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© Introduction

Compact Approximate Taylor methods for hyperbolic systems



@ The ingredients of high-order Lax-Wendroff-type methods for linear
systems are:
o Taylor expansions to advance in time;
e time derivatives are transformed into spatial derivatives using the equation;

o centered numerical differentiation formulas are used to approximate spatial
derivatives.
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Background

@ The ingredients of high-order Lax-Wendroff-type methods for linear
systems are:
o Taylor expansions to advance in time;
e time derivatives are transformed into spatial derivatives using the equation;

o centered numerical differentiation formulas are used to approximate spatial
derivatives.

@ The main difficulty to extend them to nonlinear systems of conservation
laws is the transformation of time derivatives in spatial derivatives. Some
strategies:

o Cauchy-Kovalevskaya (CK) procedure: Qiu and Shu (2003) ...
o Generalized Riemann problems: ADER methods: Titarev and Toro (2002)

o Local time-space problems:
o ADER-WENO methods C. Enaux, M. Dumbser and E.F. Toro (2008). ..
@ PnPy methods: M. Dumbser, D. Balsara, E.F. Toro and C.D. Munz (2008) ...

o Approximate Taylor (AT) method: LAT method Zorio, Baeza and Mulet
(2017)...
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The goals of this work are the following:

@ To develop a family of high-order numerical methods for nonlinear systems
of conservation laws based on approximate Taylor AT procedures that
constitute a proper generalization of Lax-Wendroff methods, i.e. that
reduce to the standard high-order Lax-Wendroff methods when the flux is
linear.
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The goals of this work are the following:

@ To develop a family of high-order numerical methods for nonlinear systems
of conservation laws based on approximate Taylor AT procedures that
constitute a proper generalization of Lax-Wendroff methods, i.e. that
reduce to the standard high-order Lax-Wendroff methods when the flux is
linear.

@ To combine this new AT procedure with shock-capturing techniques to
cure the spurious oscillations generated close to discontinuities by the AT
methods.
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The goals of this work are the following:

@ To develop a family of high-order numerical methods for nonlinear systems
of conservation laws based on approximate Taylor AT procedures that
constitute a proper generalization of Lax-Wendroff methods, i.e. that

reduce to the standard high-order Lax-Wendroff methods when the flux is
linear.

@ To combine this new AT procedure with shock-capturing techniques to

cure the spurious oscillations generated close to discontinuities by the AT
methods.

© To extend the methods to system of balance laws to obtain high-order
well-balanced numerical methods.
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The goals of this work are the following:

@ To develop a family of high-order numerical methods for nonlinear systems
of conservation laws based on approximate Taylor AT procedures that
constitute a proper generalization of Lax-Wendroff methods, i.e. that

reduce to the standard high-order Lax-Wendroff methods when the flux is
linear.

@ To combine this new AT procedure with shock-capturing techniques to

cure the spurious oscillations generated close to discontinuities by the AT
methods.

© To extend the methods to system of balance laws to obtain high-order
well-balanced numerical methods.

Conjoint work with H. Carrillo, G. Russo, E. Macca, D. Zorio.
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© Lax-Wendroff methods for linear problems
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The second-order Lax-Wendroff Method

In 1960 P.D. Lax and B. Wendroff proposed a numerical technique for solving
approximately systems of hyperbolic conservation laws: the explicit
second-order Lax-Wendroff method.

Let us consider the scalar linear transport equation

ur + aux = 0,

where a is constant. The derivation of the method is based on the
second-degree Taylor expansion:

At?

u(xi, t™) = u(x;, t") + Atdeu(xi, t") + Tafu(x,-7 t")y + o(At?). (1)
Then, assuming that the solution is smooth, one can replace time derivatives
by spatial derivatives using the equation:

deu(x, t) = —adeu(x, t), diu(x,t) = a°diu(x, t).

Finally, the spatial derivatives are approximated by centered 3-point formulas of
numerical differentiation:
1
Oxu(xi, ty) = E(U(XHh t) — u(xi—1, t)),
1
Ax?
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Ofu(xi, tn) = (u(Xit1, tn) — 2u(xi, ta) + u(Xi-1, tn))



The second-order Lax-Wendroff Method

what leads to the Lax-Wendroff LW method:

L e alAt At

u;j i E(U:{LA —uq)+ m(ufﬂ —2u! 4 u4). (2)

A uniform mesh with nodes {x;} and step Ax is considered. As usual, v/
represents the approximation of the the solution at x; at time t” = nAt, where
At is the time step.

