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Introduction

We consider first order quasi-linear PDE systems
W + AW)o,W =0, xzcR, tecRT, (1)

The system is supposed to be strictly hyperbolic and the
characteristic fields R;(W),:=1,..., N, are supposed to be
either genuinely nonlinear:

VA(W) - R;(W)#0, YW eQ,
or linearly degenerate:

VA(W) - Ry(W) =0, YW €Q.
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Introduction

In the case of nonconservative systems important problems appear from an
analytical and numerical point of view when A # 0 and it is not the Jacobian
of any function. Here we will follow the theory developed by Dal Maso,
LeFloch and Murat (1995) that allows a notion of weak solution which
satisfies (1) in the sense of Borel measures. This definition is based on the
choice of a family of Lipschitz continuous paths @ : [0,1] x 2 x Q@ — Q
satisfying certain regularity and consistency properties. In particular

S0, W, Wy) = Wi, &1, Wi, W,) =Wy, YW, W,)eQxQ,

and
QE,W, W) =W, VEe]0,1], YW €Q.

We remember that the family of paths can be understood as a tool to give a
sense to integrals of the form

b
[ AW @) W)

for functions W with jump discontinuities.
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Introduction

More precisely, given a bounded variation function
W : la,b] — Q, it is defined:

7[ A(W(z))WI(z)dzf/ A(W(z))Wz(z)dz+Z/ A(D(s; W W+)) (s W W) ds.
@
If such a mathematical definition of the nonconservative
products is assumed to define the concept of weak solution, the
generalized Rankine-Hugoniot condition:

/1 -1/t 0P + + -
AR (ss WWT) 5 (ss W, WT)ds = o(WT = W7), (3)
0 S

has to be satisfied across an admissible discontinuity. Once the
family of paths has been prescribed, a concept of entropy is
required, as it happens for systems of conservation laws, that
may be given by an entropy pair or by Lax’s entropy criterion.
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Question 1: Which is the ‘good’ election of the family of path?
When the hyperbolic system is the vanishing-viscosity limit of the parabolic
problems
Wi+ AW W = e(R(W)W;)a, (4)

where R (W) is any positive-definite matrix, the adequate family of paths
should be related to the viscous profiles: a function V is said to be a viscous
profile for (4) linking the states W~ and W if it satisfies

lim V(x)=W~, lim V(x)=W7", lim V'(x)=0 (5)

X——00 X—+oo

xX—+oo

and there exists o € R such that the travelling wave

WE@,t):V(x_Ut), 6)

€

is a solution of (4) for every e. It can be easily verified that, in order to be a
viscous profile, V' has to solve the equation

— &V + ANV = (R V'Y, with (5). 7)
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Path-conservative methods

Let us consider a family of paths ®. According to (Parés, 2006), a numerical
method for solving (1) is said to be path-conservative if it can be written in the
form

Wit = W - A—JC(D;U2 +Dii1)a) (8)
where
W~ i/z’*% W, tn) dr 9)
© T Ax e, 1 e
2
+ + n n
D¢+1/2 =D (Wi7 i+1)7

where D~ and D™ satisfy
DEW,W)=0, YW €, (10)
1
D (Wi, W,) + D (Wi, W) = / A(®(s: Wi, W) 22
0
for every set W;, W, € Q.
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Question 2: Do the numerical schemes converge to the right solution?

Lineal systems

Lax's equivalence theorem
|Conslslency ‘ + | Stability | ————— Convergence

Nonlinear systems

Systems of conservation laws Nonconservative systems
Consistency + Stability , Consistency + Stability
+ + + +
Entropy control Entropy control |+ ,Numencal viscosity]
control
Convergence Convergence
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Following (Parés, 2006), first order path-conservative numerical
schemes can be extended to high-order by using reconstruction
operators:

