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Introduction

We consider first order quasi-linear PDE systems

∂tW +A(W )∂xW = 0, x ∈ R, t ∈ R+, (1)

The system is supposed to be strictly hyperbolic and the
characteristic fields Ri(W ), i = 1, . . . , N , are supposed to be
either genuinely nonlinear:

∇λi(W ) ·Ri(W ) 6= 0, ∀W ∈ Ω,

or linearly degenerate:

∇λi(W ) ·Ri(W ) = 0, ∀W ∈ Ω.
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Introduction
In the case of nonconservative systems important problems appear from an
analytical and numerical point of view when A 6= 0 and it is not the Jacobian
of any function. Here we will follow the theory developed by Dal Maso,
LeFloch and Murat (1995) that allows a notion of weak solution which
satisfies (1) in the sense of Borel measures. This definition is based on the
choice of a family of Lipschitz continuous paths Φ : [0, 1]× Ω× Ω→ Ω
satisfying certain regularity and consistency properties. In particular

Φ(0,Wl,Wr) = Wl, Φ(1,Wl,Wr) = Wr, ∀(Wl,Wr) ∈ Ω× Ω,

and
Φ(ξ,W,W ) = W, ∀ξ ∈ [0, 1], ∀W ∈ Ω.

We remember that the family of paths can be understood as a tool to give a
sense to integrals of the form∫ b

a

A(W (x))Wx(x) dx,

for functions W with jump discontinuities.
Ernesto Pimentel-García Seminario EDANYA



Introduction
2nd-order in-cell discontinuous reconstruction p-c methods

Numerical methods

Problem Statement
Path-conservative methods

Introduction
More precisely, given a bounded variation function
W : [a, b] 7→ Ω, it is defined:

−
∫ b

a
A(W (x))Wx(x) dx =

∫ b

a
A(W (x))Wx(x) dx+

∑
m

∫ 1

0
A(Φ(s;W

−
m ,W

+
m))

∂Φ

∂s
(s;W

−
m ,W

+
m) ds.

(2)

If such a mathematical definition of the nonconservative
products is assumed to define the concept of weak solution, the
generalized Rankine-Hugoniot condition:∫ 1

0
A(Φ(s;W−W+))

∂Φ

∂s
(s;W−,W+) ds = σ(W+ −W−), (3)

has to be satisfied across an admissible discontinuity. Once the
family of paths has been prescribed, a concept of entropy is
required, as it happens for systems of conservation laws, that
may be given by an entropy pair or by Lax’s entropy criterion.
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Problem statement
Question 1: Which is the ’good’ election of the family of path?
When the hyperbolic system is the vanishing-viscosity limit of the parabolic
problems

W ε
t +A(W ε)W ε

x = ε(R(W ε)W ε
x)x, (4)

where R(W ) is any positive-definite matrix, the adequate family of paths
should be related to the viscous profiles: a function V is said to be a viscous
profile for (4) linking the states W− and W+ if it satisfies

lim
χ→−∞

V (χ) = W−, lim
χ→+∞

V (χ) = W+, lim
χ→±∞

V ′(χ) = 0 (5)

and there exists σ ∈ R such that the travelling wave

W ε(x, t) = V

(
x− σt
ε

)
, (6)

is a solution of (4) for every ε. It can be easily verified that, in order to be a
viscous profile, V has to solve the equation

− ξV ′ +A(V )V ′ = (R(V )V ′)′, with (5). (7)

Ernesto Pimentel-García Seminario EDANYA



Introduction
2nd-order in-cell discontinuous reconstruction p-c methods

Numerical methods

Problem Statement
Path-conservative methods

Path-conservative methods

Let us consider a family of paths Φ. According to (Parés, 2006), a numerical
method for solving (1) is said to be path-conservative if it can be written in the
form

Wn+1
i = Wn

i −
∆t

∆x

(
D+
i−1/2 +D−i+1/2

)
, (8)

where
Wn
i ≈

1

∆x

∫ x
i+1

2

x
i− 1

2

W (x, tn) dr. (9)

D±i+1/2 = D±
(
Wn
i ,W

n
i+1

)
,

where D− and D+ satisfy

D±(W,W ) = 0, ∀W ∈ Ω, (10)

D−(Wl,Wr) +D+(Wl,Wr) =

∫ 1

0

A
(
Φ(s;Wl,Wr)

)∂Φ

∂s
(s;Wl,Wr) ds, (11)

for every set Wl,Wr ∈ Ω.
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Path-conservative methods: convergence issue
Question 2: Do the numerical schemes converge to the right solution?

