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Abstract— Visual object recognition is a fundamental chal-
lenge for reliable search and rescue (SAR) robots, where vision
can be limited by lighting and other harsh environmental
conditions in disaster sites. The goal of this paper is to explore
the use of thermal and visible light images for automatic object
detection in SAR scenes. With this purpose, we have used a new
dataset consisting of pairs of thermal infrared (TIR) and visible
(RGB) video sequences captured from an all-terrain vehicle
moving through several realistic SAR exercises participated
by actual first response organisations. Two instances of the
open source YOLOV3 convolutional neural network (CNN)
architecture are trained from annotated sets of RGB and TIR
images, respectively. In particular, frames are labelled with
four representative classes in SAR scenes comprising both
persons (civilian and first-responder) and vehicles (Civilian-car
and response-vehicle). Furthermore, we perform a comparative
evaluation of these networks that can provide insight for future
RGB/TIR fusion.

I. INTRODUCTION

A thermal infrared (TIR) camera was employed in the
first reported life save by a robot in 2013 [1]. At this point,
infrared imagery is a decisive imaging modality not only
for search and rescue (SAR) [2][3][4], but also for other
robotic applications such as surveillance [5], military [6] and
autonomous driving [7][8]. In comparison with visible light
cameras (RGB), TIR cameras can be more robust against
smoke, fog and lighting conditions [9]. Nevertheless, ther-
mal radiation produces images lacking contrast and texture
information [10], so the combination with other modalities
can be advantageous for effective object identification [2].

Specially, synergy between thermal and visible images can
be helpful to distinguish between rescuers and civilians, to
identify survivors, or to recognise different kinds of vehicles.
Besides, the RGB/TIR combination can produce an intuitive
modality output for human rescuers [11] and can also benefit
from recent deep learning tools for automatic object detection
and scene understanding. Recently, state-of-the-art convolu-
tional neural networks (CNN) models for object detection,
such as single shot multi-box detector (SSD) [12] and YOLO
[13] have achieved impressive real time performance with
visible light images [7][14] in growing application domains
[15][16].

A few works have extended the use of YOLO to thermal
imaging, mainly with a focus on nighttime person detection.
Thus, [17] addressed the problem of detecting distant persons
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and vehicles with small pixel sizes for surveillance and bor-
der control. In [5], a model trained on a TIR dataset clearly
outperformed the original RGB-trained model for person
detection under different weather conditions. Furthermore,
the real-time qualities of YOLO were exploited in [18] for
nighttime pedestrian detection from a moving TIR camera by
applying a prior saliency stage. Other works have used CNNs
to boast performance and accuracy when visible images
are combined with other sensing modalities [19][20]. Thus,
YOLO networks were used in [21] for semantic mapping
from RGB images with depth information by incorporating
a three-dimensional (3D) segmentation algorithm, and in [8]
for combining frame- and event-driven images for pedestrian
detection.

Another indication of the growing interest on TIR image
processing is the recent publication of different datasets,
such as a far infrared (FIR) dataset for on-road pedestrian
detection [23], a combination of visual and thermal data for
person tracking in urban environments [24], and a multispec-
tral dataset for day and nighttime driving [25]. Moreover, a
specific dataset for SAR robotics has been constructed with
multimodal (RGB, small field-of-view thermal, and depth)
measurements of several indoor search scenarios as well as
semi-synthetic images of victims [26].

In this work, our goal is to contribute to filling the gap
in combined use of TIR and visible light images in the
disaster robotics field. In particular, we explore automatic
object detection in SAR scenes with TIR images and their
complementarity with visible images. The major novel con-
tributions of the paper are the following:

o We use a specific SAR dataset consisting of pairs of
thermal and visible video sequences captured from an
all-terrain vehicle (see Fig. 1) moving through several
realistic SAR exercises performed by actual first re-
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Fig. 2. RGB and TIR networks for representative SAR classes detection.

sponse teams. We plan to make this dataset publicly
available [27].

e We evaluate the performance of the the open source
YOLOV3 convolutional neural network (CNN) archi-
tecture for training both thermal infrared and visible
light networks to detect four representative classes in
SAR scenes comprising both persons (civilian and first-
responder) and vehicles (Civilian-car and response-
vehicle). With this purpose we have labeled selected
frame pairs from the dataset with the corresponding
classes.

o We analyze results from both networks to gain insight
for RGB/TIR fusion for robust object detection.

This paper is organized as follows: section II presents the
proposed system overview; section III describes the dataset
and training; section IV discusses and analyses the results;
and section V offers conclusions and ongoing work.

