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Abstract
This article presents a collection of multimodal raw data captured from a manned all-terrain vehicle in the course of two
realistic outdoor search and rescue (SAR) exercises for actual emergency responders conducted in Málaga (Spain) in
2018 and 2019: the UMA-SAR dataset. The sensor suite, applicable to unmanned ground vehicles (UGV), consisted
of overlapping visible light (RGB) and thermal infrared (TIR) forward-looking monocular cameras, a Velodyne HDL-32
three-dimensional (3D) lidar, as well as an inertial measurement unit (IMU) and two global positioning system (GPS)
receivers as ground truth. Our mission was to collect a wide range of data from the SAR domain, including persons,
vehicles, debris, and SAR activity on unstructured terrain. In particular, four data sequences were collected following
closed loop routes during the exercises, with a total path length of 5.2 km and a total time of 77 min. Additionally, we
provide three more sequences of the empty site for comparison purposes (an extra 4.9 km and 46 min). Furthermore,
the data is offered both in human-readable format and as rosbag files, and two specific software tools are provided
for extracting and adapting this dataset to the users’ preference. The review of previously published disaster robotics
repositories indicates that this dataset can contribute to fill a gap regarding visual and thermal datasets and can serve
as a research tool for cross-cutting areas such as multispectral image fusion, machine learning for scene understanding,
person and object detection, and localization and mapping in unstructured environments. The full dataset is publicly
available: www.uma.es/robotics-and-mechatronics/sar-datasets.
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1 Introduction

Disaster robot missions such as reconnaissance and mapping,
search for survivors, logistics, first medical assistance,
casualty evacuation, and support for cooperative perception
could benefit from research in new artificial intelligence
solutions for multimodal perception. A single search and
rescue (SAR) robot can produce gigabytes of heterogeneous
types of imagery and data (Murphy et al. 2016), so new
intelligent tools are required to prevent information overload
for end-users. Besides, perception in disaster situations
poses distinctive challenges due to limited image quality, a
diversity of target objects, unstructured search environments
and integration of visual information with other data
modalities (Arnold et al. 2019). Thus, the availability of
representative datasets becomes essential for developing,
training, testing and benchmarking new artificial intelligence
solutions for perception, classification, localization and
mapping in the challenging disaster response application
domain (Petříček et al. 2019)(Bañuls et al. 2020)(Dubé et al.
2020).

This article presents a public sensor-oriented dataset
obtained from a manned all-terrain vehicle during realistic
disaster response exercises on outdoor terrain (see Figure
1). Our mission was not to participate in a particular rescue
scenario but to capture a wide range of data from the

SAR domain. The vehicle was equipped with a specific
multimodal sensor suite to collect data appropriate for
machine learning object recognition, disaster site modeling,
and situational awareness research in unmanned ground
vehicles (UGV). In particular, the sensor suite incorporated
a combination of overlapping thermal infrared (TIR) and
visible light (RGB) cameras, three-dimensional (3D) lidar,
an inertial measurement unit (IMU) and global positioning
system (GPS) receivers.

The main aspects of our dataset are the following:

• The data has been acquired during large-scale exercises
on unstructured terrain organized for actual responders.
The realistic mockup disaster scenarios (physical fidelity)
and the behavior of the rescuers and other participants
(personnel fidelity) were not specifically staged for this
work.

• Each data sequence closes a path loop with GPS ground
truth for SLAM research. Data has been captured from a
manned vehicle for ensuring safety and maneuverability.
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Figure 1. Photographs of the site (top) and two rescue
scenarios (middle, bottom).

• We offer overlapping TIR and RGB image pairs with
a wide range of SAR related object categories for
multi-spectral machine learning. These include numerous
instances of persons (e.g., rescuers, observers, and
simulated victims), vehicles (e.g., rescue and military
vehicles, cars, and vans), debris (e.g., rubble, sewer pipes,
and crushed cars) and SAR activity.

• Our data is presented in human readable format along with
software tools for adjusting and selecting the data to the
preference and workflow of each user.

Our major purpose is that the research community can
benefit from our opportunity to collect ground vehicle
data from outdoor field events designed with substantial
authenticity by and for actual SAR professionals. The
remaining of this data paper is organized as follows. The
next section reviews published datasets for disaster robotics.
Section 3 presents the disaster exercises and site, the vehicle-
sensor setup, and the data collection methodology. Section 4
describes the dataset and the accompanying software tools.
Section 5 discusses limitations of the data as well as some of
the ways in which the dataset could be used. Finally, Section
6 offers a summary.