Lineal systems

Nonlinear systems

Systems of conservation laws Nonconservative systems

Consistency

Consistency Consistency

Stability

Stability Stability

Entropy control Entropy control

Convergence

Convergence Convergence

++

++ +
+

+

+
Lax's equivalence theorem

Figure: Convergence issue: summary
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Path-conservative methods: semi-discrete form

Following (Parés, 2006), first order path-conservative numerical
schemes can be extended to high-order by using reconstruction
operators:

W ′i (t) = − 1

∆x

D−
i+ 1

2

(t) +D+
i− 1

2

(t) +

∫ x
i+ 1

2

x
i− 1

2

A(Pti(x))
∂

∂x
Pti(x) dx

 ,

(12)
where Pti(x) is the smooth approximation of the solution at the
ith-cell provided by a high-order reconstruction operator from
the sequence of cell values {Wi(t)} and

D±i+1/2(t) = D±i+1/2(W−i+1/2(t),W+
i+1/2(t)),

where W−i+1/2(t) = Pti(xi+ 1
2
) and W−i+1/2(t) = Pti+1(xi+ 1

2
) (see

(Castro et. al., 2017) for details).
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2nd-order in-cell discontinuous reconstruction p-c
methods

Idea: Combine a standard second-order reconstruction
operator in smoothness regions and a discontinuous
operator close to discontinuities so that no numerical
viscosity is added in the non-smooth regions.
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Semi-discrete method

Once the numerical approximations Wn
i of the averages of the

solutions have been computed at time tn = n∆t, the first step is
to mark the cells Ii such that the solution of the Riemann
problem consisting of (1) with initial conditions

W (x, 0) =

{
Wn
i−1 if x < 0,

Wn
i+1 if x > 0,

(13)

involves a shock wave. Let us denote byMn the set of indices
of the marked cells, i.e.

Mn = {i s.t. the solution of the Riemann problem (1), (13) involves a shock wave}.
(14)
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Semi-discrete method
We take Pni (x, t) in (12) as following:

If i− 1, i, i+ 1 /∈Mn then Pni is the approximation of the first degree
Taylor polynomial of the solution given by:

Pni (x, t) = Wn
i + ∂̃xW

n

i (x− xi)−A(Wn
i )∂̃xW

n

i (t− tn),

where(
∂̃xW

n

i

)
k

= minmod

(
α

wn
i+1,k − wn

i,k

∆x
,

wn
i+1,k − wn

i−1,k

2∆x
, α

wn
i,k − wn

i−1,k

∆x

)
,

being α is a parameter with 1 ≤ α < 2 and

minmod(a, b, c) =


min{a, b, c} if a, b, c > 0,
max{a, b, c} if a, b, c < 0,
0 otherwise.

Observe that, using the equation:

∂tW (xi, tn) = −A(W (xi, tn))∂xW (xi, tn) ≈ −A(Wn
i )∂̃xW

n

i .
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Semi-discrete method
If i ∈Mn then

Pni (x, t) =

{
Wn
i,l if x ≤ xi−1/2 + dni ∆x+ σni (t− tn),

Wn
i,r otherwise.

.

where dni is chosen so that

dni w
n
i,l,k + (1− dni )wni,r,k = wni,k, (15)

for some index k ∈ {1, . . . , N}; and σni , Wn
i,l, and Wn

i,r are chosen so that if
Wn
i−1 and Wn

i+1 may be linked by an admissible discontinuity with speed σ, then

Wn
i,l = Wn

i−1, Wn
i,r = Wn

i+1, σni = σ. (16)

This in-cell discontinuous reconstruction can only be done if 0 ≤ dni ≤ 1, i.e. if

0 ≤
wni,r,k − w

n
i,k

wni,r,k − w
n
i,l,k

≤ 1,

otherwise the MUSCL-Hancock reconstruction is applied in the cell. Moreover, if
dni = 1 and σni > 0 (resp. dni = 0 and σni < 0) the cell is unmarked and the cell
Ii+1 (resp. Ii−1) is marked if necessary.
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Semi-discrete method

Otherwise (i.e. if i /∈Mn but i− 1 ∈Mn or i+ 1 ∈Mn) then

Pni (x, t) = Wn
i .