/ 1 + /x”% ¢ 9
't)=—— | D D, P!(z)) =P
Wit = =55 | Py O+ DL, 0 + | T ARI@) Pl @) ds |
=3
(12)
where P!(z) is the smooth approximation of the solution at the
ith-cell provided by a high-order reconstruction operator from

the sequence of cell values {W;(¢)} and
D31 ya(®) = Dy jp(Wigy (0, Wik (1)),

where W, »(t) = Pl(x; 2) and Wi, (t) = Pi+1($i+%) (see
(Castro et. al., 2017) for detalils).
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Idea: Combine a standard second-order reconstruction
operator in smoothness regions and a discontinuous
operator close to discontinuities so that no numerical
viscosity is added in the non-smooth regions.
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Once the numerical approximations W/ of the averages of the
solutions have been computed at time ¢,, = nAt, the first step is
to mark the cells I; such that the solution of the Riemann
problem consisting of (1) with initial conditions

wn, ifx <0,

W(z,0) = . i
o ifx >0,

(13)

involves a shock wave. Let us denote by M., the set of indices
of the marked cells, i.e.

M, = {i s.t. the solution of the Riemann problem (1), (13) involves a shock wave}.
(14)
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We take Pj'(x, t) in (12) as following:
@ Ifi—1,i,i+1¢ M, then P} is the approximation of the first degree
Taylor polynomial of the solution given by:

Py (2,t) = W + 0. W, (x — 2:) — AW)OW, (t — t7),

where

(m?)k = minmod <Oz

n n n n n n
Wit1k — Wik Wit1,k — Wi—1k aWi,k - Wi—1,k>
b

Ax ’ 2Ax ’ Ax
being « is a parameter with 1 < oo < 2 and
min{a,b,c} ifa,b,c>0,
minmod(a, b, c) = { max{a,b,c} ifa,b,c<0,
0 otherwise.
Observe that, using the equation:

—~——

W (zi,tn) = —A(W (24, £0))0: W (24, tn) & — AW W, .
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@ Ifi € M, then

P (2, 1) Wy ife <ai_g0 +di Az + o] (t —ta),
Mz, t) = ’ .
W otherwise.

where d7 is chosen so that

W k+(17d") Pk = Wik (15)
for some index k € {1,. N} and o} ,» and W, are chosen so that if
Wi, and W[, may be I|nked by an adm|53|ble d|scont|nU|ty with speed o, then

W =Wy, Wi'fr =Wl,, o =o. (16)

This in-cell discontinuous reconstruction can only be done if 0 < d?* <1, i.e. if

n n
w; w,;
0< i,7k i,k <17

Wl Wl e

otherwise the MUSCL-Hancock reconstruction is applied in the cell. Moreover, if
di} =1and o} > 0 (resp. d} = 0and o < 0) the cell is unmarked and the cell
I;4+1 (resp. I;—1) is marked if necessary.
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Semi-discrete method

@ Otherwise (i.e. ifi ¢ M,, buti —1€ M, ori+1¢€ M,)then
P (z,t) = W

Remark 1

In the case i € M,,, if one of the equations of system (1), say the kth
one, is a conservation law, the index % is selected in (15), so that the
corresponding variable is conserved. Moreover, if there is a linear
combination of the unknowns zfj:l apwy that is conserved, (15) may
be replaced by:

N

d"Zakw”kJr (1-d Zakw”kuakw k- (17)

k=1

If there are more than one conservation laws, the index &
corresponding to one of them is selected in (15).
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How to choose o7, W, W/".?
Two strategies:

@ First strategy: If the solutions of the Riemann problems are explicitly
known, in a marked cell 7", W, W/", can be chosen as the speed, the
left, and the right states of (one of the) discontinuous waves appearing
in the solution of the Riemann problem with initial data W;* ,, W ,.

