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This paper introduces what I believe to be a new technique for the analysis of 

a particular class of incentive schemes. The schemes I have in mind are systems 

where the constraints confronting a decision-maker vary from time to time according 

to a record of their past behaviour. These are often referred to as ‘experience rated’ 

schemes, and they are widely used, not only in labour markets, but also in insurance, 

legal systems, driver licensing, sports leagues and retail. Experience rating is, for 

instance, one of the main tools used by firms to create switching costs and encourage 

brand loyaltyTPF

2
FPT. The discussion in the present paper is restricted to a subset of 

experience-rated schemes. I call this the subset of redemptive schemes, because they 

have the property that whatever state of grace or disgrace the decision-maker may 

currently be in, it is always possible to exit it, and return to it given an appropriate 

pattern of behaviour. 

 

1. Redemptive and non-redemptive experience-rating  

The UK driving licence points scheme specifies that drivers who violate traffic 

laws can have points deducted from their licence, up to a maximum of 10. Once more 

than 10 points have been deducted, the licence is withdrawn for a prescribed period. 

Many kinds of violation are possible, and the number of points deducted varies 

 
TP

1
PT I have discussed the model in this paper on many occasions with Tim Barmby. Martin Dufwenberg 

suggested the connection with time consistency. Tony Lancaster pointed me towards the literature on 
serial correlation. Mike Nolan and Assad Jalali have been effectively dubious. The verandah of The 
Big Blue House in Tucson, Arizona is a very congenial place for doing algebra, even in July. Any 
remaining errors are, of course, my responsibility. 
TP

2
PT Klemperer(1995). Unfortunately, Fudenberg and Tirole (2000) have introduced the alternative phrase 

‘behavior-based’ to mean the same thing as experience-rated. 
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according to the nature of the violation. Points deductions are not permanent. The 

points are restored after three years have elapsed. The scheme is thus redemptive.  

Many US states now have an habitual offender law, commonly known as 

‘three strikes and you’re out’. Under these laws, those who are convicted of three 

felonies, are imprisoned for life automaticallyTPF

3
FPT. As far as I know, there is no 

limitation on the longevity of relevant convictions. The scheme is thus non-

redemptive. 

A third example, which is worked out in full below, concerns a snack-food 

packaging plant in Ashby-de-la-Zouch. Here, workers who take more than one spell 

of absence in a rolling 5-week period, are banned from eligibility for overtime for a 

period of 4 weeks following the end of the most recent spell. This is similar to the 

driving licence scheme in that 2 spells trigger a penalty, but spells are not counted 

once they are more than 5 weeks in the past. This is a redemptive scheme. 

Such schemes can be represented in mathematical form. Suppose drivers make 

a daily decision as to the recklessness of their driving, and that monitoring is 

imperfect. They can then be seen as controlling the probability that they are caught 

speeding. We may also suppose that their choice is conditioned by the consequences 

of a detected violation, so that a driver with 3 speeding convictions in the 3 years 

prior to date t (who could be fined £60 and whose licence can be withdrawn for a 

prescribed period), may make a different decision than that made by a driver with 

none (who could be fined £60 and have 3 points recorded on their licence). 

Furthermore, the decision may be conditioned by the length of time until the expiry of 

existing points, so that a driver with 3 points expiring tomorrow, may be more willing 

to risk being detected speeding than one with 3 points expiring in 2 years’ time.  

These elements of the decision problem can be used to define a set of states. In 

the driving licence example, they may be indexed by i) whether or not a driver has a 

licence; ii) in the event that the driver has a licence, the current number of points 

deducted ( { }0,3,6,9n = ), and the dates of their deduction; iii) in the event that the 

                                                 

TP

3
PT LA Times, October 28, 1995, p1: A homeless parolee convicted for breaking into a Santa Ana 

restaurant and stealing four cookies was sentenced to life in prison Friday after the judge said she had 
no choice under the state's "three strikes" law. Orange County Superior Court Judge Jean Rheinheimer 
acknowledged the three-strikes law was "a harsh one" but left her no alternative. Weber had previously 
been convicted of burglary and assault with a deadly weapon. 
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driver has had the licence withdrawn, the date of restoration. As time passes, the 

driver moves from state to state, with certain probabilities. Thus, a licensed driver 

who is in state ‘zero points’, could stay in this state, or with some probability transit to 

‘3 points with 3 years to run’TPF

4
FPT. The following day, this driver could transit either to ‘3 

points with 2 years, 364 days to run’ or to ‘6 points, 3 with 3 years, and 3 with 2 

years, 364 days to run’. 

There are, of course, many models that could be used to represent this 

structure: the degree of time aggregation is one key choice, since disaggregation can 

increase the number of states greatly. For practical purposes, using a daily model to 

analyse driving behaviour is probably neither sensible nor feasible. The main point 

here, though, is that the rules of the experience-rating can be used to construct a 

Markov matrix, describing the probabilities of transition from state to state. 

The three-strikes law can be similarly modelled. The resulting Markov matrix 

is much smaller, since there are only 4 possible states: strikes against ={ }0,1, 2,3 .  

The relative size of the matrices generated by these two schemes is 

unimportant in the present context. There is, however, a second difference between 

them. The Markov matrix representing the three-strikes law contains an absorbing 

state (3 strikes against), the other does not. This is the formal difference between 

redemptive and non-redemptive experience-rating. 

The rest of the paper assumes redemptive experience-rating. 

 

2. Likelihoods for data from experience-rated systems 

Experience-rating induces a dynamic programming problem that I assume 

agents solve to determine their optimal responses. The conventional approach to such 

problems is to suppose that each agent has a utility function and a discount rate. They 

look forward, assess the response of their environment, and their own responses to 

that response, and make a decision based on this knowledge. Thus, a car-driver 

knowing their own propensity for lack of care in speed control may drive more 

carefully after just three points have been lost, since they know that they have only 7 

points left to lose, where before they had 10. Care taken might increase if three, or six,  

more points are lost, and decrease again when the first three lost points are restored.  