The method can be written in conservative form:

n+1 — " At

i T AL Fi - Fi— ) 3
u} uj Ax( 1/2 1/2) (3)
where )
a, . n a“At, , n
Fit12 = > (uf + uiyr) — E(UH—I —ui). (4)

The scheme is second-order accurate and L? stable under the CFL condition

aAt

<1 = —.
<1, o=
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Extension to high order: linear case

The method can be easily extended to high-order: the m-degree Taylor
expansion is first considered.

t™) = u(x;, t") + Z —8ku(x,-, t") + O(At™). (5)

u(xi,
Time derivatives are replaced by space derivatives then through the identities

Ofu=(—1ka"0fu, k=1,2... (6)
Finally, centered (2p + 1)-point numerical differentiation formulas are used to
approximate the spatial derivatives:

1)k k P
ui ™t = ol + Z Z 6PJ uij, (7)
j==p
where:
@ p, m are natural numbers;
e c = aAt/Ax;

° 6;"1 are the coefficients of the (2p + 1)-point centered interpolatory
formula of numerical differentiation

F9(x) = DEA(F, Bx) = £ AL (8)

j==p
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Extension to high order: linear case

The resulting numerical method can be written in conservative form. To do so,
a new family of (2p)-point formula of numerical differentiation:

F(x + qAx) = ALI(f, Ax) A— Z Vo (xi15), (9)

Jj=—p+1

has to be introduced. Ak’q(f Ax) is the numerical differentiation formula that
approximates the k-th derlvatlve at the point x; + gAx using the values of the
function at the 2p points Xj—p41, . - . , Xitp-

Observe that the coefficients, like in (8), do not depend on i. FoIIowing
Fornberg, (1998) iterative formulas to compute the coefficients s ; have been
derived.

Given a variable w, the following notation will be used:

k _
Dy i(wi, Ax) = Axk E :6PJW’+J7
j==p
1 P
k,q _ 2: kq,
Ap,i(W*’AX) T Axk Vp.j Witis
j=—p+1

to indicate that the formulas are applied to the approximations of w, w;, and
not to its exact point values w(x;).
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Extension to high order: linear case

ARTR(F, D) = ARIA(F, )

p,i

The equality:
Di(F Aax) = 4

holds.

Xiv172
@ — e
Xiep

X172
Xip Xipe1 Xiq Xi Xiv1 Xisp-1
Xiv12
o— — @ ———— @ — — @ —@
Xipr1 Xi1 Xt Xie1 Xisp-1 Xisp
X172
oo — @ @ —-
7 Xipr1 Xy Xi Xpe1 Xivp-1
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Extension to high order: linear case

This equality allows us to write the numerical method (7) in conservative form:

n At
u ™t =l + Ax (F, 12~ Fil-)%—l/2> ) (10)
with,
2p kA pk—1
_1a At k—1, n
F:i1/2 Z(_l)k ' Kl Ap,il 1/2(‘1*7 Ax). (11)
k=1 ’

Example: for p = 2, the fourth-order numerical flux is:

22
a n n n At n n n n
Fi2+1/2 = E(*Uiq + 70l +Tuly — ul2) + e LYVN® (—uiy + 1507 — 15uiy + uj2)
3 2 4
At , At3

n n n n n n
—uf — Ui+ ulyp) + 3ui 4 3uiyy — uiya),

F1anxe (U 2880 U1
The accuracy and stability of these methods have been studied in Carrillo and
CP (2019) [1]: the numerical method is of order m in time and 2p in space. If
m = 2p, the numerical method has order of accuracy 2p and it is L>-stable
under the CFL condition |c| < 1.
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© Extension to nonlinear problems: second-order methods
o CK procedure
@ Approximate Taylor methods
o Compact Approximate Taylor methods
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Extension of LW to nonlinear systems: the CK procedure

Let us consider first the one-dimensional scalar conservation law:
u: + f(u)x =0. (12)

As in the linear case, the second-degree Taylor expansion is first considered:
nt1 At® 3
u(xi, t"7) = ui + Atdeu(xi, tn) + Tat u(xi, ta) + O(At?). (13)

In the CK procedure, time derivatives are transformed in space derivatives using
the equation as follows:

Oy = —f(u)x
Ru = ' (u)f(u)x.