2 Related Work
Table 1 summarizes published datasets for robotics in the
SAR domain in chronological publication order. Web links
are provided for the datasets that are publicly available at
the time of this writing. In the cases where original links are
lost, these might be reached by request. Besides, the table
indicates the viewpoint (aerial or ground sensors), a brief
description of the site, the major data modalities, the main
purpose of the dataset, and the presence of human-figure
subjects in the captured data. It can be observed that the

major purpose for most datasets was related either to site
modeling and SLAM or to machine learning.

The major motivations for the first datasets were
simultaneous localization and mapping (SLAM) and 3D
modeling of disaster environments, which are fundamental
capabilities for SAR UGVs (Droeschel et al. 2017)(Dubé
et al. 2020). Several works used Disaster City (Texas), a
training facility with a variety of realistic mock-up SAR
scenarios (e.g., a collapsed parking building and a train
accident), to collect UGV-based datasets with physical
fidelity, such as 3D lidar scans for mapping (Ohno et al.
2010) and combinations of lidar and RGB images for
terrain classification and SLAM (Pellenz et al. 2010) and
3D representations with a simulated victim (Birk et al.
2009)(Pathak et al. 2010). This facility was also used
to test the RESPOND-R data management framework
during exercises with a UAV-UGV team, where data from
heterogeneous sources, such as communications or human-
robot interactions, were collected in addition to video and
scans (Shrewsbury et al. 2013)(Duncan and Murphy 2014).
On the other hand, the repositories of the disaster robotics
research projects ICARUS (Balta et al. 2017) and TRADR
(Svoboda 2017) offer datasets collected from unmanned
ground (UGV) and aerial vehicles (UAV). The ICARUS
datasets consist of point clouds captured at a military base
used for SAR training, with the major goal of producing 3D
reconstructions of buildings and disaster sites. These point
clouds were derived mostly from different UAV cameras
(either RGB, grayscale or TIR) with GPS annotations,
but also from a UGV with a high-resolution 3D lidar.
The TRADR dataset compilation includes proprioceptive
readings and a variety of sensor setups for different robotic
applications, such as omnidirectional cameras and lidar
for stair climbing with tracked robots (Kubelka et al.
2019) and multi-robot point cloud registration in disaster
sites (Gawel et al. 2017)(Dubé et al. 2017). Even if the
primary purpose of the TRADR datasets was documenting
individual methods and experiments, the repository shares
data from realistic sites such as decommissioned plants,
outdoor environments and firefighting training facilities.
Furthermore, the TEDUSAR dataset Leingartner et al.
(2016) resulted from a relevant effort to capture realistic
multimodal data from a full-scale exercise for actual
responders in a GPS-denied tunnel accident scenario with
vehicles and hazardous materials. The major mission of the
TEDUSAR UGV was collecting data to be shared with
the research community for assessing performance of a
variety of state-of-the-art sensors and mapping algorithms.
Originally, the sensor suite comprised a 3D lidar, TIR, stereo,
omnidirectional and Kinect cameras, an IMU, and an arm
with a 2D lidar and a radar sensor, but eventually only the
RGB cameras and lidar worked on account of the challenging
conditions and timing constraints imposed by the emergency
response drill. More recently, the HRAIL repository at Texas
A&I University (HRAIL 2020), holds a collection of aerial
image datasets captured in the aftermath of actual natural
disasters, which are valuable for mapping, debris/building
inspection, and property damage assessment.

In the last years, the emergence of machine learning as
an effective research tool for intelligent visual perception
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Table 1. Published datasets in the SAR domain (in chronological order).

Dataset Availability Viewpoint Site Modalities Main purpose Humans

Jacobs University (Birk
et al. 2009) (Pathak et al.
2010)

Public1 UGV Disaster city
(collapsed
building)

3D lidar SLAM Victim
stand-in

Koblenz-Landau
University (Pellenz et al.
2010)

Public2 UGV Disaster city
(outdoor)

3D lidar, RGB, GPS Terrain classification and
mapping

-

Tohoku University (Ohno
et al. 2010)

By
request

UGV Disaster city
(indoor and
outdoor)

3D lidar SLAM -

RESPOND-R
(Shrewsbury et al. 2013)

Authorised
users

UAV,
UGV,
ground

Disaster city
(outdoor)

RGB video, state, GPS,
environmental

Radiological localization
and assessment. Data
logging

-

TEDUSAR (Leingartner
et al. 2016)

By
request

UGV Tunnel exercise for
rescuers

RGB, 3D lidar. SLAM. Sensor evaluation -

ICARUS (Balta et al.
2017)

Public3 UAVs
and one
UGV

Military base
(outdoor, indoor)

Point clouds from RGB,
TIR or monochrome
cameras (UAVs) and 3D
lidar (UGV)

Data management and site
modeling for rescuers

-

TRADR Compilation
(Svoboda 2017)

