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Why are MCMC methods useful?

Problem: having to sample from a random variable with pdf µ.
One way to solve it: using Markov Chain Monte Carlo methods.

Importance of MCMC
Bayesian statistics could not take off until MCMC methods were
developed.
Very important in other disciplines: bio-statistics, machine learning,
artificial intelligence, population modelling, etc.
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MCMC: Motivation

When working with univariate probability distributions it is necessary to
know certain values associated to them such as:

µ =

∫
R
xρ(x)dx ,

σ2 =

∫
R
x2ρ(x)dx − µ2,

P((−∞, a)) =

∫ a

−∞
ρ(x)dx =

∫
R
1(−∞,a)(x)ρ(x)dx .

In general, for random variables in Rd with probability density function ρ
we need to compute

E(F (X )) =

∫
Rd

F (x)ρ(x)dx .
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MCMC: Some important definitions

A Markov chain in the state space Rd is a sequence of random vectors of
dimension d , {Xi}i∈N, that satisfy the Markov property:

P(Xi+1 ∈ A|X1, . . . ,Xi ) = P(Xi+1 ∈ A|Xi ) (1)

for every measurable set A and for every i ∈ N.

Markov Chain Monte Carlo (MCMC) methods produce a Markov chain
that has the target distribution as an invariant distribution.
This means that if Xi has pdf µ, so does Xi+1.

Then the expectation E(F (X )) is approximated by an average

1
N

(F (x1) + · · ·+ F (xN)) ,

where x1, . . . , xN is a realization of the chain.
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MCMC: detailed balance condition

Detailed balance condition: the probability of jumping from a set A to a
set B in the next step of the chain is the same as the one of jumping from
B to A.

The detailed balance condition ensures the invariance of the probability
distribution.
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HMC: a fictitious dynamical system

The Hamiltonian Monte Carlo (HMC) method is an MCMC method in
(Duane et al., 1987).

Let µ : Rd → R be the pdf we want to sample from (no need to normalize).
A fictitious dynamical system is created:

Coordinate: θ ∈ Rd .
Potential energy: L(θ) = − log(µ(θ)).
Force: F (θ) = −∇L(θ)

Momentum: r ∈ Rd .
Kinetic energy: T (r) = 1

2 r
TM−1r , (M = I ).

Total energy: H = T + L
Equations of motion: Hamilton’s equations.

d

dt
θ = r ,

d

dt
r = F (θ).
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HMC: Boltzmann-Gibbs distribution

The Boltzmann-Gibbs distribution, ΠBG , with pdf proportional to

exp

(
−1
2
rT r

)
exp (−L(θ)) (2)

is invariant by the flow of Hamilton’s equations.

θ-marginal of ΠBG −→ our target distribution
r -marginal of ΠBG −→ N (0, I )

HMC methods generate a Markov chain with elements (θi , ri ) ∈ R2d which
has ΠBG as its invariant distribution and therefore, the chain with elements
{θi}i∈N will have the target distribution as invariant distribution.
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HMC: the algorithm

1 Let λ > 0 and Ψλ the numerical approximation of the solution of
Hamilton’s equations at time λ.

2 Let the current state of the chain be (θ0, r0) ∈ R2d .
3 Generate ξ0 ∼ N (0, I ).
4 Compute Ψλ(θ0, ξ0).

5 The next element of the chain will be

(θ1, r1) = γΨλ(θ0, ξ0) + (1− γ)(θ0,−ξ0), (3)

with γ a Bernoulli random variable of parameter α(θ0, ξ0), where

α(θ0, ξ0) = min{1, exp (−(H(Ψλ(θ0, ξ0))− H(θ0, ξ0)))}. (4)

This acceptance-rejection mechanism is necessary to suppress the bias
introduced by the numerical integration.
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HMC: the integrator

The numerical integrator of choice for this algorithm is the Leapfrog
integrator. This integrator takes a step size, ε and a number of steps, L.

ΨL
ε = ϕ

(B)
ε/2 ◦

L−1 times︷ ︸︸ ︷(
ϕ(A)
ε ◦ ϕ(B)

ε

)
◦ . . .

