(µ)

for every µ ∈ E ′(ω)(Ω).

If a convolution operator ψ → ψ ∗ S, ψ ∈ D(ω)(Rp), S ∈ D′
(ω)(Rp), is a

pseudodifferential operator, by 2.18 the (ω)-singular support of S reduces

to {0}. Therefore, not every convolution operator is a pseudodifferential

operator.

3. Symbolic calculus

One of the problems one has to face is how to determine the class of

symbols in order that the theory for the operators can be converted into

an algebraic theory for the corresponding symbols. Moreover, the class of

operators should be closed under products of operators. This leads to the

necessity of developing in our setting the classical symbolic calculus. The

definitions below are motivated by [23, 25].

Definition 3.1. We denote by FASm,ω
ρ,δ (Ω) the set of all formal sums∑

j∈N0

aj(x, y, ξ),

such that aj(x, y, ξ) ∈ C∞(Ω×Ω×Rp) and for every compact set Q ⊂ Ω×Ω

there are R ≥ 1, B ≥ 1 and a sequence Cn > 0, n ∈ N, with the property

|Dα
xD

γ
yD

β
ξ aj(x, y, ξ)| ≤ CnB

|β|β!e(ρ−δ)nϕ∗( |α+γ|+j
n

)emω(ξ)(1+|ξ|)|α+γ|δ−|β|ρ−(ρ−δ)j

for every j ∈ N0, (x, y) ∈ Q and log( |ξ|
R

) ≥ n
|β|+j

ϕ∗( |β|+j
n

).

Let a ∈ ASm,ω
ρ,δ (Ω) be given and we put a0 := a, aj := 0 for j 6= 0. Then

we can identify a with the formal sum
∑
aj.

Example 3.2. Let a ∈ ASm,ω
ρ,δ (Ω) be given, then the series

∑∞
j=0 pj(x, ξ),

where pj(x, ξ) :=
∑

|α|=j
1
α!
Dα

ξ ∂
α
y a(x, y, ξ)|y=x, is a formal sum in FASm,ω

ρ,δ (Ω).

Definition 3.3. Two formal sums
∑
aj and

∑
bj in FASm,ω

ρ,δ (Ω) are said

to be equivalent if for every compact set Q ⊂ Ω×Ω there are R ≥ 1, B ≥ 1

and two sequences Cn > 0 and Nn (n ∈ N) with the property

|Dα
xD

γ
yD

β
ξ

∑
j<N(aj − bj)| ≤

CnB
|β|β!e(ρ−δ)nϕ∗( |α+γ|+N

n
)emω(ξ)(1 + |ξ|)|α+γ|δ−|β|ρ−(ρ−δ)N

for every (x, y) ∈ Q, N ≥ Nn, log( |ξ|
R

) ≥ n
|β|+N

ϕ∗( |β|+N
n

).

Remark 3.4. If a(x, y, ξ) = 0 for every x, y ∈ Ω and |ξ| ≥ M then a ∼ 0.

In particular, every (ω)-smoothing operator is associated to an amplitude

equivalent to zero.
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Proposition 3.5. Let A be the pseudodifferential operator defined by an

amplitude a ∈ ASm,ω
ρ,δ (Ω) which is equivalent to zero. Then A is an (ω)-

smoothing operator.

Proof: We show that K(x, y) :=
∫
ei(x−y)ξa(x, y, ξ)dξ is a function in

E(ω)(Ω× Ω) and (Aϕ)(x) =
∫
K(x, y)ϕ(y)dy for every ϕ ∈ D(ω)(Ω). We fix

a compact set Q ⊂ Ω× Ω, then

|Dα
xD

γ
ya(x, y, ξ)| ≤ Cne

(ρ−δ)nϕ∗( |α+γ|+N
n

)emω(ξ)|ξ|δ|α+γ|−(ρ−δ)N

for every (x, y) ∈ Q, N ≥ Nn, and log( |ξ|
R

) ≥ n
N
ϕ∗(N

n
). We now fix n0 ∈ N

and we take 0 < ε < 1 and n ∈ N with ω( t
R
) ≥ εω(t)− 1

ε
and ε(ρ−δ)n > 2n0.

Then, for every N ≥ N8n and 2n
N
ϕ∗( N

2n
) ≤ log( |ξ|

R
) ≤ 2n

N+1
ϕ∗(N+1

2n
) we have

that |Dα
xD

γ
y

(
ei(x−y)ξa(x, y, ξ)

)
| is not greater than

C8n

∑
β≤α
µ≤γ

(α

β

)(γ

µ

)
e
(ρ−δ)n0ϕ∗( |α−β+γ−µ|

n0
)|ξ||β+µ|+δ|α−β+γ−µ|−(ρ−δ)Nemω(ξ)e(ρ−δ)4nϕ∗( N

4n
).