Public4 Mostly
UGV.
UAV

Several Indoor /
outdoor

Mostly RGB with robot
status. 3D lidar

SLAM, exploration and
navigation

-

RoboCup Rescue Victim
(Lorenz and Steinbauer
2018)

Public5 UGV RoboCup Rescue
arena (indoor)

Annotated RGB Victim face detection.
Machine learning

Doll
baby
victims

DISC (Jeon et al. 2019) Public6 Ground Virtual indoor and
outdoor

Stereo with ground truth Machine learning.
Structure damage

-

TRADR Active
segmentation (Petříček
et al. 2019)

Public7 UGV Indoor mockup
disasters

RGB-D and TIR, state Machine learning. Victim
segmentation. Camera
control

Semi-
synthetic
victims

Leading India SAR
(Mishra et al. 2020)

By
request

UAV Campus (outdoor) RGB Machine learning.
Gestures

Pedestrians

SDV (Dadwhal et al.
2020)

Public8 Ground Cluttered Indoor RGB + ground truth Machine learning. Skin
detection

Victim
stand-ins

HRAIL Texas A&I
University (HRAIL 2020)

Authorised
users

UAV Actual disasters
(outdoor)

RGB Mapping, damage
assessment

-

1 http://robotics.jacobs-university.de/media 2 http://kos.informatik.uni-osnabrueck.de/3Dscans
3 http://projects.asl.ethz.ch/datasets/doku.php?id=jfricarus 4 http://www.tradr-project.eu/resources/datasets
5 https://osf.io/dwsnm 6 https://sites.google.com/site/hgjeoncv/disc-project-page
7 http://ptak.felk.cvut.cz/tradr/data/human_seg 8 http://dx.doi.org/10.21227/a5dm-y470

has demanded image datasets with representative domain-
specific objects for model training. In some cases, the lack
of suitable datasets can be partially mitigated by computing
synthetic images, as in the DISC dataset (Jeon et al. 2019),
which consists of sufficiently realistic stereo renderings of
fire and collapsing structures that allow comparing before
and after disaster conditions. In this sense, Petříček et al.
(2019) created a semisynthetic dataset consisting of chroma
key images of human victim stand-ins that can be overlaid
onto background images of disaster environments. Precisely,
recent datasets have incorporated images of human figures
for intelligent victim detection. Such is the case of the RGB
dataset collected by Lorenz and Steinbauer (2018) during
the 2015 RoboCup Rescue competition, where doll babies
simulated victims in a cluttered indoor arena. Similarly,
Dadwhal et al. (2020) staged the simulated disaster victim
(SDV) datasets for skin detection in images of dust-covered
humans lying among indoor rubble. In contrast, the purpose
of the LeadingIndia-SAR dataset (Mishra et al. 2020) was
recognizing help requests and other human actions from
aerial images in an unmodified campus environment. In
addition to visible light images, thermal images can be

useful for scene understanding in texture-less, dark, and
smoke- or dust-filled SAR settings. Petříček et al. (2019)
addressed the combination of thermal and visual images for
multimodal victim detection from a robotic vehicle in mock-
up disaster sites. Their dataset documents the research goal
of controlling the pan-and-tilt of a thermal camera for human
body segmentation of a 3D occupancy grid built from motion
estimations, panoramic RGB images and depth information.
Apart from that, existing thermal image datasets do not
address SAR but other applications like nighttime pedestrian
detection (Xu et al. 2019) and surveillance Krišto and
Ivǎsić-Kos (2019), where performance can be improved with
multispectral combinations of color and thermal cameras, as
in the KAIST dataset (Choi et al. 2018).

The motivations for our dataset are similar to those of the
TEDUSAR dataset (Leingartner et al. 2016) in the sense
that our primary goal has been sharing multimodal data
collected from a ground vehicle in the context of full-scale
training exercises for response personnel. However, our data
(which includes RGB, TIR and 3D lidar) has been obtained
from different types of outdoor scenarios and we have been
able to include GPS readings for ground truth. Furthermore,
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Figure 2. Aerial view of the disaster simulation site (Google
2020), where shaded red areas indicate objects and scenarios
recognizable in the dataset.

our dataset contributes to filling the observed gap regarding
thermal and visual image datasets in the disaster response
domain, as it includes synchronized overlapping images of
both spectra with similar fields of view (FOV). Besides, our
multimodal data not only captures closed loops of terrain
information for 3D modeling and SLAM but also different
types of human subjects (e.g., responders, pedestrians,
victims) and other SAR-related objects and actions, which
can be useful for machine learning.