Remark 1
In the case i ∈Mn, if one of the equations of system (1), say the kth
one, is a conservation law, the index k is selected in (15), so that the
corresponding variable is conserved. Moreover, if there is a linear
combination of the unknowns

∑N
k=1 αkwk that is conserved, (15) may

be replaced by:

dni

N∑
k=1

αkw
n
i,l,k + (1− dni )

N∑
k=1

αkw
n
i,r,k =

N∑
k=1

αkw
n
i,k. (17)

If there are more than one conservation laws, the index k
corresponding to one of them is selected in (15).

Ernesto Pimentel-García Seminario EDANYA



Introduction
2nd-order in-cell discontinuous reconstruction p-c methods

Numerical methods

Semi-discrete method
Choice of the discontinuous reconstruction and time step
Fully discrete method
Shock-capturing property

Choice of the discontinuous reconstruction
How to choose σni , Wn

i,l, W
n
i,r?

Two strategies:
First strategy: If the solutions of the Riemann problems are explicitly
known, in a marked cell σni , Wn

i,l, W
n
i,r can be chosen as the speed, the

left, and the right states of (one of the) discontinuous waves appearing
in the solution of the Riemann problem with initial data Wn

i−1, Wn
i+1.

Second strategy: If a Roe matrix is available, in a marked cell σni , Wn
i,l,

Wn
i,r can be chosen as the speed, the left, and the right states of one of

the discontinuities appearing in the solution of the linearized Riemann
problem with initial data Wn

i−1, Wn
i+1. More explicitly, an index k∗ has to

be selected and then

σni = λk∗(Wn
i−1,W

n
i+1),Wn

i,l = Wn
i−1 +

k∗−1∑
k=1

αkRk(Wn
i−1,W

n
i+1),

Wn
i,r = Wn

i,l + αk∗Rk∗(Wn
i−1,W

n
i+1),

where αk, k = 1, . . . , N represent the coordinates of Wn
i+1 −Wn

i−1 on
the basis of eigenvectors of AΦ(Wn

i−1,W
n
i+1).
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Time step
The time step ∆tn is chosen as follows:

∆tn = min(∆tcn,∆t
r
n), (18)

where

∆tcn = CFLmin

(
∆x

maxi,l |λi,l|

)
, (19)

where CFL ∈ (0, 1) is the stability parameter and λi,l, . . . , λi,N
represent the eigenvalues of A(Wn

i ); and

∆trn = min
i∈Mn


1− dni
|σni |

∆x, if σni > 0,

dni
|σni |

∆x, if σni < 0.

(20)

Observe that, besides the stability requirement, this choice of time
step ensures that no discontinuous reconstruction leaves a marked
cell.
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Fully discrete method

Once the time step is chosen, (12) is integrated in the interval
[tn, tn+1], with tn+1 = tn + ∆tn, to obtain:

Wn+1
i = Wn

i −
1

∆x

∫ tn+1

tn

D−
i+ 1

2

(t) +D+

i− 1
2

(t) +−
∫ x

i+1
2

x
i− 1

2

A(Pni (x, t))∂xPni (x, t)dx

 dt,

and the mid-point rule is used to approximate the integrals in
time:

W
n+1
i = W

n
i −

∆tn

∆x

D−
i+1

2

(t
n+1

2 ) +D+

i− 1
2

(t
n+1

2 ) +−
∫ x

i+1
2

x
i− 1

2

A(Pni (x, t
n+1/2

))∂xPni (x, t
n+1/2

) dx

 ,
(21)
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Fully discrete method

The computation of the dashed integral in this expression
depends on the cell:

1 If i− 1, i, i+ 1 /∈Mn the mid-point rule is used again to
approximate the integral:∫ x

i+ 1
2

x
i− 1

2

A(Pni (x, tn+1/2))∂xPni (x, tn+1/2) dx ≈ ∆xA(W
n+ 1

2
i )∂̃xW

n

i ,

(22)
where

W
n+ 1

2
i = Pni (xi, t

n+ 1
2 ) = Wn

i −
∆t

2
A(Wn

i )∂̃xW
n

i .
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Fully discrete method

2 If i ∈Mn, taking into account the definition of the dashed
integrals (2), one has:

−
∫ x

i+1
2

x
i− 1

2

A(Pni (x, t
n+1/2

))∂xPni (x, t
n+1/2

) dx =

∫ 1

0
A(Φ(s;W

n
i,l,W

n
i,r))∂sΦ(s;W

n
i,l,W

n
i,r) ds.