Numerical differentiation formulas are then applied to discretize the space
derivative. For instance, in [8], Qiu and Shu (2003) WENO reconstructions are
used to compute the first order derivative and centered formulas for the second
one.

When applied to derive higher order methods, specially for systems of
conservation laws, this procedure may require symbolic calculus. Moreover, the
number of terms in the expression of the derivatives and the stencil increases
with the order.
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Extension of LW to nonlinear systems: Approximate Taylor method

In [9], Zorio, Mulet and Baeza (2017) introduced a technique that avoids the
CK procedure, in which time derivatives are transformed in space derivatives
using the equalities:

Oy = —f(u)x,
Otu = —08.0:f(u).

The Algorithm is as follows: once the approximations {uj'} at time t" have
been computed

o Define £ = £" = ( "), v; £ ~ F(u(xi, ta))

I

£ — £0)
Compute ufl) = —'Hi', vi. o = 0u(x, t,)

o Compute " = f (uf + At uf ) Vi, £ f(u(x, tY))

4G
Compute £"' = ( — At ),v,'. £~ Fu(x, 1))
n+1

o
o Compute £ = i Vi, £ & 8. (u)(xi, ta)
2At ! ’
2 f'(li - f'(l)1 2
e Compute uf ) = —'+2T'_, Vi. uf ) ~ D2u(xi, ta)
2
o Update: uf"H) =u + Atu )+ ATt (2), Vi.

C. Parés Compact Approximate Taylor methods for hyperbolic systems



Extension to nonlinear systems: Approximate Taylor method

In Zorio, Mulet and Baeza (2017) [9] WENO reconstructions are used to
compute ﬂfl) like in Qui-Shu method to cure oscillations.

Observe that Taylor expansions are used to approximate f(u(x;, t"™")) and
f(u(x;, t""')). Once these approximations have been computed, the
centered 3-point formula of numerical differentiation is used to
approximate the time derivative of f(u).

It would be possible to use f(u/~") as an approximation of f(u(x;, t"')),
but then the method would be multistep in time.

This method is is not a generalization of LW (5): if f(u) = au, it can be
easily checked that the method writes as follows
c c?
u ™t = uf - E(UFH —ui ) + g(uﬁz —2u] + ui_p). (14)

This method uses 5-point stencils instead of 3-point ones and the stability
properties are worse.
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Extension to nonlinear systems: CAT2 method

In [1], Carrillo and CP (2019) introduced a variant that reduces LW when
applied to the linear flux f(u) = au. The idea is as follows: the second-order
Approximate Taylor method writes as follows:

0 0 1 1
un+1 — un _ At I(ﬁ»z — fl(f)l _ At2 fl(+i B f;(f)l )
! ' 2A 2 2Ax

This method can be written in conservation form with numerical flux
1 At
Fisie =3 (fi(O) + fl(ﬂ) T (fi(l) + fl(ﬁ) :

The idea in CAT method is to compute this numerical flux using only the
numerical approximations v/, uj';; what ensures that the stencil consists of the
three nodes: xj_1, Xi, Xit+1.

To do so, local approximations
F1S) ~ O (u) (i, t), £ & Of () (Xi1, tn),
will be computed. They are local in the sense that, in general

1 1
£ # £,
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Extension to nonlinear systems: CAT2 methods

The Algorithm is as follows: once {u'}, have been computed

o For all i:
o Define £ = 1, = f(ul\}), j=12. £ ~ F(u(xiy, ta))
) 10— 1
o Compute u( ) = ’Ai", j=1,2. “:(.j) ~ Oru(Xjyj, tn)

1 .
o Compute f&“ —f <u,."+j + Atu,{}) R R C I
fn+1 _fn

o Compute f}) = It j=12 £~ 00 (u)(xis) 1)

o Compute
Fl _ 1 f(0)+f(0) +E f(1)+f(1) _ 1 £l fn 4 gntl g gl
i+1/2 = 5 \ip i1 2 \'io i1) T g \loTlinTlig i1 )

. n n At
o For all i compute u™™* = u — Ax (F,+1/2 - Fi1—1/2) .