@ Second strategy: If a Roe matrix is available, in a marked cell o*, W',
W can be chosen as the speed, the left, and the right states of one of
the discontinuities appearing in the solution of the linearized Riemann
problem with initial data W;" ;, W;" ;. More explicitly, an index k£* has to
be selected and then

k*—1
op = M (Wi, W), Wi = Wity + Z ap R (WL, Wiiy),
k=1
Wi = Wi + arp- Re- (W21, W),
where ax, k= 1,..., N represent the coordinates of W/, — W ; on
the basis of eigenvectors of A (W/> 1, W/i1).
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Time step
The time step At,, is chosen as follows:
At,, = min(AtS, At7), (18)
where
AtS = CFLmin (maxfﬁ Aul) : (19)

where CFL € (0,1) is the stability parameter and X; ;, ..., A\ n
represent the eigenvalues of A(W;*); and

1—d?
LAz, if ol >0,
07|
At] = min (20)
iEMp n
Az, if o <O0.

|o7'|
Observe that, besides the stability requirement, this choice of time
step ensures that no discontinuous reconstruction leaves a marked

cell.
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Fully discrete method

Once the time step is chosen, (12) is integrated in the interval
[t", "1, with "1 = ¢ 4 At,,, to obtain:

Ax tmn T, 1
)

t"+1 T., 1
R / (D;; ®+D7 (O + f e A(P?(x,w)azwﬂc,t)dm) dt,
and the mid-point rule is used to approximate the integrals in
time:

. ) Aty _ 1 1 Tirl . )
wrtl —w A;’ (DHIM'*Z ) +D:r7l(t”+2)+][ it3 .A(]P;L(m,t"+1/2))81]P’,£L(:c,t"+1/2)dm) ,
T2 2 r. 1
i

2
(21)
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Fully discrete method

The computation of the dashed integral in this expression
depends on the cell:
1 1fi—1,4,i+ 1 ¢ M, the mid-point rule is used again to
approximate the integral:

Tyl ntl ——n
/ AP (@, 072))0, P, ) da e Aw AW )BT
xii%
(22)
where
n+l At —~——n
Wi = PP 6772) = W) — - A(W])O, W
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2 If i € M, taking into account the definition of the dashed
integrals (2), one has:

'{Hl% AP (2, t" T 2))0, ) (2, " T/ 2) dz = /01 A((s; WY, W) ®(s; W, W) ds.
o (23)
Observe that, if W}, and W', can be linked by a shock
whose speed is ¢, then the generalized

Rankine-Hugoniot condition (3) leads to

T, 1
][ B AP 7Y2)) 0, (o, Y2 d = o7 (W — W)
T 1

o (24)
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Fully discrete method

3Ifi¢g M, buti—1¢e€ M, ori+1¢e M, then
/ S AP (@, 720, P0 (2, ) d — 0. (25)

1
i-g

The final expression of the fully discrete numerical method is as
follows:

n n Atn be e l
Wit =w; —E(Dw(w+ )+D;L_%(tL+2)+Di>7 (26)
where
AM( W Ha, W ifi—1,0,0+1¢ Mpy;

/A((I) W0, (s W, W) s if i € My;
0

otherwise.
(27)
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Theorem

Choice of the discontinuous reconstruction and time step

Assume that W; and W, can be joined by an entropy shock of
speed o. Then, the numerical method provides an exact
numerical solution of the Riemann problem with initial
conditions

W, ifz <O,
W(z,0)=4 L "TS7
W, otherwise,
in the sense that
1 Tit1/2
Wi":/ W(z,t")dz, Vin (28)
Az Ti—1/2

where W (z, t) is the exact solution.

Ernesto Pimentel-Garcia Seminario EDANYA



Introduction Coupled Burgers equations
2nd-order in-cell discontinuous reconstruction p-c methods Gas dynamics equations in Lagrangian coordinates
Numerical methods Modified shallow water equations

Numerical methods

We consider the following nonconservative systems:
@ Coupled Burgers system.
@ Gas dynamics in Lagrangian coordinates.
@ Simplified shallow water equations.

Notation:

@ O1_noDisRec: standard first-order path-conservative Roe or
Godunov (if it is indicated between parentheses) methods.