(23)

Observe that, if Wn
i,1 and Wn

i,r can be linked by a shock
whose speed is σni , then the generalized
Rankine-Hugoniot condition (3) leads to

−
∫ x

i+ 1
2

x
i− 1

2

A(Pni (x, tn+1/2))∂xPni (x, tn+1/2) dx = σnj
(
Wn
i,r −Wn

i,l

)
.

(24)
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Fully discrete method

3 If i /∈Mn but i− 1 ∈Mn or i+ 1 ∈Mn then∫ x
i+ 1

2

x
i− 1

2

A(Pni (x, tn+1/2))∂xPni (x, tn+1/2) dx = 0. (25)

The final expression of the fully discrete numerical method is as
follows:

Wn+1
i = Wn

i −
∆tn
∆x

(
D−
i+ 1

2

(tn+ 1
2 ) +D+

i− 1
2

(tn+ 1
2 ) +Di

)
, (26)

where

Di =


∆xA(W

n+ 1
2

i )∂̃xW
n

i if i− 1, i, i+ 1 /∈Mn;∫ 1

0

A(Φ(s;Wn
i,l,W

n
i,r))∂sΦ(s;Wn

i,l,W
n
i,r) ds if i ∈Mn;

0 otherwise.
(27)
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Shock-capturing property

Theorem

Assume that Wl and Wr can be joined by an entropy shock of
speed σ. Then, the numerical method provides an exact
numerical solution of the Riemann problem with initial
conditions

W (x, 0) =

{
Wl if x < 0,
Wr otherwise,

in the sense that

Wn
i =

1

∆x

∫ xi+1/2

xi−1/2

W (x, tn) dx, ∀i, n (28)

where W (x, t) is the exact solution.
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Numerical methods

We consider the following nonconservative systems:
Coupled Burgers system.
Gas dynamics in Lagrangian coordinates.
Simplified shallow water equations.

Notation:

O1_noDisRec: standard first-order path-conservative Roe or
Godunov (if it is indicated between parentheses) methods.

O1_DisRec: first-order path-conservative method with
discontinuous reconstruction;

O2_noDisRec: second-order extension standard of the first
order path-conservative method based on the MUSCL-Hancock
reconstruction;

O2_DisRec: second-order path-conservative method that
combines MUSCL-Hancock and discontinuous reconstruction.
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Coupled Burgers equations


∂tu+ ∂x

(
u2

2

)
+ u∂xv = 0,

∂tv + ∂x

(
v2

2

)
+ v∂xu = 0,

(x, t) ∈ R× R+, (29)

introduced in (Castro, Macías & Parés, 2001), where W = (u, v)T belongs to
the state space Ω = {W ∈ R2, u+ v > 0}. Nonconservative form (1) with

A(W ) =

[
u u
v v

]
.

The system is strictly hyperbolic in Ω with eigenvalues and eigenvectors

λ1(W ) = 0, λ2(W ) = u+ v.

R1(W ) = [1,−1]T , R2(W ) = [u, v]T ,

that are respectively linearly degenerate and genuinely nonlinear.
The sum u+ v is conserved because satisfies the standard Burgers equation

∂t(u+ v) + ∂x

(
1

2
(u+ v)2

)
= 0.
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Coupled Burgers equations
Once we choose the family of paths, the simple waves of this system are:

Stationary contact discontinuities linking states Wl, Wr such that

ul + vl = ur + vr.

Rarefactions waves joining states Wl, Wr such that

ul + vl < ur + vr,
ul
vl

=
ur
vr
.

Shock waves joining states Wl and Wr such that

ul + vl > ur + vr

that satisfy the jump condition:

σ[u] =

[
u2

2

]
+

∫ 1

0

φu(s;Wl,Wr)∂sφv(s;Wl,Wr) ds,

σ[v] =

[
v2

2

]
+

∫ 1

0

φv(s;Wl,Wr)∂sφu(s;Wl,Wr) ds.