II. OVERVIEW

An overview for the proposed framework of object recog-
nition in SAR scenes from RGB and TIR images is illustrated
in Fig. 2. Two independent networks are trained from thermal
and RGB images obtained from video sequences during
realistic SAR exercises. The images have been annotated
with representative classes in SAR scenes comprising both
persons (civilian and first-responder) and vehicles (Civilian-
car and response-vehicle). Quantitative and qualitative anal-
ysis and comparison of the results from both networks by
considering context and global image parameters is used to
gain insight for defining fusion criteria in a future work (e.g.,
decision-level fusion rules, as suggested in Fig. 2).

The thermal and RGB networks have been implemented
with YOLO [13]. This is a state-of-the-art network architec-
ture for multiple object recognition in full images consisting
of a single network with convolutional layers that perform
feature extraction as well as two fully connected layers
for simultaneous prediction of bounding box locations and
class probabilities. In particular, we have used YOLOv3
[28], which is an improvement over previous versions that
performs feature extraction with 53 convolutional layers for

feature extraction (Darknet-53). All in all, the network has
106 layers, 75 of which are convolutional.

III. DATASET, DATA MODEL AND TRAINING
A. Dataset Acquisition

This work uses thermal and visible light images selected
from a new multi-modal dataset [27] that we obtained during
realistic SAR exercises carried out in Mdlaga (Spain) in June
2018 and in June 2019. These exercises were participated by
first responders from emergency response organizations [29]
in an experimental SAR site that can be seen in Fig. 3.

The video stream images in the dataset were recorded
from an all-terrain vehicle equipped with a sensor suite that
included an Oculus TI dual camera as well as a Velodyne
HDL-32 lidar, an inertial unit and a differential global posi-
tioning system (see Fig. 1). The image datasets were captured
as video sequences by an onboard Intel NUC NUC715BNKP
15-7260U/8GB/256GB SSD computer running Ubuntu 16.04
with ROS Kinetic.

The Oculus TI is a compact pan-and-tilt system that houses
a TIR and RGB cameras. A microbolometer provides thermal
images in the Longwave infrared (LWIR) wavelength band
(8 to 14um) and a horizontal field of view (FOV) of 44°. The
thermal images have been recorded with white hot polarity.
Besides, the system includes a visible light camera that has
been used to obtain RGB images with a horizontal FOV
of 57.8°. Both cameras capture images with a resolution of
704%576 and at a 25 Hz rate.

The images show first responders, civilian and rescue
vehicles, rescue robots, civil observers, actors performing
as victims and different SAR-related objects in an outdoor
envirnment. The data was captured in different disaster
simulations, including an earthquake and a man-made attack.
In the images, rescuers from different organizations wear
their corresponding working uniforms, which make them
distinguishable from survivors and other civilians.

B. Data Model

The proposed SAR object detection data model con-
siders No = 4 target classes, which are C = {first-
responder; civilian, response-vehicle, civilian-car}. Different
colors have been assigned to represent the bounding boxes
for these classes, as illustrated by labeled training frame
shown in Fig. 4. These four classes are defined as follows:

o First-responder. A person with any kind of uniform
and/or high visibility jackets is considered in this class.
Recognizing the differences between all types of uni-
forms in the SAR exercise is out of the scope of this
work.

e Civilian. This class corresponds to persons with ordi-
nary clothing. Therefore, the civilian class comprises
victims (represented by actors), unharmed survivors,
civil observers, and journalists without distinctive uni-
form. In an actual disaster site, all of these could be
potential survivors.

e Response-vehicle. The class includes all specialized ve-
hicles such as ambulances, trucks, vans, robotic vehicles
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Fig. 4.
first-responder class is in yellow, civilian in blue, response-vehicle in green,
and civilian-car in red.

An example of the four classes in a labeled training image: the

and any other vehicle with distinctive signs of security
forces and civil protection.

e Civilian-car. This class is defined for ordinary cars that
lack of any recognizable sign of search and rescue
organizations.

Our motivation for considering these four classes was the
relevance of differentiating between survivors and rescuers
in a disaster site. Furthermore, recognizing civilian cars can
be useful to detect unseen victims.

C. Training and evaluation data

The RGB and TIR networks were trained using the param-
eters shown in Table I [30], where the number of epochs,
the batch size and the warmup epochs have been adjusted
empirically. We used a computer equipped with an AMD
Ryzen 7 2700X 4.3GHz CPU and a NVidia GeForce RTX
2060 Ventus OC 6GB GDDR6 GPU running Ubuntu 18.04
operating system. Both networks were trained using transfer

. :

SAR exercise site.