3 Data collection

3.1 Disaster exercises
The UMA-SAR dataset was captured during two realistic
disaster response exercises that took place in Málaga (Spain)
on June 1, 2018 and on June 6, 2019, respectively. The
exercises were conducted as part of an annual Workshop
organized by the Chair of Security, Emergencies and
Disasters at Universidad de Málaga (UMA). More than one
hundred registered personnel from different governmental
and non-governmental organizations participated in each
exercise.

Each full-scale exercise involved a series of scenarios
corresponding to the response to a crisis situation, namely
an earthquake in 2018 and a terrorist attack in 2019.
The exercise site was a dedicated 90,000m2 outdoor
experimental area within the UMA campus. This natural
terrain area was set up as a simulated disaster site, including
rubble mounds, crushed vehicles, and partially buried sewer
pipes, as illustrated in Figure 1 (top).

A layout of the site with the main areas and activities
captured in the dataset is depicted in Figure 2. During
the exercises, SAR units from participant organizations
deployed their tents, vehicles and personnel in an area for
emergency command posts. In the 2018 data capture, the
rescue scenarios were prepared in the rubble and crushed car
#1 area, the rubble and crushed car #2 area, and the pond.

Figure 3. All-terrain Argo vehicle with the sensor suite on the
front rack. The photograph was taken during the 2019 exercise.

Besides, emergency vehicles as well as numerous registered
participants, including rescuers, a canine unit, and media and
visitors, were standing or preparing their equipment on the
sides of the dirt trail that connected the emergency command
posts with the rescue scenarios. In 2019, a rescue scenario
was conducted in the rubble and crushed car #2 area, with
victims inside the car, and the aftermath of an attack was set
up at the crime scene investigation area.

The exercises were conducted under planned strict
timing constraints and safety protocols coordinated by the
exercise director and the organization staff. This complex
coordination effort involved, for instance, air traffic control
constraints. Other personnel participating in the exercise
included the first response teams, victim stand-ins (played
by drama students), authorized media, visitors and officials.
Some of the scenarios were used to test robotic technologies
(Fernández-Lozano et al. 2018) but these were not related to
our dataset.

3.2 Vehicle mission and sensor setup
Our mission in the exercises, which was clearly defined
in advance and approved by the organizers, was to deploy
a manned all-terrain vehicle within the exercise site to
collect multimodal imaging and data from the developing
SAR scenarios. This data collection mission was not limited
to active scenarios but also to the transit between the
different areas within the exercise site, which also included
representative objects such as personnel and vehicles. Thus,
our mission was independent of other missions conducted by
responders and we were expected to minimize interference
with their activity. Furthermore, the main object of data
capture was to serve as a research tool for both SLAM
and machine learning in disaster robotics and other related
technologies, so it was not meant to be used by emergency
response teams during or after the exercises.

The vehicle used for data capture was an 8× 8 Conquest
1050 XTD by Argo (see Figure 3) that allows skid-steer
maneuverability through rough and uneven terrain. The
sensor suite platform was designed to fit onto the vehicle’s
front rack, which is 1.2m above and parallel to the ground
plane. This platform also accommodated the data acquisition
devices, i.e., communication devices and a computer.
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Figure 4. Sensor suite layout: a) Back view (i.e., driver
standpoint), and b) top view. The center of mass symbol
indicates the origin of each sensor’s frame.

In particular, the following sensors were included (see
Figure 4):

• RGB and TIR cameras. We used an Oculus-TI camera
unit (by Silent Sentinel) with monocular TIR and RGB
analog cameras mounted on a pan-tilt-zoom (PTZ) system.
Both images are mostly overlapped, allowing image fusion
research. The microbolometer produces thermal images in
the longwave infrared (LWIR) wavelength band (i.e., 8
to 14µm), which were recorded with white hot polarity.
The PTZ was fixed to forward looking orientation with the
maximum horizontal FOV, which is 44° and 57.8° for TIR
and RGB, respectively. An AXIS P7214 IP video server
captures and digitizes images from both cameras with a
resolution of 704×576 at 25Hz.

• 3D lidar. We used the Velodyne HDL-32, with a vertical
32-beam FOV of 41.33° (from −30.67° to 10.67°) and a
measurement range of up to 100m. A scan frame consists
on a full rotation in the 360° horizontal FOV. The point
clouds were acquired at 10Hz, which gives a vertical
angular resolution of 1.33° and an azimuthal resolution of
0.166°.