This leads, independently of φ, to σ = ul+vl+ur+vr
2

.
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Coupled Burgers equations
If, for instance, the family of straight segments is chosen

φu(s;Wl,Wr) = ul+s(ur−ul); φv(s;Wl,Wr) = vl+s(vr−vl), (30)

the jump conditions reduce to:

σ[u] =

(
ul + ur

2

)
(ur − ul + vr − vl),

σ[v] =

(
vl + vr

2

)
(ur − ul + vr − vl),

and two states can be joined by an admissible shock if

ul + vl > ur + vr,
ul
vl

=
ur
vr
.

A Roe matrix is given in this case by:

A(Wl,Wr) =

[
0.5(ul + ur) 0.5(ul + ur)
0.5(vl + vr) 0.5(vl + vr)

]
. (31)
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Coupled Burgers equations: Test 1: straight segments

In this test case we consider the definition of weak solution
related to the family of straight segments (30) and the
corresponding Roe matrix (31). Let us consider the following
initial condition

W0(x) = (u, v)0(x) =

{
(2.0, 2.0) if x < 0.5,
(1.0, 1.0) otherwise.

The solution of the Riemann problem in this case consists of a
shock wave joining the left and right states. A 1000-cell mesh
and CFL=0.5 have been used.
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Coupled Burgers equations: Test 1: straight segments
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Coupled Burgers equations
Let us consider, for instance, the family of paths given by the viscous profiles of the
regularized system:

∂tu+∂x

(
u2

2

)
+ u∂xv = εuxx,

∂tv + ∂x

(
v2

2

)
+ v∂xu = εvxx,

(x, t) ∈ R× R+, (32)

introduced in (Berthon, 2002).
To apply this technique, a cell is marked if

uni−1 + vni−1 > uni+1 + vni+1.

Strategy 1 (based on the exact solutions of the Riemann problems) is followed here.
More precisely:

σni =
1

2
(uni−1 + vni−1 + uni+1 + vni+1), Wn

i,l = W ∗(Wn
i−1,W

n
i+1), Wn

i,r = Wn
i+1,

where W ∗(Wn
i−1,W

n
i+1) represents the state at the left of the shock wave appearing

in the solution of the Riemann problem. Finally, the conserved variable u+ v is chosen
to determine dni , i.e.

dni (uni,l + vni,l) + (1− dni )(uni,r + vni,r) = (uni + vni ).
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Coupled Burgers equations: Test 2: isolated shock

Let us consider the following initial condition taken from
(Castro, Fjordholm, Mishra, Parés, 2013)

W0(x) = (u, v)0(x) =

{
(7.99, 11.01) ifx < 0.5,
(0.25, 0.75) othewise.

The solution of the Riemann problem consists of a shock wave
joining the left and right states. We use first a 100-cell and then
a 1000-cell mesh. CFL=0.5 has been used.
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Coupled Burgers equations: Test 2: isolated shock
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Coupled Burgers equations: Test 2: isolated shock
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Coupled Burgers equations: Test 3: Contact
discontinuity + shock wave

We consider now the initial condition

W0(x) = (u, v)0(x) =

{
(5, 1) if x < 0.5,
(1, 2) otherwise.

The solution of the corresponding Riemann problems consists
of a stationary contact discontinuity followed by a shock. A
1000-cell mesh and CFL=0.5 have been used.
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Coupled Burgers equations: Test 3: Contact
discontinuity + shock wave. Variable u
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Coupled Burgers equations: Test 3: Contact
discontinuity + shock wave. Variable v
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Coupled Burgers equations: Test 4: Perturbed
stationary solution

We consider finally the initial condition

W0(x) = (u, v)0(x) = (sin(x)+0.2e−2000(r−0.5)2
, 1−sin(x)), (33)

that is a stationary solution with a perturbation in the variable u.
A 1000-cell mesh and CFL=0.5 have been used. It has been
used a reference solution with a 10000-cell mesh.

Ernesto Pimentel-García Seminario EDANYA



Introduction
2nd-order in-cell discontinuous reconstruction p-c methods

Numerical methods

Coupled Burgers equations
Gas dynamics equations in Lagrangian coordinates
Modified shallow water equations

Coupled Burgers equations: Test 4: Perturbed
stationary solution. Variable u
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Coupled Burgers equations: Test 4: Perturbed
stationary solution. Variable v
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Gas dynamics equations in Lagrangian coordinates

The gas dynamics equations in Lagrangian coordinates can be
written in nonconservative form (1) with

