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Abstract 
This paper analyzes patterns of regional labour market development in Germany over the 
period 2000-2003 by means of a spatial-dependence continuous-time model. (Spatial) 
panel data are routinely modelled in discrete time. However, there are compelling 
arguments for continuous time modelling of (spatial) panel data. Particularly, most social 
processes evolve in continuous time such that analysis in discrete time is an 
oversimplification, gives an incomplete representation of reality and leads to 
misinterpretation of estimation results. The most compelling reason for continuous time 
modelling is that, in contrast to discrete time modelling, it allows for adequate modelling 
of dynamic adjustment processes (see, for example, Special Issue 62:1, 2008, of Statistica 
Neerlandica). We introduce spatial dependence in a continuous time modelling 
framework and apply the integrated framework to regional labour market changes in 
Germany. The empirical results show substantial autoregressive effects for both 
unemployment and population change, as well as a negative effect of unemployment 
change on population change. The reverse effect is not significant. Neither are the effects 
of the changes of regional average wage and of the structure of the manufacturing sector 
on the changes of unemployment and population. 
 
Keywords: unemployment change, population change, continuous time modelling, 
structural equation modelling, spatial dependence, panel data, disattenuation, 
measurement errors, Germany. 
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1. Introduction 
 
Socio-economic processes such as the development of unemployment are the outcomes 
of various decisions taken by different actors at different points in time. This basic 
feature gives rise to continuously evolving socio-economic dynamics, rather than to 
processes that change at discrete points in time only. The analyst, however, only observes 
the processes at discrete points in time (for example, yearly observations of regional 
unemployment). The typical approach in conventional (that is, discrete) time series 
modelling and panel data analysis is to ignore the continuous nature of the processes 
underlying discrete time observations. Consequently, discrete time series and discrete 
panel data analysis are simplifications of reality and may lead to bias in the mapping of 
dynamic adjustment processes of socio-economic phenomena and to misinterpretations of 
estimation results. Discrete time (DT) analysis is at best a simplified approximation of 
real-world processes in continuous time (CT) (Oud and Singer, 2008). 

CT econometrics models the continuous nature of social processes by means of systems 
of differential equations. It departs from the assumption that different agents take 
different actions at different points in time. This assumption implies that there is no 
obvious time interval that can serve as a natural unit. This is in contrast to DT models 
(which are made up of systems of difference equations), which are necessarily formulated 
in relation to the data available (for example yearly or monthly data). 

A DT model estimated on the basis of, for example, monthly data will be different from 
a model estimated on the basis of annual data. For CT approaches, however, the model is 
independent of the observation interval, and thus provides a common basis for accurate 
comparison of differently time-spaced models of the same process (Oud and Jansen, 
2000). These features enable the analyst to obtain predictions and simulations for any 
time interval, rather than for the time interval inherent to the data, as in the case of 
DTmodelling. 

CT modelling is particularly useful for the analysis of dynamic adjustment processes 
(Gandolfo, 1993). Whereas in DT models it may not be possible to obtain an estimate of 
the adjustment speed when the time lags are short compared to the observation period, in 
CT models it is in general possible to obtain an asymptotically unbiased estimate of it. 
Specifically, CT modelling makes it possible to determine at what pace an effect builds 
up over continuously increasing intervals, at which observation points or between which 
points the maximum impact of an effect occurs and at what pace it dies out. A CT model 
therefore allows a more satisfactory treatment of distributed-lag processes.  

CT modelling has a long history in econometrics. Following the pioneering work by, 
amongst others, Bartlett (1946), Koopmans (1950) and Phillips (1959), CT modelling has 
become quite common in applied econometric work (for an overview, see Bergstrom, 
1988). To our best knowledge, however, little attention has been paid to CT modelling in 
spatial econometrics.2 The reverse also holds: In CT modelling no attention has been paid 
to spatial dependence nor, more generally, to dependence among units of observation. 

                                                 
2  For an interesting application we refer to Piras et al (2007). Note that in spatial analyses the units of 

observation usually are discrete. There is, however, a growing interest in theoretical work on continuous 
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In this paper we introduce spatial dependence in a CT modelling framework to analyze 
the main determinants of regional unemployment change in Germany, viz. the changes of 
wages, population and industrial structure. This will be pursued in the framework of 
structural equations modelling (SEM). The German case is interesting and important, 
because inflexible wages are often considered to be one of the main causes of 
unemployment in Germany.  

The paper is organized as follows. Section 2 presents the basic characteristics of CT 
modelling and points out the differences with respect to DT modelling. The regional 
unemployment change model for Germany is outlined in Section 3. In Section 4 the CT 
model with spatial dependence and its estimation procedure by means of a nonlinear 
SEM procedure are outlined, while in Section 5 estimation results are presented. 
Conclusions follow in Section 6. 

 
2. Main characteristics of CT modelling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                 
space modelling (see, for example, Puu, 1997). It would be a great challenge in spatial modelling and 
spatial econometrics to explore the relationships between continuous time and continuous space 
modelling and to integrate both. See, amongst others Cressie 1993; Wackernagel 1995; Donaghy 2001). 

E[x(t)|y] 

E[x(t)|κ] 

E[x(t)] 

Figure 1. Estimated mean curve E[x(t)],  subject-specific mean curve E[x(t)|κ] 
and sample trajectory curve E[x(t)|y] (for the same subject as in E[x(t)|κ] ) in 
CT (confidence intervals for the sample trajectory curve in dotted lines). 
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As observed above, in CT the parameters estimated are independent of the observation 
intervals which implies that CT modeling make it possible to “fill out” the spaces 
between the discrete observation time points by model based estimates, including 
interpolations and extrapolations (predictions), of full developmental and effect curves. 
Figure 1 which is taken from Delsing and Oud (2008), illustrates this for the mean curve 
E[x(t)], which represents the estimated mean trajectory in the population, an individual 
subject specific mean curve E[x(t)|κ] (κ the random parameter with the subject specific 
value) and the trajectory E[x(t)|y] for the same individual subject. The latter, the 
conditional mean (conditional on the individual’s data vector y) or state space  smoother 
(Durbin & Koopman, 2001), represents the best estimate of the individual’s sample 
trajectory through CT, which includes error components, on the basis of the total data 
vector y. The latter two curves, though both relating to the same individual subject, differ 
because they exploit different kinds of information.  E[x(t)|y] is based on all measured  
information available for the subject, using the model only where data are lacking, while 
the subject-specific mean curve E[x(t)|κ] is the model expectation, conditioned on the 
single subject-specific parameter value (Oud & Singer, 2008).  