                                                 
TP

4
PT Two or more violations on the same day are possible, too, but for simplicity’s sake we ignore this, as 

well as the complications introduced by leap years. 
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These considerations suggest that the transition probabilities are, at least 

partially, within the control of the agent. I write the Markov matrix with the 

probabilities in each row controlled by the agent by means of a single parameter, iσ . 

Iid random draws are taken each period from a distribution, ( )σΦ , with associated 

density, ( )φ σ . For example, in the absenteeism model analysed below, workers 

choose optimal reservation levels of morbidity which become higher as the threat of 

withdrawal of eligibility for overtime increases.   

The Markov matrix for such a problem, where each decision is binary, is a 

stochastic matrix is a vector with positive elements in rows r and 

s only, such that 

1

2  where i

K

C
C

C

C

 
 
 =
 
 
 

C

( ) ( )1is i ir ic c .σ σ= −  This matrix not only encodes the rules of the 

experience-rating, but with appropriate choice of the vector { } 1
 K

i i
σ

=
, it can also be 

used to describe the optimal behaviour of an agent making decisions within the 

scheme. 

Defining ( )0i ic σ as the contemporaneous utility received during a one-period 

occupancy of state i, and assuming that the decision-maker discounts future utility 

exponentially, the optimisation problem can now be stated as: 

 

{ } ( ) ( )01
1

Choose    to maximise  , 1,...
K

K
i i i i ik i ki

k
EV c c EV i Kσ σ δ σ

=
=

= + =∑  (1) 

 

The solution to this problem is described in Proposition I. 

UProposition I:U Let δ−A = I C , 1−B = A  with generic element b . Let  

denote the matrix X with its n’th column replaced by the vector y, and  denote 

the matrix X with its n’th row replaced by the vector y. Define 

ij

X

n y• =X

n y•=

, 1

K

i k=

ik

i

c
σ

 ∂
=  
 ∂

Ψ . Then 

for each n the optimal vector of reservation levels { } 1

K
i i

σ
=

 is the solution to: 
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( ) ( ){ } ( ) ( ) ( )
0 0

'1 1
1

01

10, 1, ' '
K

K
i i n c n ci

ni i ni

U U A diag A A
b

σ σ δ
φ σ

− −
• = • ==

• ==

         − = − Ψ                
 (2) 

  

UProof:U See Appendix I. 

Equation (2) looks formidable, but it has some nice properties: 

i) Time consistency. Strotz(1956) argues that exponential discounting is the  

unique discounting régime ensuring intertemporal consistency in decision-making, 

and so it appears here. Indeed, Strotz’s theorem could probably be seen as constituting 

a proof of Proposition 2. Nonetheless, it seems worthwhile to check by calculation, 

mainly because the states in our problem are revisited at random times.  

 
UProposition II:U For each i, ( ) ( )0, 1,i U iU σ σ− is independent of the choice of n, when 

exponential discounting is used. 

Proof: See Appendix II.   

 

ii) Generalisation to non-exponential discounting.  I do not know the full 

range of non-exponential discounting schemes that have been discussed in the 

literature. The leading alternative in current literature is the quasi-hyperbolic scheme 

introduced by Laibson(1997), which has the virtue of parsimoniousness, since it adds 

only one parameter over and above those involved in a model with exponential 

discounting. The model described above can be extended in a straightforward manner 

to take account of this generalisation. (See Appendix III) Presumably other non-

exponential schemes can also be accommodated.  

  

iii) Construction of the likelihood. The solutions to equations X(2)X (or their non-

exponential equivalents) specify the optimal policy to be followed during occupancy 

of each state. They can therefore generally be used to construct a likelihood for data 

representing the behaviour of individual decision-makers over time. The details of 

how this may be done probably vary with the particular applications being studied. An 

example follows. 
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3. Example: Absence Control in rural Leicestershire 

Models of the kind described in this paper require the use of two types of data 

for effective estimation. The first is the familiar type of data set consisting of a record 

of decision-makers’ behaviour under the experience-rated scheme. The second is the 

rules of the scheme. These two types of data are handled in different ways. The rules 

of the scheme are incorporated into the structure of the likelihood function, which can 

then be maximised using the record of behaviour.  

To make clear how this works, I present an example worked out in full. An 

employer in Leicestershire operates an experience-rated absence control system. 

Specifically, workers who take more than two spells of absence in a rolling five week 

period, will be ineligible for overtime during the four weeks following the end of the 

last spell.  

I now show how these rules can be used to derive the transition matrix C for 

this problem, assuming that daily data are available in the record of behaviour. In this 

framework, C is of order 86.TPF

5
FPT 

To begin, I construct a dynamic binary choice model of absence behaviour.    

Suppose utility takes the form ( ), |a bU U θ=  where a  is zero if the agent  

makes the first of two available choices and one if s/he makes the second; b  is the 

current realisation of a random shock, σ  and θ  is a vector of parameters. Under 

reasonably general conditions a reservation level of σ , σ , exists such that 

(0, | ) (1, | )U Uσ θ σ= θ . The agent’s decision rule is then: ‘ 0a =  if 
t

σ σ< ;  if 1=a

t
σ σ> ’. 

The σ  defined above is appropriate where there are no future consequences of 

today's decision. When experience-rating is present, however, there will be a future 

penalty with expected value . In this case the reservation value of 0Π > σ  must 

satisfy   

 (0, | ) (1, | )U Uσ θ σ θ= −Π  (3) 
 

                                                 
TP

5
PT I ignore weekend days, which are not worked in the plant from which our data are drawn. Strictly 

speaking, when I do this I should apply treble the discount rate to Mondays, but we have not got around 
to doing this yet, and I doubt if it makes much difference. 
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which implies U (0, | ) (1, | )Uσ θ σ< θ . It is simple to show that σ  is a monotonic 

increasing function of Π , so that the larger the future penalty, the greater σ  will be at 

the margin between attendance and absence. 