W =

 τ
u
e

 , A(W ) =


0 −1 0

−(γ − 1)e

τ2
0

γ − 1

τ

0
(γ − 1)e

τ
0

 ,

where τ > 0 represents the inverse of the density, u is the
velocity, p = p(τ, e) > 0 is the pressure, e is the internal energy,
and E = e+ u2/2 the total energy. For the sake of simplicity, we
consider a perfect gas equation of state p(τ, e) = (γ − 1)e/τ
where γ > 1.
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Gas dynamics equations in Lagrangian coordinates

The system is strictly hyperbolic with eigenvalues

λ1(W ) = −
√
γp/τ , λ2(W ) = 0, λ3(W ) =

√
γp/τ ,

whose characteristic fields are given by the eigenvectors

R1(W ) = [1,
√
γp/τ,−p]T , R2(W ) = [1, 0, p/(γ−1)], R3(W ) = [1,−

√
γp/τ,−p]T .

R2(W ) is linearly degenerate and Ri(W ), i = 1, 3 genuinely
nonlinear: see (Godlewski & Raviart, 1995). The admissible
solutions are selected by Lax entropy inequalities, which here
are equivalent to:

σ(τ+ − τ−) ≥ 0. (34)
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Gas dynamics equations in Lagrangian coordinates
The simple waves of this system are:

Stationary contact discontinuities linking states Wl, Wr such that ul = ur.

Rarefactions waves joining states Wl, Wr such that ul < ur, and the relations
given by the Riemann invariants:

1-rarefactions:

2

√
γel

γ − 1
+ ul = 2

√
γer

γ − 1
+ ur,

el

τγ−1
l

=
er

τγ−1
r

.

2-rarefactions:

2

√
γel

γ − 1
− ul = 2

√
γer

γ − 1
− ur,

el

τγ−1
l

=
er

τγ−1
r

.

Shock waves joining Wl, Wr such that ul > ur that satisfy the jump conditions:

σ[τ ] = − [u] ,

σ[u] = [p] ,

σ[e] =

∫ 1

0
φp(s;Wl,Wr)∂sφu(s;Wl,Wr) ds.
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Gas dynamics equations in Lagrangian coordinates
If, for instance, the family of straight segments is chosen for the
variables τ, u, p, the jump conditions reduce to:

σ[τ ] = (ul − ur),
σ[u] = pr − pl,

σ[e] =
1

2
(pr + pl)(ur − ul).

It can be easily checked that these jump conditions are equivalent to
the standard Rankine-Hugoniot conditions corresponding to the
conservative formulation and thus, the weak solutions are the same.
A Roe matrix is given in this case by:

A(Wl,Wr) = A(W̄ ), W̄ (Wl,Wr) = (τ̄ , ū, p̄),

with τ̄ = τl+τr
2 , ū = ul+ur

2 , ē = p̄τ̄
γ−1 , p̄ = pl+pr

2 , see (Munz,
1994).
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Gas dynamics equations in Lagrangian coordinates
To apply this technique, a cell is marked if

uni−1 ≥ uni+1.

The second strategy to select the speed, and the left and right states
of the discontinuous reconstruction based on the Roe matrix is used
here. More precisely:

If uni−1 = uni+1 then

σni = 0, Wn
i,l = Wn

i−1, Wn
i,r = Wn

i+1.

If uni−1 > uni+1 and τni+1 − τni−1 < 0 then

σni = −
√
γp̄/τ̄ , Wn

i,l = Wn
i−1, Wn

i,r = Wn
i−1+α1R1(Wn

i−1,W
n
i+1).

If uni−1 > uni+1 and τni+1 − τni−1 > 0 then

σni =
√
γp̄/τ̄ , Wn

i,l = Wn
i+1−α3R3(Wn

i−1,W
n
i+1), Wn

i,r = Wi+1.

This method is extended here to second order.
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Test 1: isolated 1-shock

Let us consider the following initial condition taken from
(Chalons, 2019)

(τ, u, p)0(x) =

{
(2.09836065573770281, 2.3046638387921279, 1) if x < 0.5,
(8, 0, 0.1) otherwise.

The solution of the Riemann problem consists of a 1-shock
wave joining the left and right states. A 300-cell mesh and
CFL=0.5 have been used.
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Test 1: isolated shock
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Test 2: 1-shock + contact discontinuity + 3-shock

Let us consider the following initial condition taken from
(Chalons, 2019)

(τ, u, p)0(x) =

{
(5, 3.323013993227, 0.481481481481) if x < 0.5,
(8, 0, 0.1) otherwise.