Figure 1 shows that  by E[x(t)|y] the gaps between measurements in 1986, 1988, 1990 
and 1992 are filled out by interpolations and similarly for the prediction interval 1992-
1998, while uncertainty of the interpolations and predictions are given by confidence 
intervals (dotted lines).3 These confidence intervals typically go to zero at the observation 
points through 1992 but increase considerably in the prediction period after 1992. The 
confidence intervals of E[x(t)|y] show that the conditional mean is almost everywhere 
significantly above the mean curve E[x(t)], even in the prediction period, and for time 
points close to the the measurement points also significantly above the individual’s 
subject-specific mean curve.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  
 

                                                 
3Since there are no error components in E[x(t)|κ] and E[x(t)], there are no confidence intervals for these 
curves. 

A 

B | 
| 

Figure 2: Two different autoregression functions in two  
different studies A and B. 
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In contrast to CT modelling which gives estimates for the entire interval 1986-1998, in 

DT modeling only estimates of the three types of means are obtained for the four 
observation time points 1986, 1988, 1990, 1992, and possibly the three prediction time 
points 1994, 1996, 1998. Clearly, the interpolations and predictions in CT are subject to 
uncertainty. However, the uncertainty is quantified in the model by means of the 
confidence intervals.4 
 DT modeling may be especially misleading in the case of unequal observation intervals, 
within the same study or when comparisons between different studies are made. This is 
shown in Figure 2, where (hypothetical) autoregression functions in CT of two studies, A 
en B, with two different observation intervals (0.50 in study A and 1.00 in study B) are 
depicted.  Because CT autoregression function B exceeds A everywhere, the obvious 
conclusion is that the autoregression in study A is lower than in study B. Nevertheless, in 
DT at e.g. observation interval 0.50 (half-yearly observation interval) study A finds the 
autoregression value of 0.61 which is considerably larger than the value of 0.50  found at 
the interval 1.00 (yearly observation interval) in study B, which might lead to the 
erroneous conclusion that the autoregression in study A is larger than in study B. To 
obtain the correct answer CT modeling is required which makes it possible to compare 
the complete autoregression functions. An important corollary is that that CT modeling 
allows combining the data of several studies into one data set, test whether the underlying 
continuous time parameters are equal and, if so, to present one and the same 
autoregression function (Oud, 2001). 

. .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
4 For statistical details, see section 4. 

x1→ x2 
x2→ x1 

Figure 3:  Cross-lagged effect functions for the reciprocal 
 effects between x1  and x2 
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Using equal observation intervals is no solution to the problems inherent to DT  
modeling discussed above. To see this, consider the two (hypothetical) CT reciprocal 
cross-lagged effect functions for variables x1 and x2 in Figure 3.5 Unlike autoregression  
functions, which start at value 1, cross-lagged effect functions have starting value 0 
(different variables cannot have any influence on each other over a time interval of length 
zero), increase until the maximum is reached (in Figure 3 the maxima 0.250 and 0.240 
are reached at the time points 1.02  and 1.64, respectively), and next taper off to 0 (in a 
stable model). Figure 3 shows an example  of two cross-lagged effect functions that cross  
at interval 1.44.  Both have here the same value 0.239, but are different over all other 
intervals . Particularly, for observation  intervals < 1.44 the effect of x1 on x2  is larger 
than the reverse effect while the opposite holds for intervals  > 1.44. Observe that using 
one and the same interval in DT does not resolve the problem. For instance, using the 
observation interval 1.44 would lead to the false conclusion that the effect of x1 on x2  is 
equal to the effect of x2 on x1. Using only intervals < 1.44 would lead to the false 
inequality effect “effect of  x1 on x2   > effect of x2  on x1” and using only intervals > 1.44 
would lead to the opposite false inequality effect.  Again, CT analysis, particularly 
estimating and displaying the full cross-lagged effect functions over the entire time axis 
is required to obtain the correct effects.  

 
3. The Regional Unemployment Model 
 
Following Elhorst (2003) and Blanchard and Katz (1992), we adopt a regional labour 
market model that relates regional unemployment rates (the result of job-matching) to 
regional labour supply, economic structure and wages. Elhorst points out that ‘the 
regional unemployment rate both affects and is affected by regional factors of labour 
supply, labour demand, and wages’. Therefore we adopt a simultaneous equations 
framework to study the reciprocal effects of regional unemployment development and 
regional labour supply development, as well as the impacts of the developments of 
economic structure and wages on both variables. The latter two variables are assumed 
exogenous. The rationale for considering the wage variable exogenous is based on the 
fact that in Germany, like in many other European countries, collective wage agreements 
are set at the national level on a sectoral basis rather than at the regional level. This 
means that contractual wages may be considered exogenous for a given region. This view 
is supported by a large literature in labour economics (see, for example, Lommerud et al. 
2000; Correa López and Naylor 2004). The fact that wages are set nationally rather than 
regionally does of course not mean that average wages are largely equal across regions. 
Wage differentials occur due to differences in regional economic structure. 

The rationale for taking economic structure as exogenous follows from the fact that this 
variable evolves slowly, such that changes only show up in the long run. Moreover, its 
evolution depends on a large set of factors and definitely not only on the regional wage 
structure. Since the time span considered in this paper is seven years only, we consider 
economic structure exogenous. Due to lack of data, economic structure is measured in 
this paper as the proportion of the workforce employed in manufacturing (for a similar 
approach, see Jones and Manning 1992). 

                                                 
5 A cross-lagged effect function gives the effect of one variable on another as it develops across  time. 
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Formally, the regional unemployment model comprises two equations. In the first 
equation, the unemployment development is explained by population development, as 
well as by development of average daily wages of fulltime workers, and of economic 
structure. The expected effect of population development on unemployment development 
is ambiguous, since demographic development has an impact on both labour supply 
(positive or zero impact on unemployment development) and labour demand (negative 
impact on unemployment development). On the supply side, population development – 
via natural growth or immigration – may lead to a larger workforce and to changes in its 
age structure. Changes in the age structure leading to a younger average population – due 
to higher birth rates – have been shown to lead to higher, and more persistent, 
unemployment rates (Elhorst 1995), because of a larger workforce. However, natural 
change of population is known to be a slow, long-run process rather than a short-run one. 
Consequently, it is not expected to have a significant effect on unemployment in the short 
panel considered in the present paper. 