• Global positioning system real-time kinematics (GPS-
RTK). We included two JAVAD L1-band GPS receivers
with MarAnt+ antennas to gather position information at
5Hz. One was configured in standalone mode (user) and
the other in fixed mode (RTK) for centimeter accuracy. In
2018, we placed our own JAVAD base station with an UHF
Radio link at the exercise site. In 2019, the corrections
were taken from the base station MLGA 13460M001 of
the regional public positioning network (Berrocoso et al.
2006) through 4G internet connection. This base station

Table 2. Sensor frame definitions with respect to the vehicle’s
frame for the 2018 setup.

x (cm) y (cm) z (cm) ~x ~y ~z
User GPS 0 0 50
RTK GPS 0 −18 50

IMU 16.9 −40.9 1.6 −~y0 ~x0 −~z0
Velodyne 21.3 −9.3 31.6 ~x0 ~y0 ~z0

RGB 7.4 −40.9 46.5 ~x0 ~y0 ~z0
TIR 7.4 −40.9 40 ~x0 ~y0 ~z0

Table 3. Sensor frame definitions with respect to the vehicle’s
frame for the 2019 setup.

x (cm) y (cm) z (cm) ~x ~y ~z
User GPS 0 0 50
RTK GPS 0 −31 50

IMU 9.8 −25.5 0.5 −~x0 ~y0 −~z0
Velodyne 15 −8 31.6 ~x0 ~y0 ~z0

RGB 12 −44.5 46.5 ~x0 ~y0 ~z0
TIR 12 −44.5 40 ~x0 ~y0 ~z0

is close to the exercise site (approximately 5 km) and
streams corrections with a Networked Transport of RTCM
via Internet Protocol (NTRIP) server.

• IMU. We used Microstrain IMUs to measure linear
acceleration, angular velocity and orientation. In 2018, the
model was a 3DM-GX2 with a nominal capture rate of
100Hz and in 2019, it was a 3DM-GX5-25 at 64Hz.

The locations of the sensor reference frames with respect
to the vehicle’s frame are illustrated in Figure 4 and
defined in Tables 2 and 3 for the slightly different 2018
and 2019 sensor arrangements, respectively. The vehicle’s
reference frame X0Y0Z0 has its origin at the platform
surface, with the X0 axis pointing in the motion direction.
The GPS frames are placed at their respective antenna bases.
Besides, the antenna’s L1 band vertical offset is 5.43 cm.
The origins for the Velodyne lidar and the cameras are
at their corresponding optical centers. In the tables, frame
orientations are expressed using the vehicle’s reference
frame unit vectors ~x0, ~y0 and ~z0. GPS frame orientations
have been omitted because they are implicitly defined
when transforming longitude-latitude coordinates, e.g., East-
North-Up (ENU) or North-East-Down (NED).

3.3 Data collection methodology
We were authorized to conduct data acquisition runs
during the full-scale SAR exercises on June 1, 2018 and
on June 6, 2019. We recorded four sequences (two per
exercise) with a total path length around 5.2 km and
around 77min of recording time. We drove the vehicle
through different scenarios with the purpose of capturing
participants, vehicles, and SAR activities and objects from a
variety of distances and perspectives. Furthermore, we closed
path loops so that data could be useful for SLAM research,
and finished at the command post tent area. Additionally, we
performed two post-exercise runs on July 25, 2018 and one
pre-exercise run on June 5, 2019 in order to have comparable
data of the empty site. These extra sequences add a path
length around 4.9 km and 46min.

Sensor data was captured by an on-board Intel
NUC715BNKP, which included an i5-7260U processor
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Figure 5. Run paths according to the standalone GPS. Top: 2018 datasets; bottom: 2019 datasets.

Table 4. Information for each dataset sequence.
Sequence Length Start time Duration Max / Min Fix RTK Avg. # of Horizontal speed Tempera-
ID (m) (UTC) (s) altitude (m) msgs (%) satellites Max/Avg. (km/h) ture (°C)
2018-06-01-12-14-47 469 10:22:54 515.24 56.75 / 51.40 0.00 8.00 4.99 / 2.56 24.9

SAR 2018-06-01-12-44-10 934 10:44:10 1201.35 57.02 / 50.91 0.00 8.00 5.76 / 2.79 24.9
Exercise 2019-06-06-10-08-55 1843 08:08:55 947.88 64.46 / 50.00 99.95 6.56 11.04 / 4.13 28.3

2019-06-06-10-35-12 2000 08:35:12 1971.50 63.84 / 51.03 97.31 6.73 7.40 / 3.08 28.3
2018-07-25-11-25-10 627 09:25:11 294.88 56.71 / 50.35 43.11 6.76 7.85 / 4.32 32.1

Empty site 2018-07-25-11-39-26 3320 09:39:27 2058.16 62.62 / 45.56 25.78 7.27 10.31 / 3.69 32.1
2019-06-05-13-55-16 1029 11:55:16 434.23 57.93 / 45.61 99.58 6.16 12.89 / 5.48 27.4

with 8GB RAM and 256GB solid-state disk. We employed
the Ubuntu 16.04 operating system running ROS Kinetic
and recorded data with the rosbag ROS tool. In particular,
the following ROS packages were used to access sensor data
and to timestamp measurements based on system time:

• axis_camera, for the Axis P7214 server’s MJPG
streams (Gariepy 2018).