Applying lemma 1.4, we have

|ξ|δ|α−β+γ−µ|e
−δn0ϕ∗( |α−β+γ−µ|

n0
) ≤ en0ω(ξ)

and

|ξ||β+µ| ≤ e
n0ϕ∗( |β+µ|

n0
)
en0ω(ξ),

from where we conclude

|Dα
xD

γ
y

(
ei(x−y)ξa(x, y, ξ)

)
| ≤

C8n2|α+γ|e
n0ϕ∗( |α+γ|

n0
)
e(m+2n0)ω(ξ)e(ρ−δ)4nϕ∗( N

4n
)|ξ|−(ρ−δ)N .

An application of lemma 1.5(2) gives

|Dα
xD

γ
y

(
ei(x−y)ξa(x, y, ξ)

)
| ≤ Dn02

|α+γ|e
n0ϕ∗( |α+γ|

n0
)
e(m+1−n0)ω(ξ).

Selecting n0 large enough we conclude that K ∈ E(ω)(Ω × Ω). To finish, it

is easy to see that A coincides with the operator with kernel K.

Lemma 3.6. ([24, p. 241]) There is a sequence (Φ`)`≥1 and constants

C,D > 0 such that Φ` ∈ D(ω)(Rp), |Φ`(ξ)| ≤ 1, Φ`(ξ) = 1 for |ξ| ≤ 2,

Φ`(ξ) = 0 for |ξ| ≥ 3 and with the property that

|Φα
` (ξ)| ≤ C(

D

3
)|α|`|α|+1

whenever |α| ≤ `.

We now fix a positive constant R ≥ 1 and we put

Ψj,n(ξ) := 1− Φj

( ξ

Re
n
j
ϕ∗( j

n
)

)
.
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Then Ψj,n(ξ) 6= 0 implies |ξ| ≥ 2Re
n
j
ϕ∗( j

n
), whereas if ξ is in the support of

any derivative we also have |ξ| ≤ 3Re
n
j
ϕ∗( j

n
). It follows that

|Di
ξΨj,n(ξ)| ≤ C(

D

|ξ|
)|i|j|i|+1

for any multi-index i with |i| ≤ j.

In order to construct an amplitude from a formal sum, the idea is the

following: For a fixed n, as in [25] we could find a C∞−function an satisfying

the estimates in 2.10 only for this fixed n. Since each an is obtained as a

series involving the aj’s, we will take, for each n, a finite block of the series, in

such a way that when we put together these blocks we obtain an amplitude

which is equivalent to the formal sum. In some sense, this procedure reflects

the fact that our amplitudes are ’tied up’ to Fréchet spaces E(ω)(Ω).

Theorem 3.7. Let
∑
aj ∈ FASm,ω

ρ,δ (U) be given and let Ω be a relatively

compact open subset of U . Then there is an amplitude a ∈ ASm,ω
ρ,δ (Ω) such

that a ∼
∑
aj on Ω.

Proof: We put

Ψj,n(ξ) := 1− Φj

( ξ

Re
n
j
ϕ∗( j

n
)

)
whereR will be determined later. Associated toR we putR1 := (2R)ρ−δ and

we observe that Ψj,n(ξ) 6= 0 implies e(ρ−δ)nϕ∗( j
n

) ≤ |ξ|j(ρ−δ)( 1
R1

)j, whereas if ξ

is in the support of any derivative we also have ( |ξ|
3
)j(ρ−δ)( 1

R1
)j ≤ e(ρ−δ)nϕ∗( j

n
).

According to definition 3.1, we can select R large enough so that
∑ jeDjp

Rj
1

<

∞ and, for some sequence (Cn),

|Dα
xD

γ
yD

β
ξ aj(x, y, ξ)| ≤

CnB
|β|β!e(ρ−δ)2nϕ∗( |α+γ|

2n
)emω(ξ)|ξ||α+γ|δ−|β|ρe(ρ−δ)2nϕ∗( j

2n
)|ξ|−(ρ−δ)j

whenever (x, y) ∈ Ω, log( |ξ|
R

) ≥ n
|β|+j

ϕ∗( |β|+j
n

).

We first assume (x, y) ∈ Ω, n ∈ N, log( |ξ|
3R

) ≥ n
|β|ϕ

∗( |β|
n

) and Ψj,n(ξ) 6= 0.

Then log( |ξ|
R

) ≥ max
(

n
|β|ϕ

∗( |β|
n

), n
j
ϕ∗( j

n
)
)
≥ 2n

|β|+j
ϕ∗( |β|+j

2n
). Moreover from

Di
ξΨj,n(ξ) 6= 0 we deduce that log( |ξ|

3R
) ≤ n

j
ϕ∗( j

n
), and consequently, |β| ≤ j

since ϕ∗(t)/t is increasing. Since |ξ| ≥ 1 and 0 ≤ ρ ≤ 1 then |ξ|−|i| ≤ |ξ|−|i|ρ

and we can estimate

|Dα
xD

γ
yD

β
ξ

(
aj(x, y, ξ)Ψj,n(ξ)

)
|e−mω(ξ) ≤

∑
i≤β

(β

i

)
|Di

ξΨj,n(ξ)Dα
xD

γ
yD

β−i
ξ aj(x, y, ξ)|e−mω(ξ)
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which is less than

CCne
2nϕ∗( |α+γ|

2n
)|ξ||α+γ|δ−(ρ−δ)jenω(ξ)

∑
i≤β

B|β−i|D|i|j|i|+1

i!
|ξ|−|i|−ρ|β−i| ≤

CCnB
|β|β!e(ρ−δ)2nϕ∗( |α+γ|

2n
)|ξ||α+γ|δ−|β|ρe(ρ−δ)2nϕ∗( j

2n
)|ξ|−(ρ−δ)j

∑
i≤β

D|i|j|i|+1

i!
≤

CCnB
|β|β!e(ρ−δ)2nϕ∗( |α+γ|

2n
)|ξ||α+γ|δ−|β|ρ( 1

R1
)jjeDjp.