The reservation level is important in modelling behaviour because it 

determines, ceteris paribus, the probability that the agent makes choice 1, and can 

therefore be used to construct the likelihood function. If σ  has probability 

distribution ( )σΦ , the probability of an absence is ( )1 σ−Φ . Computation of ’s 

and 

Π

σ ’s is conceptually straightforward, but complex in practice. It is done by taking 

the derivatives of the relevant value function with respect to the vector of σ ’s, setting 

them equal to zero, and solving.  We now turn to that problem. 

The expected value of the optimal policy to an agent who is in state j can be 

written in the form of Equation (1) 

  (4) 0
1

, 1,..., .
K

j j jk k
k

EV c c EV j Kδ
=

= + =∑
 

Here,  is the contemporaneous utility of the optimal policy during the 

current period for a worker in state 

0 jc

j , while the summation is the discounted 

expected utility during the remainder of time. For , 1,...,j k K= ,  denotes the 

probability of transition from state 

jkc

j  to state k . Let  denote the vector 0c

{ }0 | 1,...,jc j = K  and C denote the transition matrix { }| ,jkc j 1,k = ..., K . The 

parameter δ  is a discount factor. The problem is solved for this version, which uses 

exponential discounting, using Proposition I, and can be reformulated for agents who 

use quasihyperbolic discounting and solved using Proposition III. 
To construct C, we use the rules of the scheme to determine a state space for 

the problem. States are distinguished by the number of absence spells a worker has 

had in the last 5 weeks (0, 1 or >1), by the number days that have elapsed since the 

most recent spell ended, and by behaviour on the previous day. Imagine a worker 

moving through time. He can either have no absence spells in the last five weeks (F 

for Free), one absence spell (S for one Strike against), or more than one (B for 

Banned). For workers who are in the S and B states, it is also important to keep track 

of the number of days that have elapsed since their last spell of absence. Thus we 

specify  to indicate the t’th working day since the end of a spell of , 1,..., 25tS t =
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absence attracting a single strike, and , 1,..., 20tB t =  to indicate the t’th working day 

since the end of a spell of absence attracting a ban. In addition, we need to keep track 

of whether the worker was absent the day before or not, in order to account correctly 

for spells. We do this with subscripts a and p.  We adopt the convention that while a 

worker is absent, he stays in the state he was in before the start of the current spell.  

aF

20
pB

S

 For example, a worker in state  has no absence in the previous five weeks 

other than the spell he is currently in. A worker in state , has a strike against due to 

an absence spell that ended 12 days ago, and is not currently experiencing an absence 

spell. Finally, a worker who is in state 

12
pS

, and who chooses to attend will transit to 

state S .  21
p

This would give 92 states, were it not for the fact that 4 of these states are 

impossible, and two pairs of states are indistinguishable ex ante. The states that are 

impossible are S S B . This is because the first day of a ban, or one-strike-

against, must be preceded by an absence; and the second day must be preceded by an 

attendance.  

1 2 1, ,  and p a p B2
a

 The labelling of the states with subscript a is a bit misleading, in a couple of 

cases because during an absence that started with the worker in the clear (for 

instance), it is not known at the start of each day whether the state should carry the 

label , or whether it should carry the label , since whether the day is a 

continuation of the current absence spell, or the start of a spell of one-strike-against 

depends on behaviour on that day. If the worker is absent on a day with this double 

label, then he continues in ; if he attends, he transits to .  Thus  and  should 

not be treated as separate states. For this reason, we use the dual label . Similar 

remarks apply to any of the other states subscripted a, and 

aF 1
a

aF 2
pS

1
a

aF 1
aS

1
aS/aF

B . 

 This apparently minor twist has important implications for the econometrics, 

since it implies that it is impossible always to characterise states on the basis of 

experience (or history) alone. Before one can tell on a particular day whether someone 

is at the beginning of a ban or not, it is necessary to know whether they are absent on 

that day. History cannot tell you this, since the ban only starts when a decision to 

attend is made. 
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 A list of states and possible transitions is given in Figure I below. Each row is 

labelled with the relevant transition matrix row numbers (in the first column of the 

Table) and transition matrix column numbers in columns 2 and 3.  

 
Call the generic value function 

 

 

( ) ( ){ }
( ) ( ){ }

( ) ( ) ( ) ( )

( ) ( )( )

1

2

1 2

1,

1,

1, 1,

0, |

0, |

0, 1,

1

O
t

O
t

DO O O
t t t t t t t

DO O
t t t t t t a

D DO O
t t p t t a

E p E U E

p E U E

U z z dz U z z dz

E E

σ

σ

σ σ σ σ σ δ

σ σ σ σ σ δ

φ φ

δ σ σ

+

+

∞

−∞

+ +

p
 = ≤ ≤ + 
 + > > + 

= +

 + Φ + −Φ 

∫ ∫
 (5) 

 

The first line of X(9)X represents the contemporaneous expected utility of being in State 

O (‘Origin’) for a single period. The second line is the discounted expected value of 

future optimal policy, where ( )O
tσΦ  and 1 ( )O

tσ−Φ

1D

 are the non-zero probabilities of 

transition into two possible destination states. (In this system, there are only two 

destination states for each origin state, one ( ) reached if the worker attends, the 

other ( ) reached if the worker is absent. Transitions into all other states have 

probability zero.) 