@ O1_DisRec: first-order path-conservative method with
discontinuous reconstruction;

@ 02 noDisRec: second-order extension standard of the first
order path-conservative method based on the MUSCL-Hancock
reconstruction;

@ 02_DisRec: second-order path-conservative method that
combines MUSCL-Hancock and discontinuous reconstruction.
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Coupled Burgers equations

2

Oru + Oy (%) +udzv = 0,
2 (z,t) e R X RT, (29)

8{[)4—89: (3) +’Uaa,u = 07

introduced in (Castro, Macias & Parés, 2001), where W = (u,v)” belongs to
the state space Q = {W € R?,u + v > 0}. Nonconservative form (1) with

A(W) = { v } .
The system is strictly hyperbolic in 2 with eigenvalues and eigenvectors
AM(W) =0, A(W)=u+w.
Ri(W) = [1,=1]",  Ra(W) = [u,2]",
that are respectively linearly degenerate and genuinely nonlinear.
The sum u 4 v is conserved because satisfies the standard Burgers equation
Oc(u+v) + 0 (%(u + 1))2) =0.
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Coupled Burgers equations

Once we choose the family of paths, the simple waves of this system are:
@ Stationary contact discontinuities linking states W;, W,. such that
ur + v = ur + .

@ Rarefactions waves joining states W;, W,. such that

uj Uy
u +v < U +Vp, — =—.
UL Ur

@ Shock waves joining states W, and W, such that
Uy + v > Ur + Uy
that satisfy the jump condition:

2
£,
I

2 1
{u?] + / Guls5; Wi, Wo)Dspo (53 Wi, W) ds,
0

q
=
Il

2 1
{1] +/ bo(5; Wi, W) s (s; Wi, W,) ds.
2 0

This leads, independently of ¢, to o = “tuturtor,
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Coupled Burgers equations

If, for instance, the family of straight segments is chosen
(bu(s; Wi, W7) = U +3(ur _ul); ¢U(3§ wi, WT) =+ S(Ur - Ul)a (30)
the jump conditions reduce to:

u; + Uy
olu] = ( ! . > (ur — up + v, — vy),
U+ Uy
olv] = ( L . > (ur — ug + vp — vy),
and two states can be joined by an admissible shock if
up Uy
U+ v > Up +Vpy, — = —.
(Y (S

A Roe matrix is given in this case by:

0.5(u; +ur)  0.5(u; + uy)

AW, W,.) = [ 0.5(v; +v.)  0.5(v; + vy)
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Coupled Burgers equations: Test 1: straight segments

In this test case we consider the definition of weak solution
related to the family of straight segments (30) and the
corresponding Roe matrix (31). Let us consider the following
initial condition

(2.0,2.0) ifz < 0.5,

Wo(z) = (u,v)o(x) = {(1.0, 1.0) otherwise.

The solution of the Riemann problem in this case consists of a
shock wave joining the left and right states. A 1000-cell mesh
and CFL=0.5 have been used.
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Coupled Burgers equations: Test 1: straight segments

t=0.000 t = 0.000
20 2
18 18
16 16
14 14
+— 01 DisRec +— 01_DisRec
12 01_noDisRec 12 O1_noDisRec
02_DisRec + 02_DisRec
—— 02_noDisRec —<— 02_noDisRec
101 e Exact_solution 107 e Exact_solution
0o 02 04 06 08 To 0o 02 04 o5 3 1o
t=0.100 t=0.100

01_DisRec
12 01_noDisRec
—— 02_DisRec
—— 02_noDisRec
————— Exact_solution

—— O1_DisRec
12 O1_noDisRec
—— 02_DisRec
—— 02_noDisRec
- Exact_solution

Figure: Variable u Figure: Variable v
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Coupled Burgers equations

Let us consider, for instance, the family of paths given by the viscous profiles of the
regularized system:

w2
Otuy Oz (—) +udzv =  €euzg,

32 (z,t) € R x R, (32)
Ov + Oy <5> +v0zu = €Ugg,

introduced in (Berthon, 2002).
To apply this technique, a cell is marked if

n n n n
Ui TV > Uity F V-

Strategy 1 (based on the exact solutions of the Riemann problems) is followed here.
More precisely:

1 *
o' = 5(“?71 ity Fufyy o), W =WIWL W), WL =W,
where W*(W_, W[ ) represents the state at the left of the shock wave appearing

in the solution of the Riemann problem. Finally, the conserved variable u 4 v is chosen
to determine d7’, i.e.

i (uiy + o) + (1= dP) (ufl, +vy) = (W +0f').
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Coupled Burgers equations: Test 2: isolated shock

Let us consider the following initial condition taken from
(Castro, Fjordholm, Mishra, Parés, 2013)

(7.99,11.01) ifz < 0.5,

Wo(z) = (u,v)o(z) = {(0'2570‘75) othewise.

The solution of the Riemann problem consists of a shock wave
joining the left and right states. We use first a 100-cell and then
a 1000-cell mesh. CFL=0.5 has been used.
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Coupled Burgers equations: Test 2: isolated shock

t=0.000 t = 0.000

2] —+ o1 iskecGodunov)

Figure: Variable «. 100-cell mesh Figure: Variable v. 100-cell mesh
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Coupled Burgers equations: Test 2: isolated shock

t=0.000 t = 0.000

2] —+ o1 diskecGodunov)

Figure: Variable u. 1000-cell mesh Figure: Variable v. 1000-cell mesh
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Coupled Burgers equations: Test 3: Contact
discontinuity + shock wave

We consider now the initial condition

{(5, 1) ifx < 0.5,

Wo(z) = (u,v)o(z) = (1,2) otherwise.

The solution of the corresponding Riemann problems consists
of a stationary contact discontinuity followed by a shock. A
1000-cell mesh and CFL=0.5 have been used.
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Coupled Burgers equations: Test 3: Contact
discontinuity + shock wave. Variable «

t = 0.000 t = 0.050 t = 0.050
S I — S . 2100
| 2075
| 2.025
3 3 |
| 2000
|
[ 1975
21 —— 01_DisRec(Godunov) 27 —— 01 DisRec(Godunoy) ~~—"ReEesRsss 1 —— 01_DisRec(Godunov)
01_noDisRec(Godunov) 01_noDisRec(Godunov) | Loso 01_noDisRec(Godunov)
02_DisRectGodunow) 07.DisRec(Godunov) 02.DisRec(Godunov)
\ y 11— 02 nabishectGodunon 02.noDisRec(Godunov)
- Exact_solution - Exact_solution 19251 ____ Exact_solution
0o o2 o4 o5 os 10 00 o2 o4 o5 os 10 0% o5 o o6 onw
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Coupled Burgers equations: Test 3: Contact
discontinuity + shock wave. Variable v

t = 0.000 t = 0.050 t = 0.050
—— 01 DisRec(Godunov) —— 01 DisRec(Godunov) —— 01 DisRec(Godunov)
a0 01_noisRec(Godunov) 4“0 O1_noDisRec(Godunov) O1_noDisRec(Godunov)
02 DisRec(Godunov) 02_DisRec(Godunov) 102 02 DisRec(Godunov)
35 02 noDisRec(Godunov) 35 02 noDisRec(Godunov) 02_noDisRec(Godunov)
- Exact_solution - Exact_solution - Exact_solution
30 30 400 SR SO N S -
25 25
398
20 20
15 15 396
1 1
394
00 02 04 06 08 10 00 02 04 06 08 o 050 055 0.60 065 070

Ernesto Pimentel-Garcia Seminario EDANYA



Introduction Coupled Burgers equations
2nd-order in-cell discontinuous reconstruction p-c methods Gas dynamics equations in Lagrangian coordinates
Numerical methods Modified shallow water equations