• microstrain_3dmgx2_imu for IMUs compatible
with the microstrain 3DM-GX2 protocol (Leibs and
Gassend 2013).

• microstrain_mips, for the 3DM-GX5-25 IMU
(Bingham 2020).

• velodyne, for Velodyne lidars (O’Quin 2019).

• novatel_gps_driver_modified, for publishing
RMC and GGA NMEA messages of both JAVAD
receivers. The original driver by Reed (2018) has been
modified and it is available in the UMA-SAR Dataset
website.

Additionally, the NTRIP client provided by RTKLIB
(Takasu 2009) was employed to feed the RTK receiver with
differential corrections. The camera_calibrationROS

package was used to obtain the intrinsic parameter of the
RGB camera (Bowman and Mihelich 2017). Images of an
11× 7 chessboard (10 cm side) as well as calibration results
are provided in the dataset website.

4 Dataset description
The complete dataset and accompanying software can
be accessed through the website: www.uma.es/robotics-
and-mechatronics/sar-datasets. This section describes the
structure of the dataset, the data formats and the software
tools for parsing and selecting data.

4.1 Dataset structure
The dataset has been divided into seven compressed files,
each of which contains all raw data formats (i.e., human-
readable text data and jpg images) for the corresponding
run. Additionally, for each sequence we have provided the
original rosbag files for the convenience of ROS-based
software users. A map representation of the runs is shown
in Figure 5. A preview of the RGB images as video stream
format is also provided in the dataset website for each run.
General information about the sequences is summarized in
Table 4, including the sequence ID, the travelled distance, the
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Table 5. Naming convention and human readable data format for the files in each sequence.
File name Data Format
image_{rgb/the}/
image_{rgb/the}-<timestamp>.jpg

RGB/Thermal images from the Ocu-
lus TI camera.

704× 576 px JPG images with quality factor of
95 out of 100.

velodyne_points/
velodyne_points-<timestamp>.bin

Point cloud data from the Velodyne
HDL-32. There is one 360° frame per
file.

N × 4 floating point matrix with N lidar
points. Each column corresponds to x/y/z (m)
coordinates and reflectance (from 0 to 255) for
each point.

imu/
data.txt

IMU data as text. There is one
message per line.

Each line is structured as: timestamp (s),
roll/pitch/yaw (rad), x/y/z angular velocities
(rad/s), x/y/z linear accelerations (m/s2).

gps_{user/rtk}/
data.txt

Standalone/RTK GPS data with stan-
dard NMEA messages.

Each line contains the timestamps and GPGGA
and GPRMC standard messages, providing
positional information, ground velocity, satellite
status.

<year>-<month>-<day>-<hour>-<minute>-<second>

image_rgb

image_the

velodyne_points

imu

image_rgb-<timestamp>.jpg

image_the-<timestamp>.jpg

velodyne_points-<timestamp>.bin

data.txt

gps_user

data.txt

gps_rtk

data.txt

Figure 6. Data structure for each compressed file.
Placeholders (<>) indicate variable data.

duration, maximum and minimum altitude, the percentage
of fix RTK messages, the averaged number of satellites,
the maximum and averaged horizontal speed considering
only speeds over 0.2 km/h, and the temperature records by
the Spanish Meteorological Agency. The table also presents
actual UTC starting time given by the GPS, which does
not necessarily coincide with the PC system time used
consistently in all dataset timestamps.

4.2 Raw data formats
The raw data structure aims to enhance human readability
and indexing. Figure 6 shows the folder and file structure
for a sequence. The root folder is tagged with the
sequence ID, which indicates the recording date and a
timestamp indicating starting time using the computer
internal clock. Then, the data from each sensor is in
a separate sub-folder. Image and lidar data are stored
in multiple files with the following naming convention:
<device>-<timestamp>.<file extension>. In
contrast, IMU and GPS data are stored in single data.txt
files, where each log is in a separate line starting with the
timestamp and followed by the sensor reading.

The naming convention and a description for each sensor
data is given in Table 5. The RGB and thermal images
have been extracted in jpg format from the compressed

images available in the rosbag files. Figure 7 shows image
sample pairs from both cameras. As for the lidar frames,
the timestamp in the file name indicates the moment of the
first data point in the scan. The file stores the N valid range
measurements of the frame packed into a binary file (.bin),
which is common practice in lidar datasets (Maddern et al.
2017). Extraction of human readable data is straightforward
with Python and Matlab code examples provided in a readme
file. A sample point cloud from the Velodyne HDL-32 in
2019 is shown in Figure 8 along with the corresponding RGB
and TIR images.