With regard to immigration, the expected effect of an additional migrant on 
unemployment is zero, if the migrant fills a job opening for which no one in the home 
region qualifies or if the migrant does not join the workforce. However, the impact is 
expected to be positive (increasing unemployment) when the effect of additional migrants 
is worked out through the accounting identity6 (Elhorst 2003). On the demand side, 
negative effects of net immigration on unemployment development may be identified, for 
example, because of increased productivity induced by migrants with different skill 
endowments (Ghatak et al. 1996), or greater investments attracted by an increase of 
higher-skilled labour, or higher consumption levels due to a larger population. We expect 
the labour supply side to dominate the demand side (and hence a positive effect of net 
immigration on unemployment development; see, for example, Pissarides and McMaster 
1990). Since in Germany there is outmigration from high unemployment regions in the 
East (unemployment going down) to low unemployment regions in the West 
(unemployment going up or remaining constant), migration is likely to induce some 
convergence of regional unemployment. 

Because of the negative impact of wages on labour demand (they represent greater 
costs for firms), higher wages are expected to increase unemployment. A positive 
coefficient of wage development on unemployment development may then be expected 
(as, for example, in Hall 1972; Layard et al. 1991). With regard to the relationship 
between economic structure (regional specialization) and unemployment, we expect, for 
regions with a relatively dominant manufacturing sector and a low-skilled workforce (as 
in East Germany), that a decrease in the manufacturing sector will lead to an increase in 
the number of unemployed individuals. Workers laid off from the manufacturing sector 
are likely to experience difficulties in becoming re-employed, and will risk long-term 
unemployment and loss of skills. A negative effect of specialization in manufacturing on 
unemployment development may then be expected. 

The second equation may be compared – with due differences – to the labour supply 
equation in the Blanchard and Katz (BK) model (Blanchard and Katz 1992). In this 
equation, population development is explained by the developments of unemployment, 
wages and manufacturing. We expect higher unemployment to increase out-migration 
and to lead to lower fertility rates. A negative effect of unemployment development on 
                                                 
6  The accounting identity is a deterministic method for computing regional unemployment levels. 
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population development may then be expected. Inversely, higher wages will tend to 
attract individuals towards a region (in-migration). A positive value of the wage 
coefficient may be expected. With regard to regional economic structure, we note that, if 
decreasing specialization in manufacturing results in a greater number (or share) of long-
term unemployed, a positive coefficient, though weak, may then be expected for the 
effect of change in specialization on population development (see, for example, Budd et 
al. 1987).  
The model outlined above is formally presented in Section 4. 

 
 
4. Specification and Estimation of the Spatial-Dependence Continuous-Time Model 
 
Let ( )tx  be the n-dimensional (endogenous) state vector, u(t) the r-dimensional vector of 
(exogenous) fixed input variables,7 κ  the n-dimensional vector of subject (region-) 
specific deviations from the fixed mean intercept (that is, a vector of ‘random subject 
effects’ or ‘unobserved unit heterogeneity’) and ( )tW  the standard multivariate Wiener 
process. We consider the following spatial error model for regions 1,2,...,i N= : 
 

 
d ( ) d ( )

( ) ( ) ,
d d

t t
t t

t t
= + + +x z

Ax Bu κ
% %

% % %% %  (1) 

 
d ( ) d ( ) d ( )

,
d d d

t t t

t t t
= +z z W

R G
%% %

% %%C  (2) 

 
where ( 1) ( )rowvec Nn N n× ×=x X%  and ( 1) ( )rowvec Nr N r× ×=u U%  row-vectorize the data 

matrices X and U (for each region i there is a row with n values for the n state variables 
and a row with r values for the fixed input variables). Similarly for the random subject 

effects .κ%  Furthermore, W%  has the same dimension ( 1)Nn×  as ,x%  ,N= ⊗A I A%  

,N= ⊗B I B%  ,N= ⊗G I G%  where the drift matrix A contains the coefficients of the causal 

relationships among the state variables, B the coefficients of the effects of the fixed input 
variables on the state vector, and the lower triangular matrix G transforms the 
uncorrelated standard multivariate Wiener process W with variance t at time t into a 
process with variances possibly t≠  at time t and correlations possibly 0.≠  Matrix C  is 
the spatial ( )N N×  connectivity matrix. For the multivariate case we specify the 

( )Nn Nn×  matrix .n= ⊗ I%C C  Associated with %C  are the spatial dependence parameters. 

In the general case of a different spatial dependence parameter for each state variable, we 
have the ( )n n×  spatial parameter matrix ,R  which for the N subjects becomes 

                                                 
7  We assume that the state variables are latent variables, that is, they cannot be directly observed due to 

measurement error. Latent variables are measured by one or more indicators. For instance, the concept of 
socioeconomic status is usually measured by means of more than one indicator, for example income, 
education, and profession. In the present paper, we only deal with latent variables that are measured by 
one indicator, though with error. The introduction of latent variables requires the use of a measurement 
model relating the latent variables to their indicators, and a structural model which presents the 
relationships between the latent variables. For further details see Oud and Folmer (2008b). 
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.N= ⊗R I R%  In this paper, we assume one and the same spatial dependence parameter for 

the n state variables, that is, ρ .n=R I  This simplification safeguards the commutative 

property and has two advantages: (a) conventional standard procedures can be used to 
solve the stochastic differential equation implied by Equations (1) and (2); and (b) 
standard spatial econometric methods can be applied. Observe that Model (1)–(2) 
includes three parameter matrices to be estimated (A, B, and G) in addition to the spatial 
parameter ρ . 