We proceed by induction to select a sequence (jn) of natural numbers in

such a way that j1 := 0, jn < jn+1, limn→∞
jn

n
= +∞ and

Cn+1

∞∑
j=jn+1+1

jeDjp

Rj
1

≤ Cn

2

jn+2∑
j=jn+1

jeDjp

Rj
1

.

Then

Dn := Cn

jn+1∑
j=jn+1

jeDjp

Rj
1

satisfies that Dn+1 ≤ Dn

2
. We now prove that

a(x, y, ξ) := a0(x, y, ξ) +
∞∑

n=1

jn+1∑
j=jn+1

Ψj,n(ξ)aj(x, y, ξ)

is an amplitude. Since jn ≤ j and Ψj,n(ξ) 6= 0 implies

n

jn
ϕ∗(

jn
n

) ≤ n

j
ϕ∗(

j

n
) ≤ log(

|ξ|
2R

)

the condition limn→∞
n
jn
ϕ∗( jn

n
) = +∞ permits to conclude that the sum

defining a is locally finite. Hence a is a well defined C∞ function. Let us

assume log( |ξ|
3R

) ≥ n
|β|ϕ

∗( |β|
n

). Then, for every n ∈ N,

|Dα
xD

γ
yD

β
ξ (

∑∞
k=n

∑jk+1

j=jk+1 Ψj,k(ξ)aj(x, y, ξ))| ≤

CB|β|β!e(ρ−δ)nϕ∗( |α+γ|
n

)|ξ||α+γ|δ−|β|ρemω(ξ)
∑∞

k=nDk.

Since a0 +
∑n−1

k=1

∑jk+1

j=jk+1 Ψj,kaj is a finite sum of amplitudes we conclude

that a(x, y, ξ) ∈ ASm,ω
ρ,δ (Ω).

To finish we have to show that a ∼
∑
aj on Ω. In order to do this, we

assume that (x, y) ∈ Ω and log( |ξ|
3R

) ≥ n
|β|+N

ϕ∗( |β|+N
n

) and we estimate the

derivatives of

a−
∑
j<N

aj =
∞∑

k=1

jk+1∑
j=jk+1

Ψj,kaj −
N−1∑
j=1

aj.

We will only consider the case N > njn. For every j ∈ N there is k ∈ N
with jk < j ≤ jk+1. Then k < n implies j ≤ jn(< N) and log( |ξ|

3R
) ≥

n
N
ϕ∗(N

n
) ≥ 1

jn
ϕ∗(jn) ≥ k

j
ϕ∗( j

k
). On the other hand, k ≥ n and N > j also

imply log( |ξ|
3R

) ≥ n
N
ϕ∗(N

n
) ≥ k

j
ϕ∗( j

k
) and Ψj,k(ξ) = 1.
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Consequently, a −
∑

j<N aj can be expressed as a sum of functions Ψj,kaj

with j ≥ N and k ≥ n.

It follows from the above estimates that

|Dα
xD

γ
yD

β
ξ

(
aj(x, y, ξ)Ψj,k(ξ)

)
|e−mω(ξ)

is less than

CDkB
|β|β!e(ρ−δ)2kϕ∗( |α+γ|+N

2k
)|ξ||α+γ|δ−|β|ρ−(ρ−δ)Ne(ρ−δ)kϕ∗( j−N

k
)|ξ|−(ρ−δ)(j−N) ≤

CDkB
|β|β!e(ρ−δ)2kϕ∗( |α+γ|+N

2k
)|ξ||α+γ|δ−|β|ρ−(ρ−δ)N( 1

R1
)j−N .

where the last inequality follows from the fact that Ψj,k(ξ) 6= 0 implies that

log( |ξ|
2R

) ≥ k
j
ϕ∗( j

k
) ≥ k

j−N
ϕ∗( j−N

k
).

Finally we get

|Dα
xD

γ
yD

β
ξ

(
a−

∑
j<N

aj

)
| ≤

∑
k≥n

∑
j≥N

|Dα
xD

γ
yD

β
ξ (Ψj,kaj)|

which is dominated by

CB|β|β!e(ρ−δ)nϕ∗( |α+γ|+N
n

)|ξ||α+γ|δ−|β|ρ−(ρ−δ)Nemω(ξ)
∑
k≥n

Dk(
∑
j≥N

(
1

R1

)j−N).