Coupled Burgers equations: Test 4: Perturbed
stationary solution

We consider finally the initial condition
Wo(z) = (u,v)o(z) = (sin(z)+0.2e 2000005 1 _gin(z)), (33)

that is a stationary solution with a perturbation in the variable w.
A 1000-cell mesh and CFL=0.5 have been used. It has been
used a reference solution with a 10000-cell mesh.
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Coupled Burgers equations: Test 4: Perturbed
stationary solution. Variable u
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Gas dynamics equations in Lagrangian coordinates

The gas dynamics equations in Lagrangian coordinates can be
written in nonconservative form (1) with

0 —1 0
T (v —1e -1
W=1u |, AW)=[ "= 0 - ,
e 0 (y—1)e 0
T

where 7 > 0 represents the inverse of the density, u is the
velocity, p = p(7,e) > 0 is the pressure, e is the internal energy,
and E = e + u?/2 the total energy. For the sake of simplicity, we

consider a perfect gas equation of state p(r,e) = (y — 1)e/7
where v > 1.
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Gas dynamics equations in Lagrangian coordinates

The system is strictly hyperbolic with eigenvalues

M(W) == w/1, X(W)=0, Xs3(W) =/,
whose characteristic fields are given by the eigenvectors
Rl(W) = [17 fyp/T7 _p]T7 RQ(W) = [17 O,p/(’y—l)L R3(W) = [17 -V 'Yp/7—7 _p]

Ro(W) is linearly degenerate and R;(W), i = 1, 3 genuinely
nonlinear: see (Godlewski & Raviart, 1995). The admissible
solutions are selected by Lax entropy inequalities, which here
are equivalent to:

o(ty —7-) > 0. (34)
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Gas dynamics equations in Lagrangian coordinates

The simple waves of this system are:
@ Stationary contact discontinuities linking states W;, W,. such that u; = u,..

@ Rarefactions waves joining states W;, W,. such that v; < u,, and the relations

given by the Riemann invariants:
@ 1-rarefactions:

e e e (2
2 Vel fu =2 Ver U, l1: rl
v—1 v—1 Tﬁi ™
@ 2-rarefactions:
Vel Yer €l er
2 —u; =2 — Up, = .
y-1 y=1 7 gt

@ Shock waves joining W;, W, such that u; > u, that satisfy the jump conditions:

olr] = —[,
olu] = [p],
1
ol = / (5 Wi, Wi )Dshu (53 Wi, W) ds.
0
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Gas dynamics equations in Lagrangian coordinates

If, for instance, the family of straight segments is chosen for the
variables 7, u, p, the jump conditions reduce to:

olr] = (u—wu),
U[u] = Pr—Di
ole] = %(pr + po) (ur — wy).

It can be easily checked that these jump conditions are equivalent to
the standard Rankine-Hugoniot conditions corresponding to the
conservative formulation and thus, the weak solutions are the same.
A Roe matrix is given in this case by:

'A(Vvh Wr) = A(W)7 W(Vvla W7) = (77—711317)7

with 7 = b7 g = wdte g = P p = PiiPe see (Munz,
1994).
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Gas dynamics equations in Lagrangian coordinates

To apply this technique, a cell is marked if
Uy > U

The second strategy to select the speed, and the left and right states
of the discontinuous reconstruction based on the Roe matrix is used
here. More precisely:

@ Ifu? | =uj,, then

oj =0, Wih=Wi,, Wi =W,

@ Iful , >up,and 7, — 7/, <0then

ot = —\/vp/7, Wi =Wy, Wi =Wt (W, Wi,).
@ Iful , >up,and 7, — 7/, > 0then

o = \/‘Yﬁi/ﬁ thl = WZL—%R?»(W;L—M ﬁu)a Wﬂ = Wit1.