(
ϕ(A)
ε ◦ ϕ(B)

ε

)
◦ ϕ(A)

ε ◦ ϕ(B)
ε/2 , (5)

where
ϕ
(A)
t (θ, r) = (θ + tr , r) (6)

and
ϕ
(B)
t (θ, r) = (θ, r + tF (θ)). (7)

=⇒ To use HMC two parameters have to be set: the number of steps, L,
and the step size, ε.
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The NUTS algorithm

The No-U-Turn Sampler (NUTS) is a modification of the original HMC
that is proposed in (Hoffman and Gelman, 2014) whose aim is to avoid the
need to set the parameter L.

Importance of NUTS
More than 2300 citations in Google Scholar.
STAN software: thousands of users rely on it for statistical modeling,
data analysis, and prediction in the social, biological, and physical
sciences, engineering, and business.

Link
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NUTS: criterion to stop the numerical integration

Criterion to stop the numerical integration
If running additional time steps would not result in a higher distance between
the initial state, θ, and the proposal, θ̃, then performing additional Leapfrog
steps would lead to higher computational cost without providing a better
proposal.

d

dt

(θ̃ − θ) · (θ̃ − θ)

2
= (θ̃ − θ) · d

dt
(θ̃ − θ) = (θ̃ − θ) · r̃ . (8)

If (θ̃ − θ) · r̃ > 0 −→ keep on simulating the system’s dynamics.
As soon as (θ̃ − θ) · r̃ < 0 −→ stop the simulation.
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NUTS: slice sampling

Slice sampling: sampling from a pdf f : Rd → R can be done by uniformly
sampling points from the region under the graph of f and just keeping the
variable x (Neal, 2003).

y −→ slice variable
y < f (x) −→ slice condition
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NUTS: slice sampling

How can we uniformly generate independent samples from the set
{(x , y) ∈ Rd × R : 0 < y < f (x)}?
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NUTS: creation of the binary tree

NUTS sampling −→ Binary tree with nodes of the form (θ, r).

NUTS stops building the tree when the leftmost (θ−, r−) and rightmost
(θ+, r+) leaves of one of the subtrees satisfy either (θ+ − θ−) · r− < 0 or
(θ+ − θ−) · r+ < 0.
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NUTS: One additional stopping criterion

Stop when the simulation is not accurate enough.

Accuracy condition

−L(θ)− 1
2
r · r − log u < −∆max (9)

for some nonnegative ∆max .

If this condition is violated we have reached a point of extremely low prob-
ability and there is no point in pursuing the integration of the Hamiltonian
dynamics.
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NUTS: Obtaining the final set to sample from

Set B: all the nodes visited. Set C: nodes we can sample from.

Every node in C must satisfy the slice condition.
Detailed balance

1 If one of these conditions was satisfied by a node or subtree added
during the last doubling iteration.

2 If the U-turn stopping condition was satisfied by the leftmost and
rightmost leaves of the full tree.
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A simple NUTS algorithm

Inputs: θ0, ε, L, ∇L, M.

For m = 1, . . . ,M :
1 Initialization:

rm−1 ∼ N (0, I )
Slice variable: u ∼ Unif

([
0, exp

(
−L(θm−1)− 1

2 r
m−1 · rm−1

)])
Tree height: j = 0
C = {(θm−1, rm−1)}
Indicator variable: s = 1

2 While s = 1 (recursive Buildtree function):
vj ∼ Unif({−1, 1}) is sampled
2j steps of the Leapfrog integrator are computed
j is increased in 1 unit
The slice condition is always checked

3 Once s = 0: (θm, rm) is sampled uniformly at random from C.
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A simple NUTS algorithm: some drawbacks

1 Large memory requirements
2 If one of the stopping criteria is satisfied during the last doubling

iteration then all the states added during this iteration will not be
included in the set C −→ optimized use of the indicator variable

3 The way of choosing the element from C can be improved

Drawbacks 1 and 3 −→ new kernel based on 2 mechanisms
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Efficient NUTS algorithm: new kernel

Mechanism 1: Inside the BuildTree function
I θ′, θ′′: candidates of each of the subtrees
I n′, n′′: number of nodes of each of the subtrees that can be in C