From Equations (1) and (2), we derive: 
 

 1d ( ) d ( )
( ) ( ) ( ) .

d d

t t
t t

t t
−= + + + −x W

Ax Bu κ I R G
%%

% % %% %%% % C  (3) 

 
Equation (3) is solved over intervals [ , )t t t− ∆ of length t∆  by: 
 

 
1

( ) ( ) d ( ) d

( ) d ( ),

t t

t t s t st t t t

t

t st t

t t t s t t s

s

∆ − −−∆ −∆

−
−−∆

= − ∆ + − ∆ +

+ −

∫ ∫

∫

x A x A Bu A κ

I R A G W

% % %% %% % %

% % %% %C
 (4) 

 

where ,t N t∆ ∆= ⊗A I A% e ,t
t

∆
∆ = AA  ,t s N t s− −= ⊗A I A%  ( )e ,t s

t s
−

− = AA  ,t s N t s− −= ⊗A I A%  and 

where, for convenience sake, it is assumed that the input ( )tu%  can be approximated by 
constants over the relevant intervals [ , )t t t− ∆  (for time-varying inputs, see Oud and 
Jansen, 2000). Observe the important role of the matrix exponential 

)][ (e e ,t t
t

t t ∆ ∆
∆

− −= =A AA  as well as the matrix exponential ( )e ,t s
t s

−
− = AA  which appears 

three times inside the integrals. Particularly, e t∆A  gives the effect of ( )t t−∆x  over the 

whole interval ,t∆  while ( )e t s−A  inside the integrals accounts for the fact that input, 
subject, and noise effects enter continuously over the interval. These effects (from each 
time point s to t) must be ”summed”  (via the integrals) to obtain the total effect. For an 

explicit expression of the integral d
t

t st t
s−−∆∫ A  we refer to Oud and Jansen (2000). 

We write Equation (4) in compact form as follows: 
 

 

1( ) ( ) ( ) ( ) ( ),

where d ,

d ,

and ( ) d ( ).

t t t

t

t t st t

t

t t st t

t

t st t

t t t t t t t

s

s

t t s

−
∆ ∆ ∆

∆ −−∆

∆ −−∆

−−∆

= − ∆ + − ∆ + + − − ∆

=

=

− ∆ =

∫

∫

∫

x A x B u H κ I R w

B A B

H A

w A G W

% %% % %%% % % %

%% %

%%

% % %%

C

 (5) 

 
For an explicit expression of the covariance matrix of ( )t t− ∆w% we again refer to Oud 
and Jansen (2000). 
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We now turn to the estimation of the continuous-time parameters on the basis of 
discrete-time observation time points { }1,..., .i Tt t t∈  For this purpose, we specify, on the 

basis of Equation (5), the so-called exact discrete model (EDM) as follows (Oud and 
Jansen 2000): 

 
 1( ) .

i i i i i i i i i it t t t t t t t t t
−

∆ −∆ ∆ −∆ ∆ −∆= + + + −x A x B u H κ I R w% %% % %%% % % %C  (6) 

 
where the parameter matrices are as in (5). Equations (5) and (6) look very similar. 
However, whereas (5) is a CT model defined for all t in CT, DT model (6) is defined for 
the DT observation points { }1,...,i Tt t t∈  only. The CT matrices in (5) impose nonlinear 

restrictions on the DT matrices in (6) in order to make them satisfy the CT model 
structure.  

The EDM is called exact because the nonlinear restrictions it imposes at the DT points 
by solving the differential equation ensure that the parameters estimated are exactly equal 
to the parameters of the underlying differential equation model. This is in contrast to 
several alternative estimation procedures in the literature that approximate the CT 
parameter matrices in Equation (5) (see, for example, Singer 1990). 

The CT parameters can be estimated by means of a nonlinear Structural Equation 
Model (SEM) procedure (using, for example, the Mx software by Neale et al. 2003). For 
that purpose, we formulate the SEM model by first defining the state, input, and error 
vectors ,x

r
 ,u
r

 and ,w
r

 for successive observation time points .it  

 

 

0 1

0 1

0 0 0 2

' ' '

' ' '

' ' ' ' '

,..., ,

,..., ,

( ), ,..., .

T

T

T

t t

t t

t t t tE

−

−

−

 =  

 =  

 = − 

x x x

u u u

w x x w w

r
% %

r
% %

r
% % % %

 (7) 

 
Next, we write Equation (6) in comprehensive form as: 
 
 1

u κΓ Γ ( ) ,B −= + + + −x x u κ I R w
r vv vr r r r

%
v

C  (8) 

 
where we put all T-1 ( )×Nn Nn  matrices ∆

%
it

A  at the appropriate places in the 

( )×TNn TNn  matrix ,B
v

 the T-1 ( )×Nn Nr  matrices ∆
%

it
B  in ( )TNn TNr×  matrix u ,Γ

v
 and 

T-1 ( )×Nn Nn  matrices ∆
%

it
H  in the ( )×TNn Nn  matrix κΓ

v
. The block-diagonal 

( )×TNn TNn  matrix T= ⊗I
v

%C = C has (possibly asymmetric) blocks %C  on its diagonal. 

Because of the assumption ρ ,n=R I  we can write 1( )−−I R
r v

C  as 1( ρ )−−I
v
C  with T blocks 

1( ρ )−−I %C  on its diagonal.8 

                                                 
8  The notation in (8) is a combination of the standard notations in state-space modelling and structural-

equation modelling. Although it would be possible to introduce a new notation, we prefer to apply the 
combined notation so as to facilitate access to the constituting literatures. 
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Specification of Equation (8) in terms of the spatially lagged variables =x x
vr r

C C  and 

u ,=u u
vr r
CC  gives: 

 
 u u κρ( +Γ ρΓ Γ .)B B= + − − + +x x I x u u κ w

v v vr r r r r r
%

v v

C C C  (9) 

 

where u u u=Γ u Γ u
r rv vr r

C C  for u ,T r= ⊗ ⊗I I
v

uC C  and where the transformed unobserved 

heterogeneity κ% C  is related to the original %κ  in Equation (6) as follows: ( ) .= −κ I R κ%%% %C C  

Note that in the derivation of Equation (9) we have made use of the commutative 
property several times. 

Equation (9) can be specified as a latent variables SEM as follows: 
 

 
' ' ' ' '

u u κ

Γ

for 

, , ,Γ ρ( Γ ρΓ  Γ ,)

B

B

= + +

  = = = = − −   

η η ξ ζ

η x ξ x u u κ ζ w I

r rvr r

r r v v v vr rr r r r r

v

v

C C C

 (10) 

 
which is conventionally written in variable form (rather than in terms of units of 
observation) as follows: 
 
 Γ .B= + +η η ξ ζ  (11) 

 
If a SEM contains latent variables (in addition to structural equations in (11)), 

measurement equations are required which specify how the latent variables are measured, 
that is, how the observed variables y  are related to the latent variables [ '   '] ' :η ξ  

 

 Λ .
 = + 
 

η
y ε

ξ
 (12) 

 
Matrix Λ  in (12) contains the loadings, while the measurement errors are given by ε 
(with covariance matrix ).Θ  The measurement model parameter matrices Λ and Θ  are 
estimated simultaneously with the other parameter matrices of model (11). For reasons of 
interpretation and identification, it is customary to specify unifactorial observed variables 
only, which means that each observed variable in y has a loading on only one single 
latent variable in [ '   '] '.η ξ  

The vector y
r

 and its spatially lagged counterpart y
r

C  are defined analogously to x
r

 and 

.x
r

C  Therefore, we assume that their loading matrices  L
r

 and measurement intercept 

vectors d
r

 are equal. This gives the following measurement model for x
r

 and .x
r

C  

 

 
,

.

