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Abstract
This paper analyzes patterns of regional labouketatevelopment in Germany over the
period 2000-2003 by means of a spatial-dependeanéncous-time model. (Spatial)
panel data are routinely modelled in discrete tirdewever, there are compelling
arguments for continuous time modelling of (spatenel data. Particularly, most social
processes evolve in continuous time such that aisaljn discrete time is an
oversimplification, gives an incomplete represeatat of reality and leads to
misinterpretation of estimation results. The mashpelling reason for continuous time
modelling is that, in contrast to discrete time mlbdg, it allows for adequate modelling
of dynamic adjustment processes (see, for exarSplecial Issue 62:1, 2008, Bfatistica
Neerlandicd. We introduce spatial dependence in a continuboge modelling
framework and apply the integrated framework toicegl labour market changes in
Germany. The empirical results show substantialoragtessive effects for both
unemployment and population change, as well asgative effect of unemployment
change on population change. The reverse effeuitisignificant. Neither are the effects
of the changes of regional average wage and aofttineture of the manufacturing sector
on the changes of unemployment and population.

Keywords. unemployment change, population change, contisuthione modelling,
structural equation modelling, spatial dependenganel data, disattenuation,
measurement errors, Germany.
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1. Introduction

Socio-economic processes such as the developmeameoiployment are the outcomes
of various decisions taken by different actors dfecknt points in time. This basic
feature gives rise to continuously evolving soaof®mic dynamics, rather than to
processes that change at discrete points in tilye ©he analyst, however, only observes
the processes at discrete points in time (for examyearly observations of regional
unemployment). The typical approach in conventioftbht is, discrete) time series
modelling and panel data analysis is to ignore dbetinuous nature of the processes
underlying discrete time observations. Consequeitiscrete time series and discrete
panel data analysis are simplifications of readity may lead to bias in the mapping of
dynamic adjustment processes of socio-economicqrhena and to misinterpretations of
estimation results. Discrete time (DT) analysiaidest a simplified approximation of
real-world processes in continuous time (CT) (Ond Singer, 2008).

CT econometrics models the continuous nature odkpmcesses by means of systems
of differential equations. It departs from the asption that different agents take
different actions at different points in time. Thassumption implies that there is no
obvious time interval that can serve as a natumél This is in contrast to DT models
(which are made up of systems of difference equoajiovhich are necessarily formulated
in relation to the data available (for example fyear monthly data).

A DT model estimated on the basis of, for exampienthly data will be different from
a model estimated on the basis of annual dataCFapproaches, however, the model is
independent of the observation interval, and tmesides a common basis for accurate
comparison of differently time-spaced models of #ame process (Oud and Jansen,
2000). These features enable the analyst to olpt&dictions and simulations for any
time interval, rather than for the time intervahément to the data, as in the case of
DTmodelling.

CT modelling is particularly useful for the analysif dynamic adjustment processes
(Gandolfo, 1993). Whereas in DT models it may mopbssible to obtain an estimate of
the adjustment speed when the time lags are sbomared to the observation period, in
CT models it is in general possible to obtain ayngsotically unbiased estimate of it.
Specifically, CT modelling makes it possible toatatine at what pace an effect builds
up over continuously increasing intervals, at whatiservation points or between which
points the maximum impact of an effect occurs andhat pace it dies out. A CT model
therefore allows a more satisfactory treatmentistfiduted-lag processes.

CT modelling has a long history in econometricsidvang the pioneering work by,
amongst others, Bartlett (1946), Koopmans (195@)Rmllips (1959), CT modelling has
become quite common in applied econometric work & overview, see Bergstrom,
1988). To our best knowledge, however, little atenhas been paid to CT modelling in
spatial econometricsThe reverse also holds: In CT modelling no attentias been paid
to spatial dependence nor, more generally, to digese among units of observation.

2 For an interesting application we refer to Pieasal (2007). Note that in spatial analyses thesuoi
observation usually are discrete. There is, howevgrowing interest in theoretical work on conting



In this paper we introduce spatial dependence@T anodelling framework to analyze
the main determinants of regional unemployment ghan Germany, viz. the changes of
wages, population and industrial structure. Thi i pursued in the framework of
structural equations modelling (SEM). The Germasecs interesting and important,
because inflexible wages are often considered toobe of the main causes of
unemployment in Germany.