This method is extended here to second order.
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Test 1: isolated 1-shock

Let us consider the following initial condition taken from
(Chalons, 2019)

(T’ u,p)o(x) = {

The solution of the Riemann problem consists of a 1-shock
wave joining the left and right states. A 300-cell mesh and
CFL=0.5 have been used.
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. isolated
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00 Exact_solution 20 Exact_solution
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L
e
—— 01 Diskec 301 = 01_Diskec
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—— 02 Diskec 257 — 02 Diskec
— 02_noDisRec — 02_noDisRec
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Test 2: 1-shock + contact discontinuity + 3-shock

Let us consider the following initial condition taken from
(Chalons, 2019)

(5,3.323013993227,0.481481481481) if x < 0.5,

(ryw,Plo(@) = {(8,0,0.1) otherwise.
The solution of the Riemann problem consists of a 1-shock
wave with negative speed, a stationary contact discontinuity,
and a 3-shock that coincides with the one in the first test
problem. A 300-cell mesh and CFL=0.5 have been used.
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Test 2: 1-shock + contact discontinuity + 3-shock

t=0.000 t=0.000 t=0.000

Figure: Variable 7 Figure: Variable u Figure: Variable e
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Modified shallow water equations

Let us consider the modified Shallow Water system introduced in (Castro,
LeFloch, Muioz-Ruiz, Parés, 2008):
Oth + 0.q =0,

2

deq + 0z (%) + qhd.h =0, (35)

where W = (h,q)t belongsto Q@ = {W € R?| 0<gq, 0<h < (169)*/3}.
This system can be written in the form (1) with

0 1
AW) = [ —u?2 +uh? 2u ]’

being u = ¢/h. The system is strictly hyperbolic © with eigenvalues
M(W) =u—hvu, X(W)=u+h/u,
whose characteristic fields, given by the eigenvectors
Ry(W) = [Lu—hv/u]", Ro(W)=[lu+hvu",
are genuinely nonlinear.
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Modified shallow water equations

Once the family of paths has been chosen, the simple waves of this
system are:

@ 1-rarefaction waves joining states W;, W.,. such that

hr<hl7 \/17l+hl/2:\/ur+hr/2a

and 2-rarefaction waves joining states W;, W,. such that
hiy < hey  ug —hi/2 = /uy — h/2.

@ 1-shock and 2-shock waves joining states W; and W,. such that
h; < h, or h,. < h; respectively, that satisfy the jump conditions:

alh] = Iq],

2 1
U[q] = |:qh:| +/ ¢q(57Wl7WT)¢h(57VV]7WT’)89¢}L(57VVI7W7) d5
0
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Modified shallow water equations

If, for instance, the following family of path is chosen:

[ h; + QS(hy- — hl)

on(s; Wi, W) } @
¢q(5§VVlaWr) B [ h, }

@+ (25— 1)(gr — @)

} ifo<s<4i,

P(s; Wi, W) =

the jump conditions reduce to:
olh] = [d,
2 h2
olq) = {(Jh] +aq [2} .

If this family of paths and the Lax’s entropy criterion is used we can
obtain the expression of the simple waves curves.
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Modified shallow water equations

Although we are not going to show these expression, the criterion to
mark the cells is divided in the following cases:

Case 1: If the solution of the Riemann problem consists of a 1-shock and
a 2-rarefaction waves: the cell is marked.

Case 2: If the solution of the Riemann problem consists of a 1-rarefaction
and a 2-shock waves: the cell is marked.

Case 3 : If the solution of the Riemann problem consists of a 1-shock
and a 2-shock waves: the cell is marked.

Case 4: Otherwise the solution of the Riemann problem consists of two
rarefactions and the cell is not marked.
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Modified shallow water equations: Roe strategy

A Roe matrix is given in this case by

0 1
awiwo = 2% 5 |
where
_ Vhug +Vhrur by + by
@= . h= .
NN 2

The variable h is selected for obtaining d'. The following strategy based on the Roe matrix is used to select the
speed, and the left and right states of the discontinuous reconstruction:

@ cCaset:
ol =a— hj_Va, W[jl:Wi"_l, W;} =W, | + a1 Ry (W, ﬁH).