= + +

= + +

y Lx d v

y Lx d v

r rr r r

r rr r r
C C C

 (13) 

 



 12

We impose no equality constraints between the measurement error variances of v
r

 and 
,v

r
C  since the measurement errors in v

r
C  are linear combinations of the measurements 

errors in v
r

 and therefore typically have lower variance.  
 If there is (as in the present case study) only one observed variable in y

r
 for a given 

latent variable in x
r

 as well as one observed variable in y
r

C  for a given latent variable in 

x
r

C , then y
r

 and x
r

 as well y
r

C and x
r

C are equal except for the measurement errors in v
r

 

and  v
r

C .9 In such a  case =L I
r

 and =d 0
r

, so that no loadings or measurement intercepts 

are estimated. This model can typically be turned identified by specifying the 
measurement error variances for the repeated measurements of the same variable in y

r
 or  

y
r

C  at successive time points to be equal.10  

  Estimation of SEM models basically comes down to minimizing, in some metric, the 
distance between the theoretical variance-covariance or moment matrix of the observed 
variables (as determined by the model specifications) and the corresponding sample 
matrix. There exist various estimators for SEMs including maximum likelhood (ML). 
Oud and Folmer (2008b) show that in the case of ML estimation the standard SEM 
likelihood function for a spatial dependency model need to be augmented by the Jacobian 
correction term ln ρ ,−| I |

v
C|  where ln denotes the natural logarithm. The size of the 

Jacobian correction depends on the number of dependent variables. In a conventional 
spatial error model with only a single dependent variable and weights matrix ,C  the 
correction is: 

 
 ln ρ .−| I |C  (14) 
 
In a multivariate model with equal spatial dependence parameter for n variables with 

( )×Nn Nn  matrix ,%C  the Jacobian correction is: 
 

 ln ρ ln ρ .n− = −| I | | I |%C C  (15) 
 
In a longitudinal analysis with T observations and 

v
C| of order ( ),TNn TNn×  the 

correction is: 
 
 ln ρ ln ρ .Tn− = −| I | | I |

v
C| C|= (16) 

 
Finally, if each of the n latent variables is measured by m indicators, a ( )×TNnm TNnm 

matrix 
v%C  applies and the correction becomes (Oud and Folmer 2008b): 

 

                                                 
9 In the full model (13) (including both matrices  L

r
 and measurement intercept vectors d

r
)  more than one 

indicator per latent variable is specified.    
10 Of course, a measurement model would not be needed if there were only observed variables in the 

model in which case we have =y x
r r

 and =y x
r r

C C .   
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 ln ρ ln ρ .Tnm− = −| I | | I |
v%C| C|= (17) 

 
We observe that nonlinear SEM programs like Mx (Neale et al. 1999) can be applied to 

estimate the Equations (11) and (12), including all linear and nonlinear restrictions 
implied by both the CT and the spatial dependence specification. 

 
 
 
 
5. Empirical Results 
 

The German regional labor market model outlined in section 2 can be summarized as 
follows. The model is made up of: 

 
• The state variables unemployment change and population change. For each state 

variable, an autoregressive effect is expected. Moreover, feedback relationships are 
hypothesized between unemployment change and population change: a positive effect 
of population development on unemployment change, and a negative effect for the 
opposite direction from unemployment change to population change. 

• The fixed input variables wage change  and change of the manufacturing sector. We 
assume a positive wage change effect and a negative manufacturing change  effect on 
unemployment change. For population change we assume positive effects of both input 
variables. 

• A first-order spatial lag for each of the state variables.  We assume the spatial 
dependence parameter for the state variables to be equal such that R%  in Equation (2) 
contains only a single spatial parameter ρ.  

 
The German regional unemployment model as a CT is presented in Equation 

¡Error! No se encuentra el origen de la referencia., where ud(t) is unemployment 
change, pd(t) population change, wd(t) wage change, and md(t) change of the 
manufacturing sector structure: 

 

 

1
11 12 11 12 1 1

2
21 22 21 22 2 2

d ( )d ( )
( ) ( ) ( ) ( ) κ ,

d d
d ( )d ( )

( ) ( ) ( ) ( ) κ .
d d

z tud t
a ud t a pd t b wd t b md t b

t t
z tpd t

a ud t a pd t b wd t b md t b
t t

= + + + + + +

= + + + + + +
 (18) 

 
Coefficients 11a  and 22a represent the CT autoregressive effects of ud and pd, 12a  and 21a  

the cross-effects of pd on ud and of ud on pd, respectively, whereas the effects of the 
input variables wd and md are given by 11b  and 12b  (on ud) and 21b  and 22b  (on pd). 

Finally, 1b  and 2b  are the intercepts, and 1κ  and 2κ are the region-specific random 

intercepts. Because the random subject effects 1κ  and 2κ represent deviations from the 



 14

fixed  intercepts 1b  and 2,b 1 2E(κ ) E(κ ) 0= = . The squared deviations show up in the 

model as the variances
1

φκ and 
2

φκ ; their covariance is 
1 2

φ .κ κ  

It should be observed that CT effects basically are the limits of the corresponding 
effects in DT for the observation interval going to zero. Due to the nonlinear relationship 
between CT and DT effects, the parameter values may differ between CT and DT. The 
infinitesimal ’cross-effects’ 12a  and 21a  in CT  can be interpreted similarly to the 

corresponding cross-lagged effect 12 ta ∆  and 21 ta ∆  in DT, but the values of 12a  and 21a  

may differ considerably from 12 ta ∆  and 21 ta ∆ , and even the signs may change when going 

from the DT coefficients to the CT coefficients time and vice versa. The reason is that the 
CT analysis accounts also for the autoregressive effects during the observation interval. 
In fact, the estimated cross-lagged effects are mixtures of the CT cross- and 
autoregressive effects. A variable with a high autoregressive effect, meaning that there is 
a strong tendency to sustain its value over time, tends also to retain the influence of other 
variables over a longer time interval than a variable with a low autoregressive effect. So, 
even a relatively small CT cross-effect can result in a relatively high cross-lagged effect 
in DT, if the variable influenced has a high autoregressive effect. But the converse can 
also be true: a relatively strong CT cross-effect having only small impact over a DT 
interval because of a rather low autoregressive effect in the dependent variable.  