2D

Expressions for C,  and  can now be derived. The transition matrix is displayed 

in Figure II, where 

0c Ψ

( ) 1 ( )tp tp sσΦ ≡ −Φ ∀sσ s

dz

. Since for each origin state O,  

0 (0, ) ( ) (1, ) ( )
O
t

O
t

Oc U z z dz U z z
σ

σ

φ φ
∞

−∞

= +∫ ∫ , 

 ( ) ( ) ( )0 0, 1, , 1,...,k k kk
k

c U U kφ σ σ σ
σ
∂  = − ∂

K=  (6) 
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Since 0 ifjk
i

c
i

σ
∂

=
∂

j≠ , these derivatives can be arranged into matrix , the j’th 

row of which is 

Ψ

;jk
j

c
σ
∂

∂
1,...,k = K . Assuming the distribution of σ  to be rectangular, 

and with reference to Figure II, this matrixTPF

6
FPT is: 

  
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0

0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0

0 0 0

1 1 0
0 0

0 1 1
1 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1
1 0 0 0 1

0 0

0 0

−
−

−
−
−

−
−

Ψ =
−
−

−
−
−

0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 − 
 −
 

−   

 

 
                                                 

TP

6
PT The structure of Ψ  is related to that of C in a manner that is worth exploring, partly 

because it suggests ways in which computation might be made more efficient. The following is true for 
rectangular σ : Define the real vector, p, and the integer vectors, m and n: 
 

[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )

| 1, ; 0,1

| 1, ; 1,

| 1, ; 1, ;

i i

i i

i i i i

p i K p

m i K m K

n i K n K m n i

= ∈ ∈

= ∈ ∈

= ∈ ∈ ≠ ∀

p

m

n .

 

Now define C as: 

[ ]
 if 

| , 1, ; 1  if 
0 otherwise

i i

ij ij i i

p j m
c i j K c p j n
 =
 = ∈ = − = 
 
 

C


−

 

Let . Also define matrices M and N as:   and p= =P D Q I P

[ ]

[ ]

1 if 
| , 1, ;

0 otherwise

1 if 
| , 1, ;

0 otherwise

i
ij ij

i
ij ij

j m
m i j K m

j n
n i j K n

 =
= ∈ = 
 
 =

= ∈ = 
 

M

N




 

Then C = P  and Ψ . M +QN −= M N
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With the more general Beta distribution, the pattern of zeroes, positives and 

negatives is retained in this matrix. The non-zero elements are the slopes of the Beta 

density at each iσ . We now have all the expressions required to compute the utility 

differences using X(2)X or (6). 

Once these are obtained, they are used to solve a vector of equations (7) for 

optimal morbidity levels in each state. Once these are known, likelihoods of absence 

and attendance can be calculated. These can be used for two main purposes: 

evaluation of the incentive properties of the scheme, and construction of likelihood 

functions, enabling the investigation of worker responses to the scheme. This paper 

does not undertake to do the second of these in detail, but in the following section I 

report the results of an evaluation of the Ashby-de-la-Zouche peanut packers 

attendance incentive scheme. 

 

4. Evaluation of an attendance incentive scheme 

 The peanut factory attendance incentive scheme seems simple and reasonable. 

Two spells of absence in last 5 weeks attract an overtime ban of 4 weeks, beginning at 

the end of the second spell. It turns out, however, that this simple statement hides a 

multitude of complexities, some of which will be apparent to the reader who has 

followed me so far. Consider, for instance, the situation of a worker on the day after 

which a ban starts. For such a worker, the incentive to attend is weakened, because the 

marginal ban is close to zero. The presence of such perverse incentives in experience-

rated schemes is well-known, but I do not think has been consistently analysed before. 

A second issue that is often ignored in the design of experience-rated schemes is that 

any scheme will provide incentives not only for or against starting a spell of absence, 

but also for or against finishing one. The method developed above is able to shed light 

on both these issues, as we shall shortly see. 

 I present the evaluation in the form of diagrams, showing for the peanut 

factory scheme the probabilities of absence for an individual worker with a given Beta 

distribution of morbidity and discount rate, whose contract specifies given wage, 

overtime and sick pay rates for given basic hours and overtime hours. Such diagrams 

can, of course, be generated for any configuration of these parameters. The 

illustrations below were generated using the following: 
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Parameter Value 

Morbidity distribution: α  

                                    : β

0.6 

1.6 

Discount rate per day ( ρ ) 

(Discount factor (δ )) 

0.00007 

(0.99993)

Wage Rate 

Overtime Rate 

Sickpay Rate 

Total time available 

Basic Hours 

Overtime Hours 

200 

210 

100 

90 

35 

2 

 

The illustrations are based on two different representations of the attendance 

control scheme. In one, I have constructed a weekly representation of the rules, which 

reduces computation time significantly. The other uses the daily representation which 

leads to the transition matrix, C, described in an earlier section. Later versions of the 

paper will include more of the latter kind of analysis. 

The time-aggregated (weekly) version ignores the issue of current absence, 

and is probably close to the kind of thinking that is used when these schemes are 

devised. It has ten states: Clear, One spell of absence n weeks ago (n=1,...,5); Banned, 

with n weeks to go (n=4,...,1). Figure III shows the probabilities of absence generated 

by the model with the parameter values indicated in the Table above. These 

probabilities are, of course, conditional on the state occupied. The incentives are quite 

clearly described. Having one strike against (states 2 – 6) lowers absence immediately 

by about 1/6, and continues to lower it as the past absence recedes into the past. In 

state 6, the probability of absence is 2/3 of the probability in state 1. State 7 illustrates 

a perverse incentive. The absence jumps to about 3%, 20% higher than the 2.4% in 

state 1. This is because in State 7 the marginal ban drops to zero, so there is 

effectively no penalty. As the ban proceeds, the marginal ban rises again until the 

probability of absence in state 10 is much the same as in state 6. 

The plot in Figure IV shows the pattern of incentives for the more detailed 

daily model. The plot is generated in exactly the same way, using the same parameters 
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as before. The 86 states are plotted from left to right in the same order as they are 

listed in Figure I. State 1 is thus the clear state (present); state 2 is the clear state 

(absent). It is apparent from the plot that the incentives for attendance are quite 

different for these two states, since the state 2 absence rate is more than twice the state 

1. It is important to note that this is not because of any autocorrelation in the 

stochastic process underlying the model. In this simulation this is iid. The reason for 

the higher probability of absence among workers in state 2 is that if they attend, they 

will switch states to one strike against. Indeed, it is clear that there is a similar 

phenomenon among workers in states 3 – 49. These are states where the worker has 

one strike against, incurred at various times in the past. Those workers who are in an 

ongoing spell of absence have weaker incentives to attend than those who are not. 