-

@ case2:
of =a+hi_Va, W[ =Wl —aRe(W, Wiy), W[ =Wl

@ Case 3: we select the ‘dominant’ one:
If |ar| < |z ] then:

of =a+h VA, Wi =Wl —aaRe(Wily, Wihy), Wi = Wig.
If 1| > |az] then:
of =a—hi Va, Wh=w", W[ =W, +arRi(W;_1,Wit1).

Ernesto Pimentel-Garcia Seminario EDANYA



Introduction Coupled Burgers equations
2nd-order in-cell discontinuous reconstruction p-c methods Gas dynamics equations in Lagrangian coordinates
Numerical methods Modified shallow water equations

Test 1: Isolated 1-shock

Let us consider the following initial condition taken from (Castro,
LeFloch, Mufioz-Ruiz, Parés, 2008)
1,1 ifz <0,
(h,q)o(a) = { 1V .
(1.8,0.530039370688997) otherwise.

The solution of the Riemann problem consists of a 1-shock wave
joining the left and right states. A 1000-cell mesh and CFL=0.5 have

been used.
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Test 2: left-moving 1-shock + right-moving 2-shock

Let us consider the following initial condition

(1,1) if 2 < 0,

36
(1.5,0.1855893974385) otherwise. (36)

(h,q)o(x) = {

The solution of the Riemann problem consists of a 1-shock wave with
negative speed and a 2-shock with positive speed with intermediate
state W, = [1.8,0.530039370688997]7. A 1000-cell mesh and
CFL=0.5 have been used.
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Test 2: left-moving 1-shock + right-moving 2-shock.
Variable A
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Test 2: left-moving 1-shock + right-moving 2-shock.
Variable ¢
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Test 2: left-moving 1-shock + right-moving 2-shock.
Variable h: comparison
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Test 2: left-moving 1-shock + right-moving 2-shock.
Variable ¢: comparison
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Test 3: right-moving 1-shock + right-moving 2-shock

Let us consider the following initial condition

(1,1) if x < 0,

37
(5,2.86423084288) otherwise. 37)

(h, @)o(x) = {
The solution of the Riemann problem consists of a 1-shock and a
2-shock waves with positive speed and intermediate state
W, = [1.5,5.96906891076]7. A 1000-cell mesh and CFL=0.5 have
been used.
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Test 3: right-moving 1-shock + right-moving 2-shock.
Variable A
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Test 3: right-moving 1-shock + right-moving 2-shock.
Variable ¢
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Modified shallow water equations: Exact strategy

A more sophisticated strategy based on the exact solution of the
Riemann problems allows one to handle correctly with these
situations. The key ingredients are:

@ The solution of the Riemann problem with initial data W,;"_f,r and
Wflllz is used to mark the cells instead of the one corresponding
to the initial data W ; and W} ;, where W, 11T and VVJrl , are
the states selected in the discontinuous reconstructlon in the
previous time step.

@ The exact intermediate state is used when the solution of the
Riemann problem involves two shock waves.

@ If the solution of this Riemann problem involves two shock waves
traveling in the same direction, a reconstruction with two
discontinuities (one for each of the shock waves) is considered,
so that the complete structure of the Riemann solution is
imposed.
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Test 2: left-moving 1-shock + right-moving 2-shock.
Exact strategy
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Test 3: left-moving 1-shock + right-moving 2-shock.
Exact strategy
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Conclusions and future work

Conclusions:

@ We extend the strategy developed in (Chalons, 2019) to second order of
accuracy.

@ This extension is based on the combination of the first-order in-cell
reconstruction and the MUSCL-Hancock reconstruction.

@ The isolated shock-capturing property is enunciated, proved and tested.
Future work:

@ Extend this technique to arbitrary order of accuracy.

@ Capture correctly non isolated shocks.

@ Apply the methods to more complex models.

@ Develop new Discontinuous Galerkin (DG) solvers based on
discontinuous reconstructions.

@ Explore the extension to multidimensional problems.
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End

Thank you for your attention
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