The solution of the Riemann problem consists of a 1-shock
wave with negative speed, a stationary contact discontinuity,
and a 3-shock that coincides with the one in the first test
problem. A 300-cell mesh and CFL=0.5 have been used.
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Test 2: 1-shock + contact discontinuity + 3-shock
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Modified shallow water equations
Let us consider the modified Shallow Water system introduced in (Castro,
LeFloch, Muñoz-Ruiz, Parés, 2008):

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ qh∂xh = 0, (35)

where W = (h, q)t belongs to Ω = {W ∈ R2| 0 < q, 0 < h < (16q)1/3}.
This system can be written in the form (1) with

A(W ) =

[
0 1

−u2 + uh2 2u

]
,

being u = q/h. The system is strictly hyperbolic Ω with eigenvalues

λ1(W ) = u− h
√
u, λ2(W ) = u+ h

√
u,

whose characteristic fields, given by the eigenvectors

R1(W ) = [1, u− h
√
u]T , R2(W ) = [1, u+ h

√
u]T ,

are genuinely nonlinear.
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Modified shallow water equations
Once the family of paths has been chosen, the simple waves of this
system are:

1-rarefaction waves joining states Wl, Wr such that

hr < hl,
√
ul + hl/2 =

√
ur + hr/2,

and 2-rarefaction waves joining states Wl, Wr such that

hl < hr,
√
ul − hl/2 =

√
ur − hr/2.

1-shock and 2-shock waves joining states Wl and Wr such that
hl < hr or hr < hl respectively, that satisfy the jump conditions:

σ[h] = [q] ,

σ[q] =

[
q2

h

]
+

∫ 1

0

φq(s;Wl,Wr)φh(s;Wl,Wr)∂sφh(s;Wl,Wr) ds.
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Modified shallow water equations

If, for instance, the following family of path is chosen:

φ(s;Wl,Wr) =

[
φh(s;Wl,Wr)
φq(s;Wl,Wr)

]
=



[
hl + 2s(hr − hl)

ql

]
if 0 ≤ s ≤ 1

2
,

[
hr

ql + (2s− 1)(qr − ql)

]
if 1

2
≤ s ≤ 1,

the jump conditions reduce to:

σ[h] = [q] ,

σ[q] =

[
q2

h

]
+ ql

[
h2

2

]
.

If this family of paths and the Lax’s entropy criterion is used we can
obtain the expression of the simple waves curves.
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Modified shallow water equations

Although we are not going to show these expression, the criterion to
mark the cells is divided in the following cases:

Case 1: If the solution of the Riemann problem consists of a 1-shock and
a 2-rarefaction waves: the cell is marked.

Case 2: If the solution of the Riemann problem consists of a 1-rarefaction
and a 2-shock waves: the cell is marked.

Case 3 : If the solution of the Riemann problem consists of a 1-shock
and a 2-shock waves: the cell is marked.

Case 4: Otherwise the solution of the Riemann problem consists of two
rarefactions and the cell is not marked.
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Modified shallow water equations: Roe strategy
A Roe matrix is given in this case by

A(Wl,Wr) =

[
0 1

−ū2 + qlh̄ 2ū

]
,

where

ū =

√
hlul +

√
hrur√

hl +
√
hr

, h̄ =
hl + hr

2
.

The variable h is selected for obtaining dni . The following strategy based on the Roe matrix is used to select the
speed, and the left and right states of the discontinuous reconstruction:

Case 1:

σ
n
i = ū− hn

i−1

√
ū, W

n
i,l = W

n
i−1, W

n
i,r = W

n
i−1 + α1R1(W

n
i−1,W

n
i+1).

Case 2:

σ
n
i = ū + h

n
i−1

√
ū, W

n
i,l = W

n
i+1 − α2R2(W

n
i−1,W

n
i+1), W

n
i,r = W

n
i+1.

Case 3: we select the ’dominant’ one:
If |α1| ≤ |α2| then:

σ
n
i = ū + h

n
i−1

√
ū, W

n
i,l = W

n
i+1 − α2R2(W

n
i−1,W

n
i+1), W

n
i,r = Wi+1.

If |α1| > |α2| then:

σ
n
i = ū− hn

i−1

√
ū, W

n
i,l = W

n
i−1, W

n
i,r = W

n
i−1 + α1R1(Wi−1,Wi+1).