4.3 Rosbags
Apart from the raw data, we provide a rosbag for each
sequence, which corresponds to the ROS standard messages
obtained originally in the corresponding data collection run.
The types of messages included in the .bag files are as
follows:

• sensor_msgs/CompressedImag. RGB and TIR
images from the Oculus-TI camera unit.

• sensor_msgs/PointCloud2. 3D point cloud from
the Velodyne HDL-32.

• sensor_msgs/Imu. Raw IMU measurements from the
3DM-GX2 and 3DM-GX5-25 devices.

• gps_common/GPSFix. Additionally to longitude-
latitude-altitude data, these messages include information
of horizontal dilution of precision (HDOP), speed over the
ground, track angle, time and number of satellites used.

• novatel_gps_msgs/Gpgga. NMEA GGA message
from JAVAD User and RTK GPS recievers.

• novatel_gps_msgs/Gprmc. NMEA RMC message
from JAVAD User and RTK GPS recievers.

4.4 Software tools
Two software tools for raw data sequence extraction and
rosbag extraction, respectively, have been developed for the
dataset. The tools allow adjusting the data to the preference
and workflow of each user (e.g. allowing to reuse data loader
scripts). The code with examples and detailed information
about its usage is linked in the dataset website.
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Figure 7. Four image pair samples from the RGB and TIR cameras. Left: 2018; right: 2019.

Figure 8. Multimodal data sample. Top: Point cloud from the Velodyne HDL-32 lidar. The color bar indicates reflectance. Bottom:
Corresponding RGB and TIR images.

4.4.1 Sequence extraction. This tool has been developed
for splitting the raw data sequences and selecting designated
data sources. The software, developed using Python, uses
a file specifying the sub-sequences to be extracted as the
starting and the ending timestamps. This allows separating
data for a specific purpose (e.g. only scenes with movement,
or scenes with a particular object type, as people or
cars), making it possible that the community of users can
interchange or offer new splits using different criteria.

4.4.2 Rosbag extraction The rosbag extraction tool is a
ROS package written in C++11 that includes the nodes
used to extract the data from the rosbag files to raw data.

The nodes were designed considering the easiness in their
modification.

4.5 Disaster robotics data categories
The proposed dataset was captured from a manned vehicle
emulating the path and sensor arrangement of a robotic UGV
in fieldwork disaster exercises. This section relates the data
offered in the UMA-SAR dataset with the data categories
proposed by Murphy (2014) for data collection during
fieldwork performance of disaster robots. In particular, six
categories are defined:

1. Log of activity. The dataset website includes a text
log file with the major events of each data capture
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sequence with indications of time and traversed areas
(as defined in Fig. 2). Besides, the GPS coordinates for
each path are represented in Fig. 5, and corresponding
operational and weather details are given in Table 4.
Failures and bottlenecks are discussed in Section 5.

2. Context. Photographs in Fig. 1 provide context
information. Section 3.1 describes the context of the
fieldwork.

3. Robot’s eye-view. A full video of the forward-looking
RGB camera is provided for each sequence in the
dataset website.

4. Robot’s state. A detailed description of equipment,
software, and collected data formats is given in Section
4, including two GPS receivers and IMU for vehicle
localization.

5. External view. Some external video and photographs
of the vehicle during the data capture missions are
available in the dataset website.

6. Human-robot interaction. The vehicle was driven
manually by a human operator.

5 Discussion
We believe that this dataset can be valuable for researchers
working on different aspects of ground-based disaster
robotics. Firstly, in order to solve a critical problem such
as precise pose estimation, visual-inertial based odometry
provides an accurate location with a very small drift. But
SLAM still outperforms visual-inertial navigation in the
study of sensor fusion in more challenging situations and
the understanding of the environment topology thanks to
loop-closure (or place recognition) (Cadena et al. 2016).
In addition, SLAM can be useful for obtaining a global
consistent map of the disaster site and ensuring a full
coverage in an exploration task. In Liu et al. (2018)
and Dubé et al. (2020) 3D lidar based SLAM methods
on natural terrains and semi-unstructured environments are
addressed, respectively, but not in collapsed, cluttered and
unstructured outdoor environments where assumptions such
as segments and planes are not valid. Recent works on large-
scale and real-time visual SLAM show high quality maps
and loop-closing in outdoor urban environments (Lynen
et al. 2020) (Tanner et al. 2020), where GPS and 3D
lidar are used as ground truth. Moreover, works in urban
environments using vision, semantic mapping (Cadena et al.
2016) and including TIR images (Shin and Kim 2019)
offer promising techniques for potential SLAM applications
in disaster robotics. Nevertheless, semantic segmentation
is a recent research area whose attention is currently
focused on indoor (Milioto and Stachniss 2019) and urban
environments (Zhang et al. 2018), but could be an interesting
tool for disaster scenarios (Jeon et al. 2020). Throughout
the UMA-SAR dataset, a wide range of representative SAR
related object categories are present in overlapped RGB
and TIR images. These images offer the opportunity to
develop and train new machine learning models (Zhao
et al. 2019) for scene understanding in SAR scenarios,
where combining visible and thermal spectra allows the