It is second-order accurate and it reduces to LW when f(u) = au. Therefore, it
is linearly L2-stable under the usual CFL condition.
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Extension to nonlinear systems: CAT2 method

10+ 10+l
fi hii

B 4

33

time i

space

C. Parés Compact Approximate Taylor methods for hyperbolic systems



e Compact Approximate Taylor Methods: algorithm and extensions
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Compact Approximate Taylor Methods: CAT2p method

The numerical flux Fiil/2 of the CAT2p method will be computed using only
the approximations
Uinfp+17 LR uin+p7 (15)

so that the values used to update u/*! are only those of the centered

(2p + 1)-point stencil, like in the linear case.

The symbol * will be used to indicate the index with respect to which the
differentiation is taken. For instance:

Ou(xi + gAx, t,) ~ Ak’q(u*, Ax) Z 7p,1 Ul

J——p+1

k - k, N n+r
Ot u(xi, tn + gAt) ~ Apﬁ(u,,At Atk Z ,qu ’

r=—p+1
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Compact Approximate Taylor Method: CAT2p method

Once the approximations {u]'} have been computed:

o For all i:
o Compute fi(?) = f(uf’+j)7 j=-p+1,...,

o For k=2...2p:

o Compute
w0 = AN Ax).
o Compute
fr b = < o7y ,J> . dr=—p+l....p
o Compute
A7) = AP AL, j=—p+ 1. p
o Compute
2 Atk 01/2 #(k—1)
P
Fl+l/2 Z k! (f;,* AX)
k=1 )
@ Update
n+l _ n At P P
b = A (Fi+l/2 —F1p)-
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Compact Approximate Taylor Method: properties

In Carrillo and CP (2019) [1] the following result has been proved:

For every p, CAT2p is 2p-order accurate and it reduces to the 2p-order
Lax-Wendroff scheme (5) when f(u) = au.

@ The extension of LAT methods to order 2p uses (4p + 1)-stencil and has
worse stability properties than CAT.

o Every time iteration of CAT is costly that LAT due to the local
approximations. Nevertheless, this extra cost may be compensanted by the
fact that larger time steps can be chosen.
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Compact Approximate Taylor Method: numerical examples

Let us consider the scalar transport equation u; + ux = 0, in the spatial interval
[0, 1], the initial condition

1 0<x<2/10,
u(x,00=1¢ 2 2/10 < x < 7/10, (16)
1 7/10< x <1,

periodic boundary conditions, a uniform mesh with N = 80 points, CFL = 0.9
and t = 1. The CAT method (that, in this case, coincides with the
Lax-Wendroff method) is applied for p=1,...,5.
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Compact Approximate Taylor Method: numerical examples

Let us consider now Burgers equation

2
et (UE)x:O

with the same initial condition and periodic boundary conditions.

CAT2p, p =1,2,3,4 are applied to the problem using a grid of 80-point mesh
and t = 1.2s. The numerical solutions that are oscillatory but remain stable for
CFL values that decrease with the other CFL=0.8,0.4,0.2,0.1.

()
ufxt)
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Extension to systems of balance laws: CAT2p methods

ACAT methods have been extended to systems of balance laws
ue + f(u)x = S(u)Hx, (17)
where H is a known function.

The strategy is to rewrite the systems as
us + F(u)x =0,

with the 'augmented flux’
F(u(x,t)) = f(u(x,t)) — /j S(u(s, t))Hx(s) ds

and apply ACAT methods to this reformulation.
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Extension to system of balance laws: CAT2 method

The Algorithm is as follows: once {u]'}, have been computed

o For all i:
o Define flg)) = f:Z = f(”in+j)v j=1,2.
o Compute
) f(?) _ f-(g) 1
u) = T + 5 (S Hx(xi) + S(ufi)Hx(xia1)) - J = 1,2

o Compute ﬁ".“ = f< -+ At u; U) , j=1,2.
1
4

o Compute F+1/2 — (f; )+ fn + f-n+1 n f,HH).