The paper is organized as follows. Section 2 ptsséme basic characteristics of CT
modelling and points out the differences with resge DT modelling. The regional
unemployment change model for Germany is outlim&ection 3. In Section 4 the CT
model with spatial dependence and its estimati@mcguure by means of a nonlinear
SEM procedure are outlined, while in Section 5 negtion results are presented.
Conclusions follow in Section 6.

2. Main characteristicsof CT modelling
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Figure 1. Estimated mean curkx(t)], subject-specific mean cunggx(t)|x]
and sample trajectory curégx(t)|y] (for the same subject asHifx(t)[x] ) in
CT (confidence intervals for the sample trajectuyve in dotted lines).

space modelling (see, for example, Puu, 1997).oltleh be a great challenge in spatial modelling and
spatial econometrics to explore the relationshigéwben continuous time and continuous space
modelling and to integrate both. See, amongst st@eessie 1993; Wackernagel 1995; Donaghy 2001).



As observed above, in CT the parameters estimaethdependent of the observation
intervals which implies that CT modeling make itspible to “fill out” the spaces
between the discrete observation time points by ehdihsed estimates, including
interpolations and extrapolations (predictions) fudf developmental and effect curves.
Figure 1 which is taken from Delsing and Oud (20@8)strates this for the mean curve
E[x(t)], which represents the estimated mean trajedtote population, an individual
subject specific mean curve E}] (x the random parameter with the subject specific
value) and the trajectory Epyly] for the same individual subject. The latter, the
conditional mean (conditional on the individual'sta vectory) or state space smoother
(Durbin & Koopman, 2001), represents the best eg#nof the individual's sample
trajectory through CT, which includes error compuse on the basis of the total data
vectory. The latter two curves, though both relating toshee individual subject, differ
because they exploit different kinds of informatiok[x(t)ly] is based on all measured
information available for the subject, using thed®loonly where data are lacking, while
the subject-specific mean curve H)i] is the model expectation, conditioned on the
single subject-specific parameter value (Oud & 8mg008).

Figure 1 shows that by Eply] the gaps between measurements in 1986, 1988, 1990
and 1992 are filled out by interpolations and samyl for the prediction interval 1992-
1998, while uncertainty of the interpolations aneédictions are given by confidence
intervals (dotted lines) These confidence intervals typically go to zerthatobservation
points through 1992 but increase considerably engrediction period after 1992. The
confidence intervals of E[®{y] show that the conditional mean is almost everyehe
significantly above the mean curve EJ(even in the prediction period, and for time
points close to the the measurement points alsoifisigntly above the individual's
subject-specific mean curve.
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Figure 2: Two different autoregression function$wo
different studies A and

3Since there are no error components in §{(and E[x()], there are no confidence intervals for these
curves.



In contrast to CT modelling which gives estimatasthe entire interval 1986-1998, in
DT modeling only estimates of the three types ofanseare obtained for the four
observation time points 1986, 1988, 1990, 1992, @oskibly the three prediction time
points 1994, 1996, 1998. Clearly, the interpolatiamd predictions in CT are subject to
uncertainty. However, the uncertainty is quantified the model by means of the
confidence intervals.

DT modeling may be especially misleading in theecaf unequal observation intervals,
within the same study or when comparisons betwé#éreht studies are made. This is
shown in Figure 2, where (hypothetical) autoregogsunctions in CT of two studies, A
en B, with two different observation intervals @i study A and 1.00 in study B) are
depicted. Because CT autoregression function Bexke A everywhere, the obvious
conclusion is that the autoregression in study lawser than in study B. Nevertheless, in
DT at e.g. observation interval 0.50 (half-yearbservation interval) study A finds the
autoregression value of 0.61 which is consider&blyer than the value of 0.50 found at
the interval 1.00 (yearly observation intervalstndy B, which might lead to the
erroneous conclusion that the autoregression aysAuis larger than in study B. To
obtain the correct answer CT modeling is requiréecty makes it possible to compare
the complete autoregression functions. An importansllary is that that CT modeling
allows combining the data of several studies ime data set, test whether the underlying
continuous time parameters are equal and, if goeésent one and the same
autoregression function (Oud, 2001).
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4 For statistical details, see section 4.