This is because on return to work, they will incur a ban. In fact, as their strike against 

ages, their incentives get increasingly weaker, reaching a high of 7% in state 49. This 

is because an absence spell started in spell 49 is quite likely not to finish until after the 

existing strike against expires. By extending their absence spell until the current strike 

has expired, workers can avoid a ban and continue to work overtime with a new, 

fresher strike against them. The same remarks apply, with rather less force, to those 

workers who have a strike against, and who are not in an ongoing absence spell. 

Starting an absence spell is potentially less expensive for them, because a spell started 

now can extend into the future to the point where the current strike has expired.  

States 50 – 86 are banned states. The incentives to attend are once again 

stronger for workers who are not in an ongoing spell of absence. Towards the end of a 

ban, such workers are very keen not to start a new spell, because doing so would 

trigger a further ban of almost maximum length. 

Does time inconsistency matter in the provision of incentives? It appears from 

the present admittedly limited exercise that it does not much.  Figure V, which is in 10 

parts, shows the comparison of the 10-state weekly model for a worker who discounts 

quasihyperbolicly with { } { }, 0.99993,1.0δ β =  on the one hand and with 

{ } { }, 0.99993,0.1δ β =  on the other. The former discounting is equivalent to the time-

consistent exponential regime. The latter discounts the week immediately ahead at 10 

times the rate of other weeks. The comparison suggests that time-inconsistency 

changes optimal decisions, but not by a great deal. The biggest impact is consistently 
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on state 5, where the contrast between the prospects of being one strike against or 

banned is at its strongest.  

 

 

6. Conclusion 

This paper demonstrates the use of a model which enables the computation of 

optimal policies for economic agents who are subject to a redemptive experience-

rated incentive scheme. I have shown how these optimal policies may be used in 

evaluating the incentive properties of such schemes. They may also be used to 

construct likelihoods for data recording the behaviour of such agents. I have not had 

the opportunity to prepare any illustrations of this use for the model, but this is where 

the idea that such schemes generate a kind of generalised circular data come to the 

fore. In this conclusion, I discuss the econometric advantages that circular data 

provides. These are, as far as I can tell at the moment, three in number. 

Firstly, circles have no beginnings. This means that the initial conditions 

problem can be handled naturally. This is an idea that is pursued at some length in a 

previous paper (Treble(2007)). 

Secondly, as we have seen, circular data enables the investigation of time 

inconsistency in a constructive way. While this doesn’t seem to make a lot of 

difference to the fortunes of Ashby peanut packers, I can’t see any reason why the 

effects of time inconsistency should generally be small. It may even be that the small 

differences are the consequence of some special characteristic of the parameter values 

that I chose for the simulations. 

Thirdly, one fairly obvious criticism of the model described above is that the 

stochastic shocks to health are iid. While this may make some sense in a time-

aggregated model, it makes next to no sense in a daily model – everyone knows that if 

today you started to feel the symptoms of common cold, you will continue to feel 

them tomorrow, with a very high probability. A topic for future research will be to 

incorporate time dependence into the stochastic structure of the model. This is 

worthwhile particularly because it need not introduce an enormous amount of 

additional complication into the econometrics. After all, circular data were invented to 

simplify the analysis of autocorrelated systems. 
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UFigure I 

Destination state Origin State 
If present If absent 

1:  pF 1:  pF 2:  1/a aF S
2:  1/a aF S 3:  2

pS 2:  1/a aF S

3:  2
pS 4:  3

pS 5:  3 1/a aS B

4:  3
pS 6:  4

pS 7:  4 1/a aS B

5:  3 1/a aS B 50: 2
pB  7:  4 1/a aS B

… … … 
46:  24

pS 48:  25
pS 49:  25 1/a aS B

47:  24 1/a aS B 50: 2
pB  49:  25 1/a aS B

48:  25
pS 1:  pF 2:  1/a aF S

49:  25 1/a aS B 50: 2
pB  2:  1/a aF S

50: 2
pB  51: 3

pB  52: 3 1/a aB B  
51: 3

pB  53: 4
pB  54: 4 1/a aB B  

52: 3 1/a aB B  50: 2
pB  54: 4 1/a aB B  

…   
83: 19

pB  85: 20
pB  86: 20 1/p aB B  

84: 27 1/a aB B  50: 2
pB  86: 20 1/p aB B  

85: 20
pB  40:  21

pS 41:  21 1/p aS B

86: 20 1/p aB B  50: 2
pB   41:  21 1/p aS B
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Figure IV  
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UFigure V:State 1: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
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UFigure V: State 2: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
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UFigure V: State 3: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
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UFigure V: State 4: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
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UFigure V: State 5: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
 

 24



2 4 6 8 10
State

0.005

0.010

0.015

0.020

0.025

0.030

Absence Rate

 
 

UFigure V: State 6: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
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UFigure V: State 7: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
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UFigure V: State 8: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
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UFigure V: State 9: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
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UFigure V: State 10: Optimal policies under exponential (blue) and quasihyperbolic (kind of pinky) discounting 
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Appendix I 
 

The following results are used later: 

Proposition A1: Let X be a matrix with elements , , 1,...,ijx i j K= , and let  

 denote the cofactor of ( ,i jXκ ) ijx  in X. Then 

a) ( ),
ij

i j
x

κ
∂

=
∂ X

X
 

b) ( ) ( )'' 1adj −∂
= =

∂
X

X X X
X

. 

Proof: a) Expanding along the i’th row of X, gives (
1

,ik
k

)x i kκ
=

=∑ XX
Κ

. Since 

ijx  doesn’t appear in the cofactor of any element in the i’th row, the result follows. 

b) ( ) (1  and 
adj

adj− =
X )X X
X

 is the transpose of the matrix of cofactors of 

elements of X. From part a) the result follows.   