TABLE I
TRAINING PARAMETERS CONFIGURATION

Training parameters Value
Number of epochs 65
Batch size 2
Moving average decay 0.9995
Initial learning rate le-4
Final learning rate le-6
‘Warm-up epochs 2

learning, but no pre-trained networks for similar classes are
available. In order to take advantage of a pre-trained network,
training for the new classes has been done by changing only
the weights of the fully-connected layers, using fine-tuning to
perform the classification task of the new SAR classes [31].

In this work, a total of 2288 frames containing objects
of interest have been selected from the full SAR dataset and
manually labeled. The selection criterion was to have images
with different number and types of persons and vehicles,
points of view, scales and backgrounds.

This complete set of labeled images was split into three
different groups, as follows:

o Training (70%): Images used for network training.

o Validation (15%): Images used to fit the model param-
eters during training, avoiding overfitting.

o Test (15%): Labeled images for evaluating the network
after training is complete.

Furthermore, data augmentation is especially useful for
application fields, such as SAR, where obtaining measure-
ments from actual and even simulated disaster sites can be
very difficult. Thus, we have used the data augmentation
features provided by the YOLOV3 framework used in this
work [32]. These include random translations, rotations and
scale changes up to 20% of the original image. Besides, an
early stopping criterion has been used during training, in
order to prevent overfitting.
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Fig. 5. Six representative examples of object detection with the RGB and the thermal networks. Ground truth is illustrated on an RGB image.



TABLE 11
PERFORMANCE RESULTS OF RGB NETWORK FOR [oU THRESHOLD = 0.5

Class AP (%) Actual objects TP FP FN P (%) R (%)
First-responder 87.91 769 700 192 69 78.47 91.02
Civilian 77.83 220 179 39 41 82.11 81.36
Response-vehicle 94.28 342 323 27 19 92.28 94.44
Civilian-car 79.62 32 29 7 3 80.55 90.62
TABLE III
PERFORMANCE RESULTS OF TIR NETWORK FOR JoU THRESHOLD = 0.5
Class AP (%) Actual objects TP FP FN P (%) R (%)
First-responder 89.33 703 643 187 60 77.47 91.46
Civilian 85.54 247 216 48 31 81.82 87.45
Response-vehicle 91.38 398 373 62 25 85.75 93.72
Civilian-car 65.02 78 55 11 23 83.33 70.51
IV. RESULTS image, but the TIR network succeeds in identifying two

This section evaluates and compares results from the RGB
and the TIR image networks for the four representative
classes considered in this work.

A. Qualitative Results

Resulting bounding boxes for six representative examples
of RGB/TIR image pairs are presented in Fig. 5. The figure
also shows the corresponding ground truth, which has been
defined by a human expert after observing both the RGB and
thermal frames.

The major detection errors appreciated in the thermal net-
work consist on the confusion between classes corresponding
to persons. Thus, the thermal network missclassifies civilians
as first-responder in cases #1 and #6. These errors can be
due to the limited contrast and texture information offered
by TIR images, where there is only one single channel,
whose content correspond to the distribution of temperature.
Conversely, the colour channels in RGB images provide
complementary information about the patterns of the person
clothes, which results in a correct recognition of the first-
responder in case #1.

Another relevant issue is the detection of distant objects.
In principle, persons can be detected with the Oculus TI
camera up to a distance of 40 m. Even a human expert
can find difficulty in spotting distant objects with low RGB
resolution, not to mention distinguishing between the two
classes of persons. Thus, the RGB network fails to detect far
persons in cases #2 and #3, which are successfully detected
by the thermal network due to the characteristic temperature
pattern of the human body. Interestingly, all objects in case
#4, where the farthest first-responder person wears high-
visibility clothing, are correctly detected by both networks.

Finally, cases #5 and #6 correspond to challenging situ-
ations with extreme visibility. In case #5 there are persons
inside a tent that are not detected in the RGB image. Case
#6 shows a dark scene recorded in our lab specially for this
work. Again, none of the classes is detected in the RGB

persons, even if they are classified as first-responder instead
of civilian. On the other hand, the vehicle is not detected in
the thermal image, which indicates that it has been parked for
some time and the motor temperature cannot be distinguished
from the rest of the scene.

B. Quantitative Results

The two different networks for RGB and TIR images
are evaluated using the standard performance metrics that
describe the accuracy and quality of object detection:

e Mean Average Precision (mAP) is the average pre-
cision at different recall values; i.e., the area under
the precision-recall curve, where precision is P =
TP/(TP + FP) and recall is R = TP/(TP + FN).
TP, FP and FN stand for true positive, false positive
and false negative, respectively. The Average Precision
for a single class is denoted AP.

« Intersection Over Union (/oU) measures how predicted
bounding boxes fit the location of an object. Thus, JoU
is the relation between the area of intersection and the
union of predicted and real bounding boxes.