Using equal observation intervals is no solutioth®problems inherent to DT
modeling discussed above. To see this, considdamhéhypothetical) CT reciprocal
cross-lagged effect functions for variableandx, in Figure 3> Unlike autoregression
functions, which start at value 1, cross-laggedaffunctions have starting value O
(different variables cannot have any influence acheother over a time interval of length
zero), increase until the maximum is reached (@ufé 3 the maxima 0.250 and 0.240
are reached at the time points 1.02 and 1.64eoéisply), and next taper off to O (in a
stable model). Figure 3 shows an example of twssstagged effect functions that cross
at interval 1.44. Both have here the same valR@9) but are different over all other
intervals . Particularly, for observation inteival 1.44 the effect of,onx; is larger
than the reverse effect while the opposite holdénfiervals > 1.44. Observe that using
one and the same interval in DT does not resolgthblem. For instance, using the
observation interval 1.44 would lead to the falseatusion that the effect af onx; is
equal to the effect of, onx;. Using only intervals < 1.44 would lead to theséal
inequality effect “effect ofx,onx, > effect ofx, onx;” and using only intervals > 1.44
would lead to the opposite false inequality effegain, CT analysis, particularly
estimating and displaying the full cross-lagge@e&tffunctions over the entire time axis
is required to obtain the correct effects.

3. The Regional Unemployment M odel

Following Elhorst (2003) and Blanchard and Katz92p we adopt a regional labour
market model that relates regional unemploymerdsréthe result of job-matching) to
regional labour supply, economic structure and wadghorst points out thatthe
regional unemployment rate both affects and iscédfit by regional factors of labour
supply, labour demand, and wage3herefore we adopt a simultaneous equations
framework to study the reciprocal effects of regilonnemployment development and
regional labour supply development, as well as ithpacts of the developments of
economic structure and wages on both variables. |dier two variables are assumed
exogenous. The rationale for considering the waaygable exogenous is based on the
fact that in Germany, like in many other Europeauartries, collective wage agreements
are set at the national level on a sectoral baglser than at the regional level. This
means that contractual wages may be considerecpzag for a given region. This view
is supported by a large literature in labour ecaesr(see, for example, Lommerud et al.
2000; Correa Lopez and Naylor 2004). The fact teages are set nationally rather than
regionally does of course not mean that averagessvage largely equal across regions.
Wage differentials occur due to differences inoegi economic structure.

The rationale for taking economic structure as exogs follows from the fact that this
variable evolves slowly, such that changes onlyshp in the long run. Moreover, its
evolution depends on a large set of factors anphitedf not only on the regional wage
structure. Since the time span considered in tapepis seven years only, we consider
economic structure exogenous. Due to lack of datanomic structure is measured in
this paper as the proportion of the workforce emppibin manufacturing (for a similar
approach, see Jones and Manning 1992).

® A cross-lagged effect function gives the effecooé variable on another as it develops acrosse. tim



Formally, the regional unemployment model compris@e equations. In the first
equation, the unemployment development is explaimggopulation development, as
well as by development of average daily wages dfime workers, and of economic
structure. The expected effect of population dguelent on unemployment development
is ambiguous, since demographic development hasngact on both labour supply
(positive or zero impact on unemployment developinand labour demand (negative
impact on unemployment development). On the supjalg, population development —
via natural growth or immigration — may lead tcagger workforce and to changes in its
age structure. Changes in the age structure leadiag/ounger average population — due
to higher birth rates — have been shown to leachigher, and more persistent,
unemployment rates (Elhorst 1995), because of gelaworkforce. However, natural
change of population is known to be a slow, long+puocess rather than a short-run one.
Consequently, it is not expected to have a sigamfieffect on unemployment in the short
panel considered in the present paper.