Proposition A2: Let  denote the matrix X with its n’th column replaced 

by the vector y, and  denote the matrix X with its n’th row replaced by the 

vector y.  

n• = yX

n•= yX

a) 
( ), if 

0 otherwise
nn

ij

i j j n
x

κ
• =• =∂  ≠= ∂ 

yy XX
 

b) ( )( ) ( )( ) ( )( )''' 1n
n n n n n nn n

adj• = − −
• = • = • = • = • = •=• = • =

∂
= = =

∂
y

y y y y y yy y

X
X X X X X

X
1

 

c) ( ),  n

i

i n
y

κ• =∂
=

∂
y

X

X
 

 

Proof: Expanding along the j’th column of n• = yX , gives 
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( )

( )

1

1

,  for  

,  for 

n

n

K

kj
k

n K

k
k

x k j j n

y k j j

κ

κ

• =

• =

=
• =

=



n

≠= 
 =


∑

∑

y

y

X

y

X

X  . 

a) Since kjx  doesn’t appear in the cofactor of any element in the j’th column,  

( ),  for 

0 for 
nn

kj

k j j n
x j n

κ
• =• =∂  ≠= ∂ =

yy XX
 

b) The first equality follows from similar reasoning as given for Proposition 

A1, part a). The remaining equalities follow from the definitions of 

. 1,  and n n
−

• •= y = yX X X

c) Follows directly from the definition of the determinant above.  

Definition A1: An elementary matrix ijE  is a J K×  matrix of zeroes, except 
for the j,k’th element which is equal to 1. 

 
Definition A2: An elementary vector  is an J-dimensional column vector of 

zeroes, except for the j’th element which is equal to 1. Note that 
. Elementary vectors are also useful for extracting rows or 

columns of matrices, or for constructing them from elements of the matrix. For 
instance, 

je

' '1 and j k j k jk=e e e e E

i•

=

X , the i’th row of matrix X, can be written as column vector: 
'

j j jk
k

x• = =∑ kX X e e . 

 
Proposition A3:  

The trace of a square matrix can be written as tr ( ) '
j j

j
•= ∑X X e . 

Proof: { }'

1 2, ,..., ,...,j j j jj jKx x x x• =X . Postmultiplying by , gives scalar je jjx . 
The trace is the sum of these diagonal elements. 
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Proposition A4:  
 Let square matrix Y  be a function of square matrix X, both of order K. Then 
 

a) [Jacobi’s Formula]: 
'

ij ij

tr
x x

  ∂ ∂ =   ∂ ∂   

YY Y
Κ , where Κ  denotes the 

matrix of cofactors of Y; and  

Y

 

b) 
1 1

K K

ij
i j ijx= =

∂ ∂
=

∂ ∂∑∑
Y Y

E
X

. 

 
  Proof: b) The second part of the proposition follows immediately from the 

definitions of the derivative of a scalar with respect to a matrix, and of ijE , so it is 
necessary only to prove the first part. 

 
 

a) By the chain rule and Proposition A1.1,  
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r s r s
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∂ ∂
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∂ ∂
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Ytr
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The first equality in the penultimate line follows because 

( ) ', 0 i  rs
r s

ij

yr s r s
x

κ ∂ f= ≠
∂Y e e . 

The last line follows because the r’th diagonal element of the product UV  is 
the r’th row of U postmultiplied by the r’th column of V  (the transpose of the r’th 
row of V).   

'

'

 

 

 

 

 

 33



UProof of Proposition I: 

The vector { }| 1,...,nE EV n K= =V  can be written as a function of the ’s 

alone. Equation X(8)X implies: 

c

 

011 11 12 1 1

022 21

10

. . .
.

. .. .

. .. .

. .. .
. . . .

K

K KK K

cEV c c c EV
cEV c EV

c cEV c

δ

  

2

.

.

.

K KEV

   
     
     
     

= +     
     
     
                  

 

 
or  

 0 .E Eδ= +V c C V  A(7) 
 

Thus  and  can be computed using Cramer's Rule. Let ( ) 1
0E δ −= −V I C c nEV

δ−A = I C . Then 0nA

A
• =c

nEV = . 

 

Now, for each i,  
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0 0

1 10

0
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0

 since 0 for 
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jkn n
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K K
jkn i n k

j ki i jk i i

K
n i n ik

ki i ik i

dcEV EV
c d

dcEV dc EV
c d c d

dcEV dc EV dc k i
c d c d d

EV dc EV dc
c d c d

σ σ

σ σ

σ σ σ

σ σ

= =

= = =

= =

=
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∂ ∂
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nce 0 for jk

i

dc
j i

dσ
= ≠

  

Write this in matrix form as  
 'diag diag '  = −    ΛΨλψ  A(8) 

 
 

where λ  and ψ  are the  K-dimensional column vectors: 
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and   and  are the  matrices: Λ Ψ K K×
 

 

11 12 1

11 12 1 1 1

21 22 2

2 221
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The elements of  λ  are  
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so that , using Proposition A2c): 
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for which we need the two derivatives, 0  and n
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 Proposition A4 implies that
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 Turning now to the other derivative, write  so that the notation is 
slightly less cluttered. Using Proposition A4 again: 
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 Putting it all together, we find that:  
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c

tr
c c

− −

• =

∂ ∂
−

∂ ∂ ∂
=

∂

  ∂ ∂
= −  ∂ ∂   0

A A
A A

A

A A AA A
A

 A(10) 

 
 
Since δ−A = I C , this can be rewritten as  
 

 

 ( )
*

1*n

ik ik ikn

EV tr
c c

δ
− −

• =

1

c
  ∂ ∂

= − −
∂

  ∂ ∂ ∂   0

A CA A
A

C  A(11) 

 
 

This last expression can be used to construct Λ  as 
,

n
ik

i k ik

EV
c

∂
∂∑ E . 