We observe that any other choice of the sequence (jn) and the constant

R satisfying the estimates in the proof of the previous result would give

another amplitude defining the same pseudodifferential operator, modulus

an (ω)-smoothing one. Hence, in what follows we can assume without loss

of generality that (jn) and R are as big as necessary.

Our next aim is to give the asymptotic expansion formula. From now

on, we will always assume that E(ω)(Ω) contains a Gevrey class Γ{s}(Ω) for

some s > 1. Then, for σ(t) := t1/s, we have that E(σ)(Ω) is contained (and

it is dense) in E(ω)(Ω) (see [8]).

We assume that n
j
ϕ∗( j

n
) ≥ n for every j ≥ jn. We put ϕj := Ψj,n if jn <

j ≤ jn+1, ϕ0(ξ) = 1.

As in the proof of 2.2 we have the following

Lemma 3.8. Let a ∈ Sm,ω
ρ,δ (Ω) and let A be the pseudodifferential operator

defined by a. Then, for every u ∈ D(ω)(Ω),

A(u) =
∞∑

j=0

Aj(u)

where Aj is the pseudodifferential operator with amplitude aj(x, y, ξ) :=

(ϕj − ϕj+1)(ξ)a(x, y, ξ).
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Lemma 3.9. Let
∑∞

j=0 pj(x, ξ) be a formal sum in FASm,ω
ρ,δ (U), Ω a rela-

tively compact open subset of U and (jn) as in the proof of 3.7 and satisfying

the additional assumption n
j
ϕ∗( j

n
) ≥ max(n, logCn) for j ≥ jn , (Cn) being

the constants of definition 3.1 relatives to the closure of Ω. We let

p(x, ξ) :=
∞∑

j=0

ϕj(ξ)pj(x, ξ)

which is a symbol in ASm,ω
ρ,δ (Ω). Then, the corresponding pseudodifferential

operator P (x,D) is the limit in L(D(ω)(Ω),D′
(ω)(Ω)) of the sequence of op-

erators PN : D(ω)(Ω) → E(ω)(Ω), where each PN is the pseudodifferential

operator with symbol
∑N

j=0(ϕj − ϕj+1)(ξ)(
∑j

l=0 pl(x, ξ)).

Proof: We first observe that

N∑
j=0

(ϕj − ϕj+1)(ξ)(

j∑
l=0

pl(x, ξ)) =
N∑

j=0

ϕj(ξ)pj(x, ξ)− ϕN+1(ξ)
N∑

j=0

pj(x, ξ).

Let B be a bounded set in D(ω)(Ω) and let K be a compact set in Ω. We

will prove

(a)
∫

(
∑N

j=0 ϕj(ξ)pj(x, ξ))e
ixξû(ξ)dξ →

∫
(
∑∞

j=0 ϕj(ξ)pj(x, ξ))e
ixξû(ξ)dξ

and

(b)
∫
ϕN+1(ξ)(

∑N
j=0 pj(x, ξ))e

ixξû(ξ)dξ → 0

as N goes to infinity, uniformly on x ∈ K and u ∈ B. By the Paley Wiener

theorem ([8, 3.4]) there is D > 0 with |û(ξ)| ≤ De−(m+3)ω(ξ) for all u ∈ B.

It follows from definition 3.1 that there is a sequence (Cn) with

|pj(x, ξ)| ≤ Cn
e(ρ−δ)nϕ∗( j

n
)

(1 + |ξ|)(ρ−δ)j
emω(ξ)

whenever x ∈ K and log( |ξ|
R

) ≥ n
j
ϕ∗( j

n
). Since ϕj(ξ) 6= 0 and jn < j ≤ jn+1

imply log( |ξ|
2R

) ≥ n
j
ϕ∗( j

n
) we get

|ϕj(ξ)pj(x, ξ)û(ξ)| ≤
Cn

(2R)j(ρ−δ)
De−3ω(ξ).

We can assume e−ω(ξ) ≤ 1
|ξ| ≤

1

e
n
j ϕ∗(

j
n )

for ξ ∈ suppϕj. For a fixed N one can

find l such that jl < N ≤ jl+1 and we have, using that n
j
ϕ∗( j

n
) ≥ logCn for

every n ∈ N and jn < j ≤ jn+1,∑∞
j=N+1

∫
|ϕj(ξ)pj(x, ξ)û(ξ)|dξ ≤ D

∑∞
n=l

∑jn+1

j=jn+1
1

(2R)j(ρ−δ)

∫
e−2ω(ξ)dξ,

which proves (a). To prove (b), givenN we take n with jn+1 ≤ N+1 ≤ jn+1

and we note that ϕN+1(ξ) 6= 0 implies log( |ξ|
2R

) ≥ n
N+1

ϕ∗(N+1
n

). Then

|ϕN+1(ξ)(
∑N

j=0 pj(x, ξ))| ≤ Cn

∑N
j=0

en(ρ−δ)ϕ∗(
j
n )

|ξ|j(ρ−δ) emω(ξ)

≤ Cn

∑∞
j=0

(
1

2R

)(ρ−δ)j
emω(ξ).
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Hence

|ϕN+1(ξ)(
N∑

j=0

pj(x, ξ))û(ξ)| ≤ Ce−ω(ξ)e−
n

N+1
ϕ∗(N+1

n
)

from where it follows (b), since jn+1 ≤ N+1 ≤ jn+1 implies n
N+1

ϕ∗(N+1
n

) ≥
n.