Ernesto Pimentel-García Seminario EDANYA



Introduction
2nd-order in-cell discontinuous reconstruction p-c methods

Numerical methods

Coupled Burgers equations
Gas dynamics equations in Lagrangian coordinates
Modified shallow water equations

Test 1: Isolated 1-shock

Let us consider the following initial condition taken from (Castro,
LeFloch, Muñoz-Ruiz, Parés, 2008)

(h, q)0(x) =

{
(1, 1) if x < 0,
(1.8, 0.530039370688997) otherwise.

The solution of the Riemann problem consists of a 1-shock wave
joining the left and right states. A 1000-cell mesh and CFL=0.5 have
been used.

Ernesto Pimentel-García Seminario EDANYA



Introduction
2nd-order in-cell discontinuous reconstruction p-c methods

Numerical methods

Coupled Burgers equations
Gas dynamics equations in Lagrangian coordinates
Modified shallow water equations

Test 1: Isolated 1-shock
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Figure: Variable h
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Figure: Variable q
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Test 2: left-moving 1-shock + right-moving 2-shock

Let us consider the following initial condition

(h, q)0(x) =

{
(1, 1) if x < 0,
(1.5, 0.1855893974385) otherwise.

(36)

The solution of the Riemann problem consists of a 1-shock wave with
negative speed and a 2-shock with positive speed with intermediate
state W∗ = [1.8, 0.530039370688997]T . A 1000-cell mesh and
CFL=0.5 have been used.
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Test 2: left-moving 1-shock + right-moving 2-shock.
Variable h
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Test 2: left-moving 1-shock + right-moving 2-shock.
Variable q
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Test 2: left-moving 1-shock + right-moving 2-shock.
Variable h: comparison
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Test 2: left-moving 1-shock + right-moving 2-shock.
Variable q: comparison
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Test 3: right-moving 1-shock + right-moving 2-shock

Let us consider the following initial condition

(h, q)0(x) =

{
(1, 1) if x < 0,
(5, 2.86423084288) otherwise.

(37)

The solution of the Riemann problem consists of a 1-shock and a
2-shock waves with positive speed and intermediate state
W∗ = [1.5, 5.96906891076]T . A 1000-cell mesh and CFL=0.5 have
been used.
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Test 3: right-moving 1-shock + right-moving 2-shock.
Variable h
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Test 3: right-moving 1-shock + right-moving 2-shock.
Variable q
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Modified shallow water equations: Exact strategy
A more sophisticated strategy based on the exact solution of the
Riemann problems allows one to handle correctly with these
situations. The key ingredients are:

The solution of the Riemann problem with initial data Wn−1
i−1,r and

Wn−1
i+1,l is used to mark the cells instead of the one corresponding

to the initial data Wn
i−1 and Wn

i+1, where Wn−1
i−1,r and Wn−1

i+1,l are
the states selected in the discontinuous reconstruction in the
previous time step.

The exact intermediate state is used when the solution of the
Riemann problem involves two shock waves.

If the solution of this Riemann problem involves two shock waves
traveling in the same direction, a reconstruction with two
discontinuities (one for each of the shock waves) is considered,
so that the complete structure of the Riemann solution is
imposed.
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Test 2: left-moving 1-shock + right-moving 2-shock.
Exact strategy
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Figure: Variable h.
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Figure: Variable q

Ernesto Pimentel-García Seminario EDANYA



Introduction
2nd-order in-cell discontinuous reconstruction p-c methods

Numerical methods

Coupled Burgers equations
Gas dynamics equations in Lagrangian coordinates
Modified shallow water equations

Test 3: left-moving 1-shock + right-moving 2-shock.
Exact strategy
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Figure: Variable h.
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Figure: Variable q
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Conclusions and future work

Conclusions:
We extend the strategy developed in (Chalons, 2019) to second order of
accuracy.

This extension is based on the combination of the first-order in-cell
reconstruction and the MUSCL-Hancock reconstruction.

The isolated shock-capturing property is enunciated, proved and tested.

Future work:

Extend this technique to arbitrary order of accuracy.

Capture correctly non isolated shocks.

Apply the methods to more complex models.

Develop new Discontinuous Galerkin (DG) solvers based on
discontinuous reconstructions.

Explore the extension to multidimensional problems.
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End

Thank you for your attention
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