 
Thus: 

( )
*

1* 1

,

n
ik

i k ik ikn

EV tr
c c

δ
− −

• =

  ∂ ∂ ∂
= − −  ∂ ∂   

∑
0

A C C


∂
A A

C A
Λ = E    

 
We now have expressions for all four components of XA(12)X. Write the left 
hand side as ( ) ( ) ( ){ }' 0, 1, , 1,...,ni i i idiag b U U i Kφ σ σ σ  = −   λψ = . Let xD  

represent the square matrix with vector x on the diagonal, and zeros elsewhere. 
Then, using XA(12)X: 

 

 

( ){ } ( ) ( ){ }

( ) ( ){ } ( ){ }

( ){ }

'

'

'

, 1,..., 0, 1, , 1,...,

1
, 1,...,0, 1, , 1,...,

1
, 1,...,

ni i i i

ni ii i

ni i

b i K U U i Kdiag

b i KU U i K diag

b i K diag

φ σ σ σ

φ σσ σ

φ σ

  =  − =  

−
 = − =   

−
 =
 

=

⇒ =

=

D D D

D D

D D

D

ΛΨ

λψ

λψ

−

 

Since  and are diagonal matrices, the last expression 

implies that 
( ){ } '

1
, 1,...,  and 

ni ib i K diagφ σ
−

=
 

D D
ΛΨ− 
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( ) ( ){ }{ } ( ){ }{ }
( ){ }{ } { }

'

'

1
, 1,...,0, 1, , 1,...,

1
, 1,...,

ni ii i

ni i

b i KU U i K diag

b i K diag

diag diag

diag diag

φ σσ σ

φ σ

−
 = − =   

−
 =
 

=

=

D D D

D D
ΛΨ

λψ

−

  

 
( ) ( ){ }

( ) ( )
*

1* 1

,

0, 1, , 1,...,

1 , 1,...,

i i

ik
i kni i ik ikn

U U i K

i K diag tr
b c

σ σ

δ
φ σ

− −

• =

− =  

'

c

     ∂ ∂  = = −     ∂ ∂     




   
∑

0

A C CA A
A

E Ψ

 A(12) 
as claimed. 
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Appendix II 

UProposition 2:U For each i, ( ) ( )0, 1,i U iU σ σ− is independent of the choice of n. 
 
Proof:  
Call this quantity Udi  when state n is used to compute the utility differences.  nff

( ) ( )
'1 1

01

1 ' '
K

n n n

ni ni

Udiff A diag A A
b

δ
− −

• ==

      = −             
Ψ  

11 1

 if  and 1   where =
0 if  or  

KK nK
ji i in n n

ji ji ij ji
jni i ii i

b j j n j k
A b b b

b
n

j j n j k n
δ

== =

 = ≠ =    = − Ψ      = = = =    
∑

≠

 

( ) ( )

( ) ( )

( ) ( )

1

1

1

 if  and  

        if 

         if 

i i i i

i i i

i i i

K
n n
j i j i k i k in

i i
ni

i
K

n
j i k i k in

i
ni

i

K
n
j i j i k in

i
ni

i

b b b b
A j

b

b b b
A j

b

b b b
A k

b

δ

δ

δ

=

=

=

  − − −  n k n

n

n

≠ ≠    
  − − −  = =  
   

  − − −  = 
   

 

We wish to show that for each i Udi -Udi =0. There are 4 cases, whose proofs 
are similar :  

nff mff

I: , ; II: , ; III: , ; IV: , .i i i i i i i ij n k m j n k m j n k m j n k m= = ≠ = = ≠ ≠ ≠  
 
 
 
Case I:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 

 

 

i i i i i i

n m
j i k i k i j i j i k in m

ni mi

n m
ni mi mi ni ni min m

ni mi

n n n m m m
in im im in in im

in im

n

b b b b b b
A A

b b

b b b b b b
A A

b b

A Cf A Cf A Cf A Cf A Cf A Cf
Cf Cf

A C

δ δ

δ

δ

δ

   − − − − − −   −   
      

    − − − − − −    = −   
        
 − − − − +
 = −
  

=
( )

( )

( )
( )( 1) ( 1) 0

m n m
im in im in

im in in imm n m n
in im in im in im

n m
im in

im in in im
in im

f A Cf A Cf A Cf
Cf Cf Cf Cf

Cf Cf A Cf A Cf A Cf A Cf

A Cf A Cf
Cf Cf Cf Cf

Cf Cf

δ

 −
 + −

− −  

−
= − + + − − =  

−
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Case II:  

( ) ( ) ( ) ( )

( )

( )

 

 

i i i i i i i

i i i i

i

n n m
j i j i k i k i j i j i k in m

ni mi

n n n n m m m
ij im ij im ij ij im

in im

n m nn
im in ijim

im imm n
in im in im

b b b b b b b
A A

b b

A Cf A Cf Cf A Cf A Cf A Cf A Cf
Cf Cf

A Cf A Cf A CfA Cf
Cf Cf

Cf Cf A Cf A Cf

δ δ

δ

δ

   − − − − − −   −   
      

 − − − − − +
 = −
  

−
= −

−

( )

( ) ( )( 1)

0

i

i

i i

i

m n
in im

m
ij

in ij imm n
in im

n m n m
im in ij ij

im im in ij imm n m n
in im in im in im

A Cf A Cf

A Cf
Cf Cf Cf

A Cf A Cf

A Cf A Cf A Cf A Cf
Cf Cf Cf Cf Cf

Cf Cf A Cf A Cf A Cf A Cf

δ




−

+ − −

− 

 −
 = − − + −

− −  
=

−

 
 
Case III follows directly from Case II, by substituting  for ik ij  and n for m. 
 