Lemma 3.10. For every n ∈ N we have

lim
N→∞

N

e
n
N

ϕ∗(N
n

)
= 0.

Proof: If this is not the case, we find 0 < ε < 1 and an unbounded

sequence (Nk) of natural numbers such that

ε−Nk(Nk)
Nk ≥ enϕ∗(

Nk
n

).

An application of Stirling formula and [12, 2.1.2] gives a contradiction.

Lemma 3.11. Let m ≥ n and 1
e
e

m
j

ϕ∗( j
m

) ≤ t ≤ e
n
j
ϕ∗( j

n
). Then

|t|j+1 ≥ enω(t)e2mϕ∗( j
2m

)e−j.

In particular

enϕ∗( j
n

) ≥ e(n−1)ω(t)e2nϕ∗( j
2n

)

for j large enough.

Proof: By lemma 1.4 (2) we know that

nω(t) ≤ log(t) + sup
k∈N0

{k log(t)− nϕ∗(
k

n
)}

holds for t ≥ 1. Since 0 < t ≤ e
n
j
ϕ∗( j

n
) and ϕ∗(t)

t
is an increasing function

we deduce that nω(t) ≤ log(t) + l log(t) − nϕ∗( l
n
) for some 0 ≤ l ≤ j and

m
j
ϕ∗( j

m
) ≥ m

j−l
ϕ∗( j−l

m
). Hence

tj = tle−nϕ∗( l
n

)tj−lenϕ∗( l
n

)

≥ enω(t)−log(t)( e
m
j ϕ∗(

j
m )

e
)j−lemϕ∗( l

m
)

≥ enω(t)−log(t)emϕ∗( j−l
m

)+mϕ∗( l
m

)e−j

≥ enω(t)−log(t)e−je2mϕ∗( j
2m

)

the last inequality being a consequence of 1.4(1). The second statement in

the lemma follows as the above inequality with t = e
n
j
ϕ∗( j

n
).

Lemma 3.12. Let σ(t) = td, 0 < d < 1, and let ω be a weight function such

that ω(t) = o(σ(t)). Then there are λ > 0 and a sequence (jn) of natural

numbers such that

λσ(e
n
j
ϕ∗( j

n
)) ≥ j

for every j ≥ jn.
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Proof: For every n ∈ N there is An > 0 with ω(t) ≤ An + 1
n
σ(t) for all

t ≥ 0. Hence n
j
ϕ∗ω( j

n
) ≥ −nAn

j
+ 1

j
ϕ∗σ(j). We take jn satisfying nAn

jn
≤ 1. Now

the conclusion follows from the fact that 1
j
ϕ∗σ(j) = 1

d
log( j

ed
).

Theorem 3.13. Let ω be a weight such that ω(t) = o(td), d ≤ ρ− δ, d < 1.

Let a ∈ ASm,ω
ρ,δ (U) with associated pseudodifferential operator A and let Ω

be a relatively compact open subset of U. Then there are a pseudodifferential

operator P (x,D) : D(ω)(Ω) → E(ω)(Ω) and a (ω)-smoothing operator R :

E ′(ω)(Ω) → E(ω)(Ω) such that Aϕ = P (x,D)ϕ + Rϕ for every ϕ ∈ D(ω)(Ω).

Moreover

p(x, ξ) ∼
∞∑

j=0

pj(x, ξ)

where pj(x, ξ) =
∑

|α|=j
1
α!
Dα

ξ ∂
α
y a(x, y, ξ)|y=x.

Proof: For pj(x, ξ) as above, we take p(x, ξ) as in lema 3.9 and P :=

P (x,D). According to the previous lemmata, the operatorA−P : D(ω)(Ω) →
E(ω)(Ω) can be represented as A − P =

∑∞
N=0 PN , where PN(u)(x) =∫

KN(x, y)u(y)dy and the series is convergent in L(D(ω)(Ω),D′
(ω)(Ω)). Here

KN(x, y) :=

∫
(ϕN − ϕN+1)(ξ)(a(x, y, ξ)−

N∑
j=0

pj(x, ξ))e
i(x−y)ξdξ

is a function in E(ω)(Ω×Ω), as easily follows from the fact that ϕN − ϕN+1

has compact support. Hence, each operator PN is (ω)-smoothing and our

aim is to show that also
∑∞

N=0 PN is (ω)-smoothing. To do this we need to

obtain a different representation for this series. There is no loss of generality

to assume that Ω is convex (in fact, in view of theorem 2.17 we only have

to show that every point x ∈ Ω admits a neighborhood W such that the

kernel distribution of A−P is an ultradifferentiable function of (ω)-class in

W ×W.)