The  CT autoregressive coefficients (direct feedback-effects) 11a and 22a  additionally 

are to be interpreted differently, however, from the corresponding DT autoregressive 
coefficients 12 ta ∆  and 21 .ta ∆  Suppose the cross-effects to be zero, then a CT 

autoregressive effect of 0 in A (no change) corresponds to a DT autoregression of 1 in 

t∆A , and a CT autoregressive effect of −∞  in A (maximum negative feedback) to a DT 

autoregressive effect of 0 in .t∆A  So, CT autoregressive effects in the range ( ,0)−∞  are 

transformed to DT autoregressive effects in the range (0,1). 
 For the error components in Equation 

¡Error! No se encuentra el origen de la referencia., Equation (2) applies with spatial 

dependence parameter ρ  and the parameters 11g , 22g  and 21g  in matrix 11

21 22

0
.

g

g g

 
=  
 

G  

This matrix transforms the two independent standard Wiener processes 
 

 

1

2

dW ( )
d ( ) d

dW ( )d

d

t
t t

tt

t

 
 
 =
 
 
 

W
 

 
into the correlated general Wiener processes for ud and pd. 

Finally, we discuss the parameters relating to the initial time point when the process 
starts. First of all, there are the initial state means 

10
µ

t
x and 

2 0
µ ,

t
x  their variances 

10
φ ,

t
x  

2 0
φ ,

t
x  and covariance 

1 20 0
φ .

t t
x x  Because the initial means may differ in regions with 
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different levels of wd and md at the initial point, one may regress 0( )ud t  and 0( )pd t  on 

0( )wd t  and 0( )md t  (which gives the regression coefficients 11 ,tb
0

 12 ,tb
0

 21tb
0
 and 22tb

0
)  

and subtract the regression means 11 0 12 0( ) ( )t tb wd t b md t+
0 0

 and 21 0 22 0( ) ( )t tb wd t b md t+
0 0

 

to obtain the “pure” initial means. Moreover,  conditional on the initial inputs, the initial 
conditional variances and covariance of the state variables can be calculated. Finally, as 
the region specific random effects 1κ  and 2κ  are assumed to influence the state variables 

before as well as after initial time point 0,t  the four covariances between the initial state 

variables and the random region effects 
1 10
κφ ,

t
x  

1 20
κφ ,

t
x  

2 10
κφ

t
x  and 

2 20
κφ

t
x  are 

estimated, since they cannot, in general, be taken as zero. 
We estimate two types of models: one without (I), and one with (II) measurement errors 

for the state variables, as well as for their spatially lagged counterparts. Compared to 
Model I, there are four additional parameters in Model II: the measurement error 
variances 1θv  and 2θv  for the observed state variables, and measurement error variances 

1θv C
 and 2θv C

 for their spatially lagged counterparts (see Equation (13)). 

Both Model I and Model II are estimated by ML. Since T = 4, n = 2 and m = 1 (a single 
indicator per latent variable), the Jacobian correction term added to the likelihood 

function in both models is ln ρ ln ρ 8ln ρ .Tnm− = − = −| I | | I | | I |
v%C| C| C|=We analyse 

unemployment change in 439 German labour market regions over the period 2000–2003 
by means of the CT spatial-dependence modelling approach outlined above. All observed 
variables in the model (two endogenous (state) variables and two exogenous (input) 
variables) are defined as changes, that is differences between successive years. For 
computation reasons we divide the changes by 1,000. For instance, unemployment 
change in region r in 2000 is measured as (1/1000) * (unemployed in region r in 2000 −  
unemployed in region r in 1999). 

The estimation results are given in Table 1. First of all, we refer to the spatial 
dependence parameter ρ,  which is 0.375 in Model I and 0.378 in Model II. In both 
models, ρ  is highly significant. Since it is rather restrictive, we relaxed the assumption of 
equal spatial dependence for ud and pd in the SEM model. This relaxation, however, did 
not lead to any significant improvement in model fit, as measured by the χ2-difference 
test. We conclude that the assumption of the same spatial dependence ρ  for both ud and 
pd is not contradicted by the data. 

 
Table 1 ML parameter estimates and associated t-values for model I (without 
measurement errors) and model II (with measurement errors) 
 

Model I Model II Par. 
Coefficient t Coefficient t 

Spatial parameter     
ρ    0.375   16.30*   0.378   14.00* 
Measurement error variances     

v1θ      0.422   16.88* 
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Model I Model II Par. 
Coefficient t Coefficient t 

v2θ      0.081     1.09 

1θv C
     0.015     0.82 

v2θ C
     0.044     4.04* 

State effects     
a11 –1.664 –11.64* –0.594   –6.83* 
a12 –0.009   –0.17   0.013     0.54 
a21 –0.252   –2.00* –0.498   –4.64* 
a22 –1.363   –6.75* –1.168   –5.01* 
Input effects     
b11   0.016     0.39   0.005     0.19 
b12   0.047     0.98   0.021     0.78 
b21   0.001     0.01   0.017     0.49 
b22   0.033     0.89   0.014     0.34 
Fixed intercepts     
b1   0.633   10.21*   0.463   11.87* 
b2 –0.136   –1.97* –0.101   –1.65 
Random intercept variance     

2κ
φ    0.679     2.23*   0.439     1.64 

Error parameters     
g11   1.316   23.93*   0.156     1.61 
g22   1.196   19.93*   1.000   16.40* 
g21 –0.010   –0.18 –0.059   –0.31 
Initial (reduced) state means     

10
µ

t
x  –0.656 –13.39* –0.647 –12.68* 

2 0
µ

t
x  –0.146   –2.24* –0.148   –2.24* 

Initial (conditional) state variances and covariance 

10
φ

t
x    0.419   14.96*   0.052     1.85 

2 0
φ

t
x    1.270   14.76*   1.202   11.13* 

1 20 0
φ

t t
x x  –0.014     0.40   0.015     0.42 

Initial time point regression coefficients     

11tb
0
   0.030     0.86   0.010     0.30 

12tb
0
 –0.057   –1.63 –0.049   –1.44 

21tb
0
   0.021   –0.51 –0.018   –0.42 

22tb
0
   0.029     0.69   0.027     0.63 
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Model I Model II Par. 
Coefficient t Coefficient t 