e For all i:
o Compute:
1. Ax n 1,n+1 n 1,n+1
Stoi= S (S + SRV He(xima) + (S(uf) + S(ul Y ) He(x)

H(S(P) + S(ly ) () + (S(ufhy) + S(u ) Hu41) )

At
o Update ui™! = uf — Ax (Fil+1/2 —Flip+ 5/1) .
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Well-balanced extension to systems of balance laws: WBCAT2p

Well-balanced versions have been also implemented. The idea is as follows: if

*

u™ is a stationary solution of the problem, i.e
F(u™) = S(u™)Hx,

such that u*(x) = u(x, t) then, at (x, t) the equation can be equivalently
rewritten as _

ur + F(U)X = Oa
where

X

Fu(x, 1) = f(u(x, 1)) = f(u"(x)) - / (S(u(s; 1)) = S(u™(s))) Hx(s) ds.

— 00

ACAT methods are then applied to this formal conservative expression.
Observe that F(u(x,t)) =0 if u = u™.
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Well-balanced extension to systems of balance laws: WBCAT?2

For all i:
@ Compute the stationary solution u* that satisfies u(x;) = u’.

@ For j = 0,1 compute

), = = () = F(a) = (w7 (40)) + 77 ()

+5 (50 = S0 ) Helo) + (S(ufia) = S(F Gi )i )

o)y = = () — F(e0) — 7 () + 7 (1))
2 ((S(00) = (07 G- )i -1) + (S(6) = (6 ()
@ Compute
A iy aedd, o
up™l =+ At “,(1_)1;;,17 j=0,1.
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Well-balanced extension to systems of balance laws: WBCAT?2

@ Compute

Flivip = (f(u )+ F(ufyy) + FQul ) + Fun ™)
—2f(u} (x7)) = 2f(u (xi41)) ).

Flonys = g (PO + () + () + Al
~2f(u (x5-1)) — 2f (i (),

S} i= S ((S(0) + S(UETR) — 25(u (- 1) Hs(xi-1)
H(S(up) + S(ul) — 25 (uf (x)) Hx(x)
H(S(uf) + S(ujo™) — 25(uf (x))) Hel(xi)
H(S () + S(u) = 25(uf (x01)) Hx(xi11) )

At
1 1 1 1
® Update ™ = uf' — Ax (Fi,i+1/2 —Filiciet 5;) :
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e Shock-capturing techniques
@ WENO reconstructions
@ Flux limiters
o Adaptive Compact Approximate Taylor methods
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Shock-capturing techniques

Three different shock-capturing technique have been considered so far to cure
the oscillations close to discontinuities produced by CAT methods:

o WENO reconstructions: WENO-CAT methods.
@ Flux Limiters: FL-CAT2.

@ Adaptive compact approximate Taylor method: ACAT.
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WENO reconstructions: WENO-CAT methods

Following Zorio, Mulet and Baeza (2017), WENO reconstructions are used to
compute the first-order time derivatives

~(1) _ firjr12 — firj-1/2

Ui Ax d
where 1?,-+1/2 denotes the WENO reconstructions at x;,1/, of the flux function.

In Carrillo, CP, Zorio (2020) [3] CAT methods have been combined with
fast-optimal versions of WENO.

Although the results are good, these methods have two drawbacks:

@ while the order of CAT2p methods is even, that of WENO methods is
odd;

@ WENO method can spoil the good stability properties of CAT methods.
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Flux limiters: FL-CAT?2

Numerical flux: convex combination of the CAT2 numerical flux F,-1+1/2 and a

first order robust numerical flux F,-LH/2:

Fiiip=(1- 4)0}+1/2)Fil:¢—1/2 + @i1/2Fiv1y2s (18)
where ;1,2 is a standard flux limiter function: Minmod, Superbee, Van
Albada etc.
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Flux limiters: FL-CAT?2

Numerical flux: convex combination of the CAT2 numerical flux F,-1+1/2 and a

first order robust numerical flux F,-LH/2:

Fiiip=(1- 4)0}+1/2)Fil:¢—1/2 + @i1/2Fiv1y2s (18)
where ;1,2 is a standard flux limiter function: Minmod, Superbee, Van
Albada etc.

@ Order 1 —2.