Proceeding as in [25, 2.25] we get, for N ≥ 1, KN =
∑N

|α|=1A
N
α +RN , where

AN
α (x, y) :=

∑
0 6=β≤α

1

β!(α− β)!

∫
ei(x−y)ξσN,α,β(x, ξ)dξ

for

σN,α,β(x, ξ) := Dβ
ξ (ϕN(ξ)− ϕN+1(ξ))D

α−β
ξ ∂α

y a(x, x, ξ)

and

RN(x, y) :=
∑

|α|=N+1

∑
β≤α

1

β!(α− β)!

∫
ei(x−y)ξτN,α,β(x, y, ξ)dξ

for

τN,α,β(x, y, ξ) := Dβ
ξ (ϕN(ξ)− ϕN+1(ξ))D

α−β
ξ ωα(x, y, ξ).
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Here

ωα(x, y, ξ) := (N + 1)

∫ 1

0

∂α
y a(x, x+ t(y − x), ξ)(1− t)Ndt.

On the other hand
∑N

r=1

∑r
|α|=1A

r
α =

∑N
j=1 Ij −WN , where

Ij(x, y) :=
∑
|α|=j

∑
0 6=β≤α

1

β!(α− β)!

∫
ei(x−y)ξDβ

ξϕj(ξ)D
α−β
ξ ∂α

y a(x, x, ξ)dξ

and

WN(x, y) :=
N∑

|α|=1

∑
0 6=β≤α

1

β!(α− β)!

∫
ei(x−y)ξDβ

ξϕN+1(ξ)D
α−β
ξ ∂α

y a(x, x, ξ)dξ.

Hence
∑N

j=1Kj =
∑N

j=1 Ij +
∑N

j=1Rj − WN . To finish the proof of the

Theorem we will show that
∑∞

j=1Rj(x, y) and
∑∞

j=1 Ij(x, y) converge in

E(ω)(Ω×Ω) and that the sequence of operators defined by the kernels (WN)

converges to the null operator as N goes to infinity.

(a) Let jn < j ≤ jn+1. Then |Dµ
xD

ν
yIj(x, y)| is not greater than∑

|α|=j

∑
0 6=β≤α

∑
γ≤µ

(µ

γ

) 1

β!(α− β)!

∫
|ξ||γ+ν||Dβ

ξϕj(ξ)||Dµ−γ
x (Dα−β

ξ ∂α
y a(x, x, ξ))|dξ.

We fix k ∈ N and we take n ≥ k and ` := 2n. If Dβ
ξϕj(ξ) 6= 0 then

2Re
n
j
ϕ∗( j

n
) ≤ |ξ| ≤ 3Re

n
j
ϕ∗( j

n
)

and we have that |Dµ−γ
x Dα−β

ξ ∂α
y a(x, x, ξ)| is less than or equal to

C2`(α− β)!B|α−β|e(ρ−δ)2lϕ∗( |µ−γ+α|
2l

)emω(ξ)|ξ|δ(|µ−γ|+|α|)−ρ|α−β| ≤
C2`(α− β)!B|α−β|e(ρ−δ)(kϕ∗( |µ−γ|

k
)+`ϕ∗( j

`
))emω(ξ)|ξ|δ|µ−γ|+ρ|β|−(ρ−δ)j

by using 1.3(1) and k ≤ `. We now use that |Dβ
ξϕj(ξ)| ≤ C( D

|ξ|)
|β|j|β|+1and

|ξ|δ|µ−γ|e−δkϕ∗( |µ−γ|
k

) ≤ eδkω(ξ). Moreover e−(n−1)ω( ξ
3R

)enϕ∗( j
n

) ≥ e2nϕ∗( j
2n

) (see

lemma 3.11) and |ξ||ν+γ| ≤ ekϕ∗( |ν+γ|
k

)+kω(ξ), thus |Dµ
xD

ν
yIj(x, y)| is less than

or equal to∑
|α|=j

C4nB
jekϕ∗( |µ+ν|

k
)

(2R)(ρ−δ)j

∑
0 6=β≤α
γ≤µ

(µ

γ

) 1

β!
CD|β|j|β|+1

∫
e(2k+m)ω(ξ)−(n−1)(ρ−δ)ω( ξ

3R
)dξ.

Given k we can select n large enough in order to ensure that the integral

above is less than 1. Then, for jn < j ≤ jn+1, we obtain

|Dµ
xD

ν
yIj(x, y)| ≤ CC4nj

p+1Bj eDjp2

(2R)(ρ−δ)j
e|µ|+kϕ∗( |µ+ν|

k
).

Proceeding as in the proof of 3.7 we can select the sequence (jn) and the

constant R > 0 in order to guarantee the convergence of
∑
Ij(x, y) in

E(ω)(Ω× Ω).
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(b) With a similar argument it is possible to prove that
∑∞

j=1Rj(x, y)

converges in E(ω)(Ω×Ω) for a suitable choice of (jn) and R > 0. In fact, we

recall that

Rj(x, y) =
∑

|α|=j+1

∑
β≤α

1

β!(α− β)!