Tables II and III present the results obtained with the
RGB and the thermal networks, respectively. The average
precision for both person classes with the TIR network is
greater than that for the same classes with RGB network.
This can be explained by the temperature difference between
the human body and the surrounding environment, which
favors TIR detection. This difference in AP is greater for
persons of the civilian class, who do not wear high visibility
uniforms. For vehicle classes, where temperature difference
is not indicative, the use of visible spectrum cameras offers
better results, especially for the Civilian-car class.

Performance results for the RGB and thermal networks are
summarized in Table I'V. The global m AP and IoU are very
similar for both networks, with a better JoU value for RGB.
One interesting aspect to consider is that the TIR network
was pre-trained with RGB images from the COCO dataset,



TABLE IV
RGB AND TIR NETWORKS RESULTS FOR FOUR CLASSES.

Network mAP IoU First-responder AP Civilian AP Response-vehicle AP Civilian-car AP
(%) (%) (%) (%) (%)
RGB 84.91 65.15 87.91 77.83 94.28 79.62
TIR 82.82 60.57 89.33 85.54 91.38 65.02
TABLE V
The results for an IoU that range from 0.5 up to 0.95 are
RGB AND TIR NETWORKS RESULTS FOR TWO CLASSES: PERSON AND . .
VEHICLE shown in table VI with the total average m AP at the bottom.
' Although YOLOV3 reaches 33% in the average mAP for
Network mAP IoU Person AP Vehicle AP 80 classes [28], the results reveal a precise location of
(%) (%) (%) the bounding boxes for the four SAR classes in the RGB
RGB 01 44 6076 47,40 95.49 (48.22%) and TIR (41.82%) networks.
TIR 90.59 57.93 88.37 92.81 V. CONCLUSIONS
TABLE VI In this work, we have offered a preliminary analysis of

PRECISION (mAP) FOR DIFFERENT IoU THRESHOLD VALUES.

IoU RGB mAP TIR mAP
(%) (%)

0.5 84.91 82.82
0.55 82.69 80.60
0.6 78.03 75.29
0.65 71.84 63.50
0.7 62.38 49.70
0.75 50.37 34.35
0.8 32.46 20.07
0.85 16.15 9.91
0.9 3.33 1.94
0.95 0.04 0.04
Average 48.22 41.82

and the fine-tuning training of the new SAR representative
classes were performed using TIR images. In spite of this,
the resulting similar metrics for both networks could be
explained by the similarity of the image features filtered in
the first layers of the network architecture.

Besides, for the sake of performance comparison, we have
trained simpler versions of the RGB and TIR networks with
just two conventional classes Cs = {person, vehicle}, with
the results shown in Table V. In this case, a mAP accuracy
of 91.44% for the RGB network and 90.59% for the thermal
network have been obtained. These results offer only a slight
improvement over the four classes case in Table IV, in
spite of the greater difficulty in differentiating between two
classes of vehicles and two classes of persons in the latter.
Furthermore, the IoU values are better for both four-class
networks. This comparison indicates a good performance for
the networks trained with four SAR classes in comparison
to two standard classes. As for the evaluation of location
precision for bounding boxes, the two networks have been
tested using different IoU thresholds and computing the
average mAP, as in the COCO detection challenge [33].

the use of thermal and visible range images for automatic
object detection in SAR scenes. With this purpose, we have
obtained a custom dataset consisting of pairs of thermal and
visible video sequences captured from an all-terrain vehicle
moving through several realistic SAR exercises participated
by actual first response organizations. Two instances of the
open source YOLOv3 convolutional neural network (CNN)
architecture have been trained from annotated sets of RGB
and TIR images, respectively. In particular, frames have
been labeled with four representative classes in SAR scenes
corresponding to both persons (civilian and first-responder)
and vehicles (Civilian-car and response-vehicle). To the
best of our knowledge, this is the first work that addresses
automatic CNN detection of these specific SAR classes.

Qualitative results have shown a good performance of
both the RGB and the thermal networks in the detection
and identification of the four SAR classes. These results
indicate that the YOLOvV3 architecture could be trained for
a larger number of classes in the SAR domain, such as
identifying victims. Moreover, results have indicated that the
network for TIR images can benefit from transfer learning
from RGB networks. Besides, the strengths and limitations of
both modalities have been identified by the quantitative and
the qualitative analysis, which has confirmed the potential
synergies of both modalities.

The insight gained from this work can be considered
for future development of an RGB/TIR fusion mechanism
for robust object detection. Future work will be needed to
evaluate different fusion strategies, which could include a
data fusion approach, e.g. combining infra-red and color
images at the input, and decision-level fusion, where sensor
fields of view do not need to overlap completely [34]. Finally,
we plan to make the datasets used in this work publicly
available in the near future.
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