@ Low computational cost.

o Diffusive near critical points.
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Adaptive Compact Approximate Taylor Method: ACAT

The Adaptive Compact Approximation Taylor ACAT methods, introduced by
Carrillo, Macca, CP, Russo, Zorio [2], are based on a combination of a robust
first-order scheme and the Compact Approximate Taylor methods of order 2p,
p=1,2 ..., P so that they are first-order accurate near discontinuities and
have order 2p in smooth regions, where (2p + 1) is the size of the biggest
stencil in which data are smooth according to the smoothness indicators.

The strategy to be followed here consists on selecting automatically the stencil
used to compute Fi 1/> so that its length is maximal among those for which
the solution is smooth.
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ACAT methods : numerical flux

More specifically, let us suppose that solutions {u'} at time t” have been
computed. The maximum length of the stencil to compute Fi 1,5 is set to, say,
2P, where P is a natural number. Then, the candidates stencils to compute
Fi+1/2 are
i+1/2
5’+1/ :{Xi—p+17-~~7xi+p}7 p:].,,P
In order to select the stencil, some smoothness indicators 1/1,“/2, p=1,...,P
are computed such that:
l+1/2

P 1 if {u]'} is 'smooth’ in S,
f ~ 1
i+1/2 { 0 otherwise. (19)

Define now:
A={pe{l,...,P} s.t. 1[1f’+1/2 ~1}.
The idea would be then to define:

Fﬁl/2 where p; = max(.A) otherwise;

where Fl‘jfl/2 is the numerical flux of CAT2p, and F+1/2 is a robust first-order

numerical flux.
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ACAT methods : numerical flux

Nevertheless, it is not possible to determine if the solution is smooth or not in

the stencil S{+1/2 where only two values uf, uf,; are available. Therefore, what
will be done in practice is to define:
A={pe{2,...,P}st. ¢y}, , =1} (20)
and then:
A ,'* 2 if A=0;
Fisre = F"tl/ where ps = A) otherwise; (21)
1o ps = max(.A) otherwise;

where F,; , is the numerical flux of the FL-CAT2
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ACAT methods: smoothness indicators ¥

i+1/2

Given the nodal approximations f; of a function f at the stencil S,, p > 2,
centered at X112, first define the lateral weights:

-1 p—1
b= > (forj— i) +e, hri=> (fiyy— i) +e  (22)
Jj=—p+1 j=1

where ¢ is a small quantity that is added to prevent the lateral weights to
vanish when the function is constant. Next, compute:

Ip,ilp,R
Iy = PP 23
i Io, + bR (23)
Finally, define the smoothness indicator of the stencil of S, by
W= (2 (24)
i+1/2 Ip +7p ’
where
Tp = (A?Ppilf) : (25)
Here, A% P+1f represents the undivided difference of {fi_p11,..., fip}.
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‘yp

ACAT methods: smoothness indicators Vi1

If data in the stencil S, are smooth, then

L= O0(AX%), lLr=0(AX"), 7,=0(Ax").
Since
111
b bt g
then I, = O(Ax?) and thus
A O(AX?)

P — —
H2 T 4+ 1, O(Ax?) 4+ O(Ax*)

is expected to be close to 1.
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ACAT methods: smoothness indicators ¥

’i+1/2

On the other hand, if there is an isolated discontinuity in the stencil (say, at the

left) then
7 = 0(1)
and
bi=0(1), I,r=O0(AX%)
Since

then I, = O(Ax?) and thus

B I 0(Ax?)

#1127 e T O(Ax?) + O0(1) 0

is expected to be close to 0.

A rigorous analysis has been performed. Special care has to be taken if there is
a critical point in the stencil.
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ACAT: numerical experiments. 1d problems. Scalar transport equation

Let us consider
ur+uy =0

with initial condition
uo(x) = 0.5sin(mx),

periodic boundary conditions, CFL = 0.9, 160 point mesh, x € [0,2] .