∫
ei(x−y)ξτj,α,β(x, y, ξ)dξ.

Hence

|Dµ
xD

ν
yRj(x, y)| ≤∑

|α|=j+1

∑
β≤α

∑
γ≤µ

∑
r≤ν

(µ

γ

)(ν

r

)
1

β!(α−β)!

∫
|ξ||γ+r||Dµ−γ

x Dν−r
y τj,α,β(x, y, ξ)|dξ.

Now, for a fixed k ∈ N we take n ≥ k and ` = 2n + 2. Then we have that

|Dµ−γ
x Dν−r

y τj,α,β(x, y, ξ)| is less than or equal to the product of

|Dβ
ξ (ϕj − ϕj+1)(ξ)|(j + 1)

by ∑
s≤µ−γ

(µ−γ

s

) ∫ 1

0

|Dα+ν−r
y Ds

xD
µ−γ−s
y Dα−β

ξ a(x, x+ t(y − x), ξ)|dt.

The above integral is dominated by

C2`B
|α−β|(α− β)!

e(ρ−δ)(kϕ∗( |µ+ν−r−γ|
k

)+`ϕ∗( j+1
`

))

|ξ|ρ|α−β|−δ|µ+ν+α−r−γ| emω(ξ).

Having in mind

|ξ|δ|µ+ν−r−γ|e−δkϕ∗( |µ+ν−r−γ|
k

) ≤ eδkω(ξ)

(lemma 1.4) and

|ξ||γ+r|eρkϕ∗( |µ+ν−r−γ|
k

) ≤ ekω(ξ)ekϕ∗( |µ+ν|
k

)

(1.3 and 1.4) we conclude that

|ξ||γ+r||Dµ−γ
x Dν−r

y τj,α,β(x, y, ξ)|

is less than or equal to the product of |Dβ
ξ (ϕj − ϕj+1)(ξ)| by

e(k+m+δk)ω(ξ)

|ξ|ρ(j+1−|β|)−δ(j+1)
2|µ−γ|Bj+1−|β|C2`(α− β)!(j + 1)ekϕ∗( |µ+ν|

k
)e(ρ−δ)`ϕ∗( j+1

`
).

An application of the previous lemmata permits to conclude that, we can

select n in such a way that the above estimate is less than

CD|β|(j + 1)|β|C2`
e−ω(ξ)

(R)(ρ−δ)(j+1)
2|µ−γ|Bj+1−|β|(α− β)!(j + 1)2ekϕ∗( |µ+ν|

k
).

Hence

|Dµ
xD

ν
yRj(x, y)| ≤

(ep2DB

Rρ−δ
)j+1(j + 1)p+2C2`2

2|µ+ν|ekϕ∗( |µ+ν|
k

).

From where it follows that, after choosing (jn) and R in the proper way,

the series
∑
Rj converges in E(ω)(Ω× Ω).
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(c) Let TN : D(ω)(Ω) → D′
(ω)(Ω) be the operator with kernel WN . Since∑∞

N=0 PN converges in L(D(ω)(Ω),D′
(ω)(Ω)), we deduce from (a) and (b) that

(TN) converges to an operator T : D(ω)(Ω) → D′
(ω)(Ω) in L(D(ω)(Ω),D′

(ω)(Ω)).

In order to show that T = 0 it is sufficient to prove that T vanishes on the

dense subset D(σ)(Ω), σ(t) := td. To do this, we fix N ∈ N, jn < N + 1 ≤
jn+1, and we put aN := Re

n
N+1

ϕ∗(N+1
n

). Then Dβ
ξϕN+1(ξ) 6= 0 implies that

2aN ≤ |ξ| ≤ 3aN . For every u ∈ D(σ)(Ω) we have

|TN(u)(x)| ≤
∑N

|α|=1

∑
0 6=β≤α

1
β!(α−β)!

|
∫
Dβ

ξϕN+1(ξ)D
α−β
ξ ∂α

y a(x, x, ξ)û(ξ)dξ|

≤
∑N

|α|=1

∑
0 6=β≤α

D|β|(N+1)|β|+1

β!
B|α−β|Cn

(2R)(ρ−δ)|α|

∫
|ξ|≥2aN

emω(ξ)|û(ξ)|dξ.

Let λ be given as in lema 3.12. Then λσ(aN) ≥ N+1. For every u ∈ D(σ)(Ω)

we have |û(ξ)| ≤ e−(m+λp2+1)σ(ξ) for |ξ| large enough. Since log(t) = o(σ(t))

we obtain ∫
|ξ|≥2aN

emω(ξ)|û(ξ)|dξ ≤ e−λp2σ(2aN )

(2aN)2
<

1

2aNep2(N+1)

for N large enough.

On account of lemma 3.10, we can assume that j

e
n
j ϕ∗(

j
n )
≤ 1

2n for j ≥ jn.