detection in hard visibility conditions (Bañuls et al. 2020).
Among these representative categories, the localization of
victims in a disaster site in life-critical SAR activities are
highly important (Delmerico et al. 2019). This search of
potential victims can be performed using multi-spectral
images (Petříček et al. 2019) and including human body
parts discovery (Oliveira et al. 2018). The aforementioned
research topics are aimed at the disaster site recognition
and mapping, where the location of first-response staff (and
more information such as emergency vehicles, civilians,
rubble mounds, tents and victims) is relevant for situational
awareness, not only useful for robotic systems, but also
for coordination personnel in charge of SAR missions. In
fact, disaster robot applications that could benefit from novel
intelligent solutions do not only include reconnaissance and
mapping and search for survivors but also missions such as
logistics, first medical assistance, casualty evacuation, and
support for cooperative perception (Murphy 2014).

Nevertheless, the uniqueness of data collection in large-
scale drills imposes error-prone conditions and severely
limits the opportunities for solving technical problems on site
(Leingartner et al. 2016). Thus, although useful, the dataset
is affected by several issues. For instance, RGB images
reflect vehicle vibrations and sudden turning motions, with
occasional blurring that can be correlated with the IMU data.
Moreover, the sensibility of the sensor suite to vibrations can
also explain other imaging issues. Thus, in the 2019 TIR
images, we detected band noise caused by wiring problems
and high-amplitude vibrations. As for the RGB images, an
internal mechanical deviation of the camera resulted on a
small black portion of the casing’s round window visible
on the right corners of the June 1, 2018 images, as shown
in Figure 7 (left). Besides, the same images show a printed
text message in the right bottom corner. In addition, a
general limitation of the RGB images is that we did not
use a high definition camera. Initially, we were interested
in using our standard definition Oculus device because it
provides comparable RGB and TIR images, but also, we
preferred not to release images where the identity of the
responders (which included military units and other public
security organizations) was clearly recognizable. A further
limitation of the dataset has to do with RTK differential
corrections. In 2018, corrections were not available due
to interference affecting the UHF link to our base station,
which could be explained by the concurrent use of the
radio band by all participating organizations. As a result,
both GPS receptors worked in standalone mode, so the
dataset offers two redundant measurements with one-meter
accuracy. In 2019, we coped with this problem by using
a public positioning geodesic NTRIP server trough a 4G
link, with only occasional losses of differential corrections
that caused jumps in the information provided by the
RTK GPS receiver. Deficient communications and GPS
limitations are common problems faced by disaster robotics,
so the multimodal measurements offered in the dataset may
contribute to improve the robustness of localization and
scene understanding in harsh SAR environments.
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6 Summary
Our goal with this work was the public release of a
multimodal dataset that can be useful for other researchers
to test and improve their methods and algorithms. Thus,
the robotics community can also profit from the exceptional
opportunity to capture data from full-scale outdoor training
exercises organized within our institution (UMA) for actual
emergency response teams.

The dataset was recorded from a manned all-terrain
vehicle equipped with a RGB camera, a thermal infrared
camera (TIR) and a Velodyne HDL-32 3D lidar, as well as an
inertial measurement unit (IMU) and two global positioning
system (GPS) receivers as ground truth. The measurements
capture unstructured terrain with rubble as well as a wide
range of SAR-related object categories. Besides, overlapping
TIR and RGB images can be suitable for machine learning
and multi-spectral data fusion. Four data sequences, two
from 2018 and two from 2019, were recorded during the
exercises, with a total path length around 5.2 km and a total
time around 77min. Additional sequences from the empty
site provide an extra path length around 4.9 km and 46min.

The main aspects of the proposed dataset with respect to
the review of previously published repositories from SAR
ground-vehicles are following: i) It combines overlapping
and synchronized RGB, thermal, and 3D lidar data
modalities; ii) it has been conceived for cross-cutting
robotics research areas including both SLAM and machine
learning for scene understanding; and iii) it captures
numerous instances of human subjects, objects and actions
from the SAR domain.

The data is publicly available in human-readable raw
format together with the original rosbag files. Besides,
calibration data and software tools are also included. Since
the UMA disaster exercises are conducted annually, our
intention is to incorporate new datasets to our public
repository in the future.
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