Covariances between random intercept and initial states 

2 10
κφ

t
x  –0.085   –2.24* –0.091   –2.52* 

2 20
κφ

t
x    0.940     5.25*   0.792     4.10* 

Fit     
2χ  770.2  650.7  

df 206  202  
RMSEA 0.081  0.071  

 
 
From the significance of the measurement error variance of ud (0.422) and of the 

spatially lagged pd (0.044), it follows that Model II is more adequate than Model I. This 
conclusion is supported by the significant improvement of model fit when the assumption 
of no measurement errors is dropped, as shown by the difference test 
( 2

difχ 770.2 650.7 119.5= − =  for df = 206 – 202 = 4). Finally, the RMSEA fit measure of 

Model II (0.071) is smaller than for Model I (0.08), and meets the criterion of a 
‘reasonable’ fit (Jöreskog and Sörbom 1996, p. 124). We conclude that Model II is 
preferable to Model I. For the remainder of this paper, we only consider Model II. 

In order to facilitate interpretation, we present in Table 4 the CT state effect matrices A, 
as well as the corresponding DT effect matrices t∆A  for observation interval  1t∆ =  

derived from the CT state effect matrices. (Observe that for other intervals than 
 1t∆ = the DT results would be totally different, as shown in Figures 4 and 5).  Moreover, 
in Table 2 we present both the standardized (by the initial standard deviations of ud and  
pd) and unstandardized effects in A and t∆A  (in Table 1, only unstandardized effects are 

presented).11  
Comparison of Models I and II in Table 2 illustrates the disattenuation effect due to 

explicitly accounting for measurement errors. With the exception of the unstandardized  
effect ud →  pd the coefficients in Model II are larger than the corresponding coefficients  
in Model I, indicating that the latter are attenuated by measurement errors.  

 
 

                                                 
11 Standardization prevents the effects from being dependent on the measurement scale unit of the variables 
involved. 
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Table 2 CT state effect matrices A and corresponding EDM autoregression matrices 
e t

t
∆

∆ = AA  for Model I (without measurement errors) and Model II (with measurement 

errors), over the one-year observation interval 1t ,∆ =  in unstandardized and standardized 
form 

Model I Model II Par. 
A  1t∆ =A  A  1t∆ =A  

Unstandardized     
ud 

11a  = –1.664* 11 1ta ∆ =  =   0.190 11a  = –0.594* 11 1ta ∆ =  =   0.550 

pd →  ud 
12a  = –0.009 12 1ta ∆ =  = –0.002 12a  =   0.013 12 1ta ∆ =  =   0.006 

ud →  pd 
21a  = –0.252* 21 1ta ∆ =  = –0.056 21a  = –0.498* 21 1ta ∆ =  = –0.209 

pd 
22a  = –1.363* 22 1ta ∆ =  =   0.256 22a  = –1.168* 22 1ta ∆ =  =   0.310 

Standardized     
ud 

11a  = –1.664* 11 1ta ∆ =  =   0.190 11a  = –0.594* 11 1ta ∆ =  =   0.550 

pd →  ud 
12a  = –0.016 12 1ta ∆ =  = –0.003 12a  =   0.063 12 1ta ∆ =  =   0.027 

ud →  pd 
21a  = –0.145* 21 1ta ∆ =  = –0.032 21a  = –0.104* 21 1ta ∆ =  = –0.044 

pd 
22a  = –1.363* 22 1ta ∆ =  =   0.256 22a  = –1.168* 22 1ta ∆ =  =   0.310 

 
 
From Table 1 and Table 2, it follows that, in accordance with our expectations (see 

Section 3), both ud and pd show substantial autoregressive effects (–0.594 and –1.168 in 
A; 0.550 and 0.310 in ).t∆A  In both models the coefficients 11a and 22a  are negative and 

significant, implying that the models are stable. Moreover, as hypothesized, ud has a 
negative effect on pd (standardized value of –0.104), which is highly significant. The 
cross-effect of pd on ud, however, though positive, is not significant (standardized value 
of 0.063). This result is in line with the hypothesized dual population effect on 
unemployment (see Section 2), in that supply factors (such as a potentially larger 
workforce) are counterbalanced by demand factors (such as an increased demand for 
goods). 

Table 1 shows that neither of the two input variables (wage change and change of the 
structure of the manufacturing sector) has a significant effect on either of the two state 
variables. The insignificant effect of wage change on unemployment change is surprising. 
It could be due to the rigidity of wage setting in German (particularly wages are set 
nationally rather than regionally or at firm level), such that regional wages insufficiently 
reflect the regional unemployment structure. Its insignificant effect on population 
development could be due to the many constraints on labour mobility (such as, for 
example, inefficiencies in the housing market). Longer time lags (and hence longer time 
series) may be needed for significant effects to show up.  

The fixed intercept of ud is positive, substantial (0.463) and highly significant, whereas 
the fixed intercept of pd is negative (–0.101) and not significant at the 5 per cent level. 
The random intercept variance and covariances for 1κ  

1 1 1 1 20 0
κ κ κ( , , )

t t
x xϕ ϕ ϕ  were not 

significant and have been left out of the final analysis because they affect the estimations 
of all other model parameters. However, because the covariances of 2κ  with the initial 
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state variables, 
2 10
κφ

t
x  and 

2 20
κφ ,

t
x  are significant, the assumption of the presence of a 

random intercept for pd (variance 
2κ

φ 0.439= ) is supported by the data and therefore 

included in the model. From these results it follows that regions resemble each other 
much more with regard to unemployment change than population change. Particularly, 
for the latter random intercepts are needed to give each region its own expected 
development curve. For unemployment change on the other hand, the data support only 
one single expected curve towards which each region in Germany regresses.  

With regard to the error variances of the structural equations, we find that g11 and g21 

are insignificant. However, we do not impose restrictions of the type g11 = 0 and g21 = 0, 
since it is unrealistic to assume that the model explains all the variance in ud and all the 
covariance between ud and pd.  