The candidate of the merged tree is θ′′ instead of θ′ with probability

P =
n′′

n′ + n′′
. (10)

(a) n′ = 2, n′′ = 2,
P = 1/2

(b) n′ = 2, n′′ = 1,
P = 1/3
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Efficient NUTS algorithm: new kernel

Mechanism 2: Inside the while loop of the main function
I θm: candidate of the tree built in the previous iteration of the loop
I n: number of elements of this tree that can be in C
I θ′: candidate of the new subtree
I n′: number of elements of this tree that can be in C

The algorithm chooses θ′ instead of θm with probability

P = min{1, n′/n}. (11)

(a) n = 8, n′ = 8, P = 1. (b) n = 7, n′ = 6, P = 6/7.
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Efficiency of the NUTS algorithm

How do we define the concept of efficiency?

=⇒ Efficiency = 7/15 and Inefficiency = 8/15

We will compute this value each time a new sample has been generated and
obtain the mean inefficiency value for a realization of the Markov chain.

This waste of computational effort is the price paid for not having to
previously set the value L.
The efficiency estimation is not available in the existing literature.
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Simple NUTS: 1D standard normal distribution

(a) ε = 5 (b) ε = 4

(c) ε = 3 (d) ε = 2
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Simple NUTS: 1D standard normal distribution

(a) ε = 1 (b) ε = 0.1

(c) ε = 0.01 (d) ε = 0.001
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Simple NUTS: 1D standard normal distribution

Figure 1: Inefficiency percentage for different values of the step size between 0.001
and 0.1 using the simple NUTS algorithm for a univariate normal distribution.
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Simple NUTS: 1D standard normal distribution

RESULTS

The average number of steps is multiplied by 10 as the step size is
divided by 10.
The inefficiency percentage increases as the step size tends to 0.
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Efficient NUTS: 1D standard normal distribution

(a) ε = 5 (b) ε = 4

(c) ε = 3 (d) ε = 2
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Efficient NUTS: 1D standard normal distribution

(a) ε = 1 (b) ε = 0.1

(c) ε = 0.01 (d) ε = 0.001
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Efficient NUTS: 1D standard normal distribution

Figure 2: Inefficiency percentage for different values of the step size between 0.001
and 0.1 using the efficient NUTS algorithm for a univariate normal distribution.
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Efficient NUTS: standard normal distribution

Figure 3: The average length of the integration interval divided by π/2 for
different step sizes using efficient NUTS algorithm for a univariate normal

distribution.
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Efficient NUTS: 1D standard normal distribution

RESULTS

Smaller average number of steps than simple NUTS.
Reduction in the running time compared to simple NUTS.
Lower inefficiency (between 62.5% and 67%).
Periodic behaviour of the inefficiency percentage.
The average length of the integration interval tends to π/2 as the step
size tends to 0.
Similar quality of the sample to simple NUTS.
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Efficient NUTS: mixture of N (0, 1) and N (6, 4)

(a) ε = 7 (b) ε = 6

(c) ε = 5 (d) ε = 4
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Efficient NUTS: mixture of N (0, 1) and N (6, 4)

(a) ε = 3 (b) ε = 2

(c) ε = 1 (d) ε = 0.1
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Efficient NUTS: mixture of N (0, 1) and N (6, 4)

Figure 4: Inefficiency percentage for values of the step size between 0.001 and
0.01 using the efficient NUTS algorithm for a mixture of univariate normal

distributions.
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Efficient NUTS: mixture of N (0, 1) and N (6, 4)

RESULTS

Bigger average number of steps and elapsed time than in the standard
normal distribution case.
Elapsed time and average number of steps are multiplied by 10 as the
step size is divided by 10.
Similar inefficiency percentages than in the standard normal
distribution.
Periodic inefficiency percentage behaviour.
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Efficient NUTS: Two-dimensional normal distribution

(a) ε = 1 (b) ε = 0.1

(c) ε = 0.01 (d) ε = 0.001
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Efficient NUTS: Two-dimensional normal distribution

Figure 5: Inefficiency percentage for different values of the step size between 0.001
and 0.01 using the efficient NUTS algorithm for a bivariate normal distribution.
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Efficient NUTS: Two-dimensional normal distribution

RESULTS

Similar average number of steps than in the 1D standard normal
distribution case.
Similar inefficiency percentage range of values.
Periodic inefficiency percentage behaviour.
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Conclusions

Good sampling results have been obtained when a sufficiently small
step size was used without the need to previously set the number of
steps.
Similar values for the inefficiency percentage were obtained: between
62% and 67%.