Consequently, since
∑

β≤α
(N+1)|β|

β!
≤ ep2(N+1), we get

|TN(u)(x)| ≤ 1

2n

N∑
|α|=1

( BD

2Rρ−δ

)|α|N + 1

aN

Cn

2aN

≤ 1

2n

N∑
j=1

(pDB
Rρ−δ

)j

from where we deduce that TN(u)(x) converges to 0 uniformly on x ∈ Ω as

N goes to infinity.

In order to compose pseudodifferential operators it is useful to consider

operations with formal sums.

Proposition 3.14. Let P (x,D) be the operator associated to p(x, ξ) ∈
ASm,ω

ρ,δ (U) and let Ω be a relatively compact open subset of U . Then the

transposed operator (restricted to D(ω)(Ω)) can be decomposed as P (x,D)t =

Q(x,D) +R, where R is (ω)-smoothing and Q(x,D) is defined by a symbol

q(x, ξ) ∼
∑
qj, and we have qj(x, ξ) :=

∑
|α|=j

1
α!
∂α

ξ D
α
xp(x,−ξ).

Proof: We already know that P (x,D)t is the operator associated to

p(y,−ξ). Then, it suffices to apply 3.13.

Given
∑
pj ∈ FASm,ω

ρ,δ (Ω), standard calculations ([25]) and the properties

of ϕ∗ permit to prove that
∑
qj, where qj(x, ξ) :=

∑
|α|+h=j

1
α!
∂α

ξ D
α
xph, is a

formal sum.

Analogously, if
∑
pj ∈ FASm1,ω

ρ,δ (Ω),
∑
qj ∈ FASm2

ρ,δ , one can prove that∑
rj ∈ FASm1+m2,ω

ρ,δ (Ω), where rj(x, ξ) =
∑

|α|+k+h=j
1
α!
∂α

ξ phD
α
xqj, is a for-

mal sum.
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Definition 3.15. (1) For
∑
pj ∈ FASm,ω

ρ,δ (Ω) we define (
∑
pj)

t as the

formal sum
∑

j qj, where qj is as before.

(2) For
∑
pj ∈ FASm1,ω

ρ,δ (Ω),
∑
qj ∈ FASm2

ρ,δ we define (
∑
pj) ◦ (

∑
qj) =∑

rj, where rj is as above.

The two following results are straightforward, therefore we omit their

proof ([25]).

Proposition 3.16. (1) ((
∑
pj)

t)t ∼
∑
pj.

(2) If
∑
pj ∼

∑
p′j and

∑
qj ∼

∑
q′j, then (

∑
pj)◦(

∑
qj) ∼ (

∑
p′j)◦(

∑
q′j).

Lemma 3.17. Let Ω ⊂ Rp be an open bounded set, and let p(x, ξ), q(x, ξ) ∈
ASm,ω

ρ,δ (Ω). Assume that b(x, ξ) ∈ ASm,ω
ρ,δ (Ω) satisfies b(x, ξ) ∼ qt(x,−ξ) and

that r(x, ξ) ∈ AS2m,ω
ρ,δ (Ω) is equivalent to

∑
j

∑
|α|=j

1
α!
∂α

ξ D
α
y (p(x, ξ)b(y, ξ))|y=x.

Then, r(x, ξ) ∼ p(x, ξ) ◦ q(x, ξ).

Theorem 3.18. Let p(x, ξ), q(x, ξ) ∈ ASm,ω
ρ,δ (U) be given and let Ω be an

open set which is relatively compact set in U . Let us denote by P and Q the

corresponding pseudodifferential operators and assume that either P or Q

is properly supported. Then, P ◦ Q : D(ω)(Ω) → E(ω)(Ω) coincides, modulo

an (ω)-smoothing operator, with the pseudodiferential operator associated to

(2π)p(p(x, ξ) ◦ q(x, ξ)).

Proof: Let us assume that P is properly supported. We take Ω1, rela-

tively compact and open in U containing Ω.

We know that Q = (Qt)t and that Qt is given by q(y,−ξ). Therefore

Qt = Q′+T ′ on Ω1, where T ′ is (ω)-smoothing and Q′ is given by a symbol q′

on Ω1, which is equivalent to qt. Since the class of (ω)-smoothing operators is

closed by taking transposes on Ω1, Q coincides, modulo some (ω)-smoothing

operator, with the operator Q1 associated to b(y, ξ) := q′(y,−ξ) ∼ qt(y,−ξ).
As composing P with any (ω)-smoothing operator is again (ω)-smoothing,

P ◦Q− P ◦Q1 is (ω)-smoothing.

Given f ∈ D(ω)(Ω) we have that Q1f ∈ DL1,(ω)(Rp) (prop. 2.16), there-

fore P (Q1f)(x) =
∫
p(x, ξ)Q̂1f(ξ)dξ (prop. 2.4). But, from 2.16, Q1f(x) =

Î(−x), therefore Q̂1f(ξ) = (2π)pI(ξ). That is, P ◦ Q1 is the pseudodiffer-

ential operator associated to a(x, y, ξ) = (2π)pp(x, ξ)b(y, ξ). We apply 3.13

and 3.17 to conclude.
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