With regard to immigration, the expected effect af additional migrant on
unemployment is zero, if the migrant fills a jobeomg for which no one in the home
region qualifies or if the migrant does not joire ttvorkforce. However, the impact is
expected to be positive (increasing unemploymehgmthe effect of additional migrants
is worked out through the accounting iderftiElhorst 2003). On the demand side,
negative effects of net immigration on unemploynatelopment may be identified, for
example, because of increased productivity indulsgdmigrants with different skill
endowments (Ghatak et al. 1996), or greater investsnattracted by an increase of
higher-skilled labour, or higher consumption levdle to a larger population. We expect
the labour supply side to dominate the demand &dd hence a positive effect of net
immigration on unemployment development; see, kangple, Pissarides and McMaster
1990). Since in Germany there is outmigration frieigh unemployment regions in the
East (unemployment going down) to low unemploymeagions in the West
(unemployment going up or remaining constant), atign is likely to induce some
convergence of regional unemployment.

Because of the negative impact of wages on labeuanathd (they represent greater
costs for firms), higher wages are expected toem®e unemployment. A positive
coefficient of wage development on unemploymentettgyment may then be expected
(as, for example, in Hall 1972; Layard et al. 1990jith regard to the relationship
between economic structure (regional specializatiord unemployment, we expect, for
regions with a relatively dominant manufacturingtee and a low-skilled workforce (as
in East Germany), that a decrease in the manufagtsector will lead to an increase in
the number of unemployed individuals. Workers laffifrom the manufacturing sector
are likely to experience difficulties in becoming-employed, and will risk long-term
unemployment and loss of skills. A negative effgicspecialization in manufacturing on
unemployment development may then be expected.

The second equation may be compared — with duerdiftes — to the labour supply
equation in the Blanchard and Katz (BK) model (Bleard and Katz 1992). In this
equation, population development is explained kg dbvelopments of unemployment,
wages and manufacturing. We expect higher unem@ayro increase out-migration
and to lead to lower fertility rates. A negativdeet of unemployment development on

® The accounting identity is a deterministic metfimdcomputing regional unemployment levels.



population development may then be expected. lelerdigher wages will tend to
attract individuals towards a region (in-migratiord positive value of the wage
coefficient may be expected. With regard to regi@m@nomic structure, we note that, if
decreasing specialization in manufacturing resuole greater number (or share) of long-
term unemployed, a positive coefficient, though kyemay then be expected for the
effect of change in specialization on populationedepment (see, for example, Budd et
al. 1987).

The model outlined above is formally presentedent®n 4.

4. Specification and Estimation of the Spatial-Dependence Continuous-Time M odel

Let x(t) be then-dimensional (endogenous) state veait) ther-dimensional vector of

(exogenous) fixed input variablésk the n-dimensional vector of subject (region-)
specific deviations from the fixed mean intercepiaf is, a vector of ‘random subject
effects’ or ‘unobserved unit heterogeneity’) awd(t) the standard multivariate Wiener

process. We consider the following spatial errodeidor regions =1,2,...N :

%:Ax(t)+éa(t)+ﬁ+%, (1)

dz(t) _ e 2€), 5 W )

dt dt a @)

where X,., =rowvecX ., and Gy, =rowvecU ., row-vectorize the data

matricesX andU (for each region there is a row withn values for then state variables
and a row withr values for the fixed input variables). Similarlyr fthe random subject

effects k. Furthermore, W has the same dimensiofNnx1) as X, A:IN OA,

B=1,0B, G=I,0G, where the drift matriXA contains the coefficients of the causal

relationships among the state variabRshe coefficients of the effects of the fixed input
variables on the state vector, and the lower tuéarg matrix G transforms the
uncorrelated standard multivariate Wiener prodéssvith variancet at timet into a
process with variances possibit at timet and correlations possibky 0. Matrix C is
the spatial (N x N) connectivity matrix. For the multivariate case specify the

(Nnx Nn) matrix C=COI .- Associated withC are the spatial dependence parameters.

In the general case of a different spatial depecel@arameter for each state variable, we
have the (nxn) spatial parameter matrbR, which for the N subjects becomes

" We assume that the state variables are latergbles, that is, they cannot be directly observed
measurement error. Latent variables are measuretéyr more indicators. For instance, the conoépt
socioeconomic status is usually measured by