C. Parés Compact Approximate Taylor methods for hyperbolic systems



ACAT: numerical experiments. 1d problems. Scalar transport equati

05 o i
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Numerical solution at t = 4: general view (left-top); local order of accuracy for ACAT6 (sub-frame); consecutive zooms close to the local
maximum ( left-bottom, right-top and right-bottom)
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ACAT: numerical experiments. 1d problems. Scalar transport equati
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Numerical solution at t = 40: general view (left-top); local order of accuracy for ACAT6 (sub-frame); consecutive zooms close to the
local maximum ( left-bottom, right-top and right-bottom)
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ACAT: numerical experiments. 1d problems. Scalar transport equation

Let us consider
ur+uy=0

with initial condition

1 if 1/2<x<1
w(x) =< -1 if 1<x<3/2
0 otherwise,

periodic boundary conditions, CFL = 0.9, 160 point mesh, x € [0,2] .
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ACAT: numerical experiments. 1d problems. Scalar transport equat

! # LAXFRIED eeas 0 YA pass d)
+ ACAT2 " 80 » o
-9 il
0 v WENO3RKS sl S0 0l T °0 3
3 ) A ACAT4 . e
3 9 WENOSRKS 0 v ot V0
v
0 * ACAT6 ;0 N 0

 ——REFERENCE

Ri* 1/2

0

Numerical solutions at t = 2 (a) and t = 20 (b). Zoom of the numerical solutions at time t = 2 (c) and t = 20 (d). Sub-frames: local
order of accuracy for ACAT6.
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ACAT: numerical experiments. 1d problems. Burgers equation

Let us consider
2
us + 2) =o
t 2 ;

uo(x) = 0.5sin(mx),

with initial condition

periodic boundary conditions, CFL = 0.9, 160 point mesh, x € [0,2] .
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ACAT: numerical experiments. 1d problems. Burgers equat
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Numerical solutions obtained at times t = 0.25 (left-top), t = 0.5 (right-top), t = 1 (left-bottom), and t = 10 (right-bottom).
Sub-frames: local order of accuracy for ACAT6.
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ACAT: numerical experiments. 1d systems: Euler equations for gas

dynamics

We solve the 1d Euler equations for gas dynamics

u; + f(u)x =0,
with
p pu
u=| pu |, f(u)= p + pu? ,
E u(E + p)

where p is the density, u the velocity, E the total energy per unit volume, and p
the pressure. We assume an ideal gas with the equation of state,

p(p,e) = (v — 1)pe,

being ~ the ratio of specific heat capacities of the gas taken as 1.4 and e is the
internal energy per unit mass given by:

E = p(e +0.50%).
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ACAT: numerical experiments. 1d systems: Euler equations for gas

dynamics

We solve the Sod problem using inflow-outflow boundary conditions,
CFL = 0.8, 200 points mesh and x € [0, 1]

(pup) = (1LOD) if x <1/2,
P& PI = (0.125,0,0.1) if x > 1/2.
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ACAT: numerical experiments. 1d systems: Euler equations for gas

dynamics.

Zoom view, Density
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ACAT: numerical experiments. 1d systems: Euler equations for gas

dynamics.

Zoom view, Energy
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ACAT: numerical experiments. 2d systems: Euler equations for gas

dynamics.

We consider now the two-dimensional Euler equations of gas dynamics:

we + f(w)x +g(w)y, =0, (26)
where
p pu pv
w= | P = | P gw= | A
pv |’ puv ’ pv: +p
E u(E + p) v(E + p)

p is again the density; u, v are the components of the velocities in the x, y
directions respectively; E, the total energy per unit volume; and p, the
pressure. The equation of state

plo,u,v,E) = (v = 1) (E - 2(* + 7)), (27)

is assumed again where +y is the ratio of specific heat capacities of the gas.
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ACAT: numerical experiments. 2d systems: Euler equations for gas

dynamics. Lax problem No.6
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Comparison. Transport equation.