The initial state variance of ud (0.052 in Model II) is not significant. This outcome,  
together with the insignificance of its random intercept variance, means that regression 
for ud is not only towards the same expected curve for all regions, but also that the 
variance of the regions around this common expected curve is quite small. The initial 
state variance of pd, however, is significant, meaning that from the start in 2000 the 
regions show clear differences in population change.  

The initial means of the state variables over the 439 German labour market regions 
show that both unemployment and population decrease at the beginning of 2000 (–
0.64712 and 0.148− , respectively). The initial mean unemployment change is much larger 
(in absolute value) and has a higher t-value than the initial mean population change (t = –
12.68 versus t = –2.24). It should be noted that these means have been reduced by 

subtracting the (insignificant) regression means 11 0 12 0( ) ( )t tb wd t b md t+
0 0

 and 

21 0 22 0( ) ( )t tb wd t b md t+
0 0

from the initial means (insignificant) regression effects. The  

uncorrected initial means are even larger in absolute value (–0.975 for ud and –0.288 for 
pd). 

 
4.1 Autoregression Functions, Cross-Lagged Effect Functions, and Means Trajectories 

 
The estimates of Model II will now be used to depict the autoregression functions of ud 

and pd (Figure 4), the standardized cross-lagged effect functions of ud →  pd and 
pd→ud (Figure 5), and the means trajectories of ud and pd (Figure 6) in CT. Figure 4 
shows the decay as indicated by the autoregressive effects of ud and pd. The decay is 
slower for pd than for ud. For pd, the decay is approximately 70 per cent after two years. 
For ud, the decay is approximately 90 per cent over the same period. 

Because the model is asymptotically stable, both the autoregression functions and the 
cross-lagged effect functions go to zero. The standardized cross-lagged effect functions in 
Figure 5 show the effects in terms of standard deviation units of the dependent variable 
from a standard deviation unit increase in the explanatory variable. The cross-lagged 
effect functions start from zero, then reach a maximum (pd →  ud), and a minimum (ud 
→  pd), respectively, and finally die out towards zero. In both directions (ud →  pd and 
pd →  ud), the effects are very small and in both cases the extreme values are reached 

                                                 
12 Meaning a mean decrease of 647 unemployed persons per labor market region over the previous year.  
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pd 

ud 

after 1.15 years. Figure 5 shows that a standard deviation increase in unemployment 
change diminishes population change by 0.044 standard deviation, while a standard 
deviation increase in population change increases employment change by 0.027 standard 
deviation (standard deviations over regions). Observe that the effects die out rather 
slowly: in both cases, after four years, more than a quarter of the maximum impact is left. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 4 Autoregression functions based on Model II parameter estimates. 
 
 

 
 

 
 

pd→ ud 

ud→ pd 

 
Figure 5 Standardized cross-lagged effect functions based on Model II parameter 

estimates 
 



 21

 
 

ud 

pd 

 
Figure 6 Means trajectories based on Model II parameter estimates 

 
 
Figure 6 depicts the autonomous developments of the means of ud and pd , independent 

from input effects. They are given by (see Oud and Jansen 2000):  
 

 0 0) )1
0

( ([ ( )] e [ ( )] [e ] ,t t t tE t E t− −−= + −A Ax x A I b  (19) 

 
where b includes the fixed intercepts. The mean development is driven by two 
components: the autoregression effect of the initial means 0[ ( )]E tx  and the integrated 

effect of the intercepts b over the entire time period considered. Model II estimates are 
used for the specification of A, b, and 0( )tx  in (19). Figure 6 shows that, over the 

observation period 2000–2003, shortly after 2001, the mean unemployment decrease 
turned into an unemployment increase which started levelling off after 2003. The mean 
population decrease diminished until shortly before 2001, and then the downward trend 
increased again. Both trajectories tend to a stable equilibrium position. This stable 
equilibrium position implies for ud a mean unemployment increase of 770.1 per region 
and, for pd, a mean population decrease of 414.4. 
 
 
5. Conclusions 
 
In this paper, continuous-time modelling, as introduced in econometrics in the 1950s by, 
amongst others, Koopmans (1950) and Phillips (1959), and in sociology  by Simon 
(1952)  and Coleman (1968), is used to analyse regional unemployment change in 
Germany on the basis of a data set for the period 2000–2003. For this purpose, we 
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combine the continuous-time modelling approach developed by Oud and Jansen (2000) 
with the spatial dependence approach by Oud and Folmer (2008a). 

Our results shed light on the determinants of regional unemployment and labour supply 
as measured by regional population development. We find that both unemployment 
change and population development change have substantial autoregressive effects. They 
show persistence over time, which, however, is weaker for unemployment change than 
for population change. Regarding cross-effects our results show that an increase of 
regional unemployment change leads to a decrease of local population change: increased  
unemployment change in a given region leads to increased out-migration. This result is 
consistent with theoretical expectations. On the other hand, we do not find a significant 
effect of increased population change (which usually generates pressure on the regional 
job market) on unemploymen tchange. While this finding is worth further investigation, 
we may – at this stage – attribute it to demand factors (such as increased economic 
activity stimulated by increased population change), which counterbalance the labour 
supply effect. Wage change and changes of specialization in manufacturing do not 
significantly impact on unemployment change nor population change. A possible 
explanation for this finding is that wage setting in Germany takes place at the national 
level and that there are only minor regional differences in wage changes in Germany. The 
non-significance of specialization in manufacturing may be explained by the fact that 
changes in economic structure rarely happen in the short run. 

Secondly, we find that regions resemble each other much more with regard to 
unemployment change than with regard to population change . Particularly, regression of 
unemployment change  is not only towards the same expected curve for all regions, but 
also the variance of the regions around the common expected curve is quite small. This 
result confirms the uniform change of regional unemployment in Germany. 

Thirdly, we find that, for both unemployment change and population change, regional 
shocks are absorbed rather fast (50 per cent is absorbed within 14 months), and have 
generally a short lifespan. They are slightly longer for population change than for 
unemploymen tchange , most likely because of the many constraints to mobility, such as 
housing market imperfections. The reciprocal cross-lagged effects between 
unemployment and population change, though definitely small, are long-lasting. A peak 
is reached shortly after one year, and is reduced to 25 per cent after four years. 

From a policy-making viewpoint, our findings suggest that wage change does not have 
a significant effect on regional unemployment change , which could be due to the fact 
that wages are set nationally on a sectoral basis in Germany. Therefore, locally set wages, 
which reflect regional unemployment change, might be considered as in instrument to 
reduce unemployment. 
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