 
 
 
 
Case IV:  

( ) ( ) ( ) ( )

( ) ( )

( )

 

 

i i i i i i i i

i i i i i i i i

i

n n m m
j i j i k i k i j i j i k i k in m

ni mi

n n n n m m m m
ij ik ij ik ij ij ik ik

in im

n m n
im in ik

im m
in im in

b b b b b b b b
A A

b b

A Cf A Cf Cf A Cf A Cf A Cf Cf A Cf

Cf Cf

A Cf A Cf A Cf
Cf

Cf Cf A Cf A

δ δ

δ

δ

   − − − − − −   −   
      

 − − − − − − − +
 = −
  

−
=

−

( )

( ) ( )( 1) ( 1)

0

i

i i

i i

i i i i

m
ik

inn m n
im in im

m n
ij ij

in im ij ikm n m n
in im in im

n m
im in

ik ij ij ik
in im

A Cf
Cf

Cf A Cf A Cf

A Cf A Cf
Cf Cf Cf Cf

A Cf A Cf A Cf A Cf

A Cf A Cf
Cf Cf Cf Cf

Cf Cf

δ


 −

−

+ − −

− −
−



−
 = − + + − − 

=
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Appendix III 

 

Applying quasi-hyperbolic discounting to our model gives, for time t: 

  

 , 0 , 1
1

for >0
K

j t j jk k t
k

EV c c EVτ τδ τ+ + +
=

= + ∑  (13) 

 

(discounting at exponential factor δ  for time periods after t 1+ ); and  

 

 0 , 1
1

for =0
K

jt j jk k t
k

EV c c EVβδ +
=

= + ∑ τ , (14) 

 

where 1β < .TPF

7
FPT Viewed from today, tomorrow is discounted with factor βδ , whereas 

before today, the same lapse of time was discounted at factor δ .  

Writing this in matrix form, with subscripts denoting time periods, gives  

0 1  for >0t tE Eτ τδ τ+ + += +V c C V

( ) 1
1tE δ −
+ = −V I C c

. Viewed from time t, and assuming stationarity we 

have: . Using X(4)X, the quasihyperbolic equivalent of  XA(11)X is: 0

 
 ( ) 1

0E βδ δ − = − V I + C I C c  (15) 

 
Note that when 1β = , the expression in brackets becomesTPF

8
FPT ( ) 1δ −−I C , 

which is the inverse of matrix A in the exponential discounting model. The argument 

of Section 2 follows through with ( )
11βδ δ
−− + − I C I C  replacing the matrix A. For 

this model the equivalent of Proposition I is: 

UProposition III:U Let ( )
11βδ δ
−− = + − A I C I C ,  with generic 

element . Let  denote the matrix X with its n’th column replaced by the 

vector y, and  denote the matrix X with its n’th row replaced by the vector y. 

1−B = A

ijb n• = yX

•= ynX

                                                 

=

TP

7
PT Future versions of this paper will try to avoid using the same symbol for two different things! This 

discount factor  is not the same thing as the parameter of the beta-distribution estimated in the previous 
section. 

TP

8
PT

 Proof : . ( ) ( ) ( )1 for 1βδ δ δ δ βδ β− + − − = − + =   I C I C I C I C C I
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Finally, let ikE  be the i,k’th elementary matrix, and define 
1

K

ik

i i

c
σ

=

 ∂
=  ∂ 

Ψ . Then for 

each n the optimal vector of reservation levels { } 1

K
i i

σ
=

 is the solution to: 

( 0

,

n c

i k

δ • = '1,i iσ σ ∑A

= −A

1

ikc c

−

∂ ∂
A A

( ) 1δ −I C

( ) ( )
1

1 1

ik

δ
δ δ δ

−

ikc c
− −∂ −

= − −
I C ∂
∂ ∂

C

( ) ){ } ( ) ( )0

1 1
1

1

10,
K

K
n c n iki

ni i i

U U diag tr
b

β
φ σ

− −
• = • ==

=

      − = Γ − Γ       




  
0

A
A A Ψ  (16) E

 

where ( ) ( )1 1

ikc
δ δ− −∂

−
∂
CI C I C AΓ . 

The argument in Appendix I between Equations XA(11)X and XA(14)X does not 

depend on the structure of A, so it still applies in the quasihyperbolic case. Returning 

to Equation XA(14)X, to compute n

ik

EV
c

∂
∂  

we need to know 1−A , ( ) 1* −
A  and 

ikc
∂
∂
A . Only 

the last of these needs any further algebraic attention. Differentiating both sides of 

1−A A = I  and re-arranging gives ( ) 1

ik c
δ −

∂ ∂
= − = −

∂
C

ik

∂ −C I
βδA A A A .  This 

expression can be simplified. Using the product rule, 

( ) ( )1 1

ik ik ikc c c
δ δ− −∂ − ∂ −∂

= − +
∂ ∂ ∂

C I C I CC C . 

Furthermore, 

( )  I C I C

 

Using footnote 8 in the text, we can thus write 

 

 

( ) ( ) ( ) ( )

( ) ( )

1
1 1

1 1

ik ik ik

ik

c c c

c

δ
δ δ δ δ

δ δ

−
1− − −

− −

∂ − ∂ ∂
= − + − −

∂ ∂ ∂

∂
= − −

∂

C I C C CI C C I C I C

CI C I C
 

so that 
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( ) ( )

1

1 1

ik ik

ik

A
c c

c
βδ δ δ

βδ

−

− −

∂ ∂
= −

∂ ∂
∂

= − − −
∂

≡ − Γ

AA A

CA I C I C A   

We have: 

 

( )
*

1* 1n
n

ik

EV tr
c

βδ
− −

• =

∂  = − Γ − Γ  ∂ 0

A
A A

A
 

 

and following the same logic as for the exponential case: 

 

( )
*

1* 1

,
n i

i k

trβδ
− −

• =
 = − Γ − Γ  ∑ 0

A
kA A E

A
Λ  

so that:  

 

( ) ( ){ } ( )

( )0

1
1

1* 1

,

10, 1,

.

K
K

i i i
ni i i

n c
n i

i k

U U
b

diag tr

σ σ
φ σ

βδ

=
=

−• = −
• =

  − =  
  

   Γ − Γ     
∑ 0

A
A A E

A
Ψ '

k
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