——WwaC2 ——WsCa

——WwaL3 ——WsL5

W3R3 WSR3
—a— FOW3C2 . —=— FOWsC4
-~ FOWSL3 " -~ FOWSLS5
FOW3R3 FOWSR3

——ACAT2 ——ACAT4

;
10

02 04 06 08 1 12 14 16 18 2 22 05 1 15 3 35 4

2 25
CPUtime GPU time
Linear transport equation: efficiency plot for WENO-CAT, WENO-LAT, WENO-RK, FOWENO-CAT, FOWENO-LAT, FOWENO-RK, and
ACAT solutions at t = 4 and CFL= 0.5. Second and third-order methods (left). Fourth and fifth-order methods (right).
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Comparlson Transport equat

Ermor

Linear transport equation: efficiency plot for WENO-CAT, WENO-LAT, WENO-RK, FOWENO-CAT, FOWENO-LAT, FOWENO-RK, and

102
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W3R3
—=—FOW3C2
—=— FOW3L3
FOW3R3
——ACAT2

5 08 1 12
CPU time

o0

Error
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——W5L5

W5R3

—=—FOW5C4

——FOWSL5

FOWSR3

——ACAT4

\\\

-

0z 04 05 08 4 16 18 2 22

112
CPUtime

ACAT solutions at t = 4 and CFL= 0.9. Second or third-order methods (left). Fourth and fifth-order methods (right).
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Com pa rison. Transport equation.

Some conclusions can be drawn:

o ACAT2 methods give the lowest errors for both CFL = 0.5 and 0.9,
although it is only a second-order method.

@ The error of all methods increase when CFL goes from 0.5 to 0.9, except
for ACAT2 and ACATA4.

@ For CFL = 0.5 ACAT2 is the most efficient method among those whose
order of accuracy is 2 or 3. FOWENOS5-LATS5 is the more efficient among
those whose order is 3 or 5 followed by ACAT4.

@ For CFL = 0.9 ACAT2 and ACAT4 are the most efficient methods.

o Efficient implementations of the methods in GPU architectures will be
done to properly compare them.
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Extension to systems of balance laws: numerical examples

Let us consider finally the 2D system of compressible Euler equations with a
gravitational potential

pt + (pu)x + (pv)y =0,

(pu)e + (pu® + p)x + (puv)y = —pHx,

(pv)e + (puv)x + (pv? + p)y = —pHy,

E: + (u(E + p))x + (V(E + p))y = —puHy — pvH,

(28)

with equation of state
_ 1 - 2
p=(r—1)(E—-Zp(s® + ),

and
1

V- D+ b

H(Xuy) =

ACAT2, ACAT4 are applied to the problem as well as their well-balanced
versions WBACAT?2, WBACAT4 that exactly preserve the family of isothermal
stationary solution is given by

P (x)=Ce "™ >0 p'(x)=Ge "MW1 >0, w=v=0 E'= P I

(W)
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Extension to systems of balance laws: numerical examples

The stationary solution of the family corresponding to G; = 1, (; = 0 is taken
as initial condition. A (21 x 21)-point mesh and CFL = 0.9 are considered and
the exact solution is imposed at all the sides through the ghost points.

2D ACAT4

Points o u v p E
20 3.87E-5 | 3.09E-3 | 9.84E-4 | 1.38E-4 | 1.84E-4
40 9.74E-6 | 1.48E-3 | 4.48E-4 | 5.78E-5 | 4.68E-5
80 2.42E-6 | 7.23E-4 | 2.12E-4 | 2.65E-5 | 1.12E-5
160 6.07E-7 | 3.57E-4 | 1.03E-4 | 9.97E-6 | 2.95E-6

Table: Errorsin L1 norm for ACAT4 at time ¢ = 0.3.

2D WBACAT4

Points p u v p E
20 3.77E-17 | 2.05E-17 | 2.11E-17 | 5.16E-17 | 2.06E-16
40 3.59E-17 | 1.86E-17 | 2.02E-17 | 4.43E-17 | 1.77E-16
80 3.33E-17 | 1.81E-17 | 1.92E-17 | 4.04E-17 | 1.61E-16
160 3.23E-17 | 1.76E-17 | 1.85E-17 | 4.00E-17 | 1.60E-16

Table: Errors in L1 norm for WBACAT4 at time ¢ = 0.3.
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Extension to systems of balance laws: numerical examples

The initial condition now represents a perturbation of the hydrostatic

stationary considered in the previous test case:

p(x,0) = e ) 4 0‘046_200(X_0‘8)2_200(y_0‘7)2; p(x,0) = e ™. u(x,0) = v(x,0) =
(30)

The figure shows the differences between the numerical solutions provided by
ACAT2, ACAT4, WBACAT?2, WBACAT4 and a reference solution.
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Extension to systems of balance laws: numerical examples
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