We cannot infer from these examples that the inefficiency percentages
will be the same for every probability distribution.

Future lines of research
How does the NUTS algorithm perform when using integrators different
to Leapfrog?
It would be interesting to consider the integrators proposed for HMC in
(Bou-Rabee and Sanz-Serna, 2018) and (Blanes et al., 2014): splitting
integrators with more stages.
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Simple NUTS: 1D standard normal distribution

Step size 0.001 0.01 0.1 1
Elapsed time 508.97 53.55 7.83 2.83
Average steps 2.3·103 235.02 21.57 2.37
% inefficiency 0.8339 0.8303 0.8115 0.6897
% slice failure 0 3.4·10−6 6.5 · 10−4 0.08

Average 0.0023 -0.0168 0.0105 0.0113
Variance 1.0130 1.0080 0.9918 1.0046

Step size 2 3 4 5
Elapsed time 2.20 2.22 1.66 1.45
Average steps 1 1 1 1
% inefficiency 0.7485 0.9110 0.9646 0.9746
% slice failure 0.50 0.82 0.93 0.95

Average -0.0098 0.0099 0.0885 0.0052
Variance 1.0106 1.0606 1.4017 0.4458
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Efficient NUTS: 1D standard normal distribution

Step size 0.001 0.01 0.1 1
Elapsed time 135.82 14.84 3.18 1.29
Average steps 1.57 · 103 161.54 18.21 2.37
% inefficiency 0.6331 0.6292 0.6618 0.4710
% slice failure 0 0 6.92 · 10−4 0.08

Average -0.0017 0.0170 0.0068 -0.0025
Variance 1.0036 1.0043 0.9953 0.9934

Step size 2 3 4 5
Elapsed time 1.56 1.69 1.39 1.44
Average steps 1 1 1 1
% inefficiency 0.5008 0.8208 0.9178 0.9516
% slice failure 0.5008 0.8208 0.9178 0.9516

Average -0.0015 0.0117 -0.1024 -0.0139
Variance 0.9974 1.1401 0.8473 0.5340
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Efficient NUTS: mixture of N (0, 1) and N (6, 4)

Step size 0.001 0.01 0.1 1 2
Elapsed time 439.25 53.13 6.54 2.27 2.06
Average steps 2.72 · 103 275.83 30.16 3.97 2.16
% inefficiency 0.6368 0.6325 0.6470 0.5489 0.5668
% slice failure 0 0 3.86 · 10−4 0.0518 0.2954

Average 2.9684 2.9127 3.0346 3.0188 2.9665
Variance 11.5021 11.4234 11.5697 11.4106 11.4467

Step size 3 4 5 6 7
Elapsed time 2.15 1.95 1.9 1.82 1.65
Average steps 1.80 1.44 1.25 1.13 1.09
% inefficiency 0.6201 0.7304 0.7908 0.8483 0.8954
% slice failure 0.4860 0.6721 0.7696 0.8389 0.8913

Average 3.0728 3.0298 3.0564 3.0791 2.9670
Variance 11.5438 11.5579 11.4930 11.1341 11.52
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Efficient NUTS: Two-dimensional normal distribution

Step size 0.001 0.01 0.1 1
Elapsed time 462.18 47.04 8.01 3.15
Average steps 1.6 · 103 159.95 16.81 1.33
% inefficiency 0.6465 0.6473 0.6433 0.8640
% slice failure 1.73 · 10−5 3.78 · 10−5 0.0045 0.8507
Average X 9.16 · 10−4 -0.0037 -0.0114 -0.0076
Average Y -0.0015 −3.07 · 10−4 -0.0011 -0.0019
Variance X 0.9978 1.0268 0.9975 0.9673
Variance Y 0.1101 0.1113 0.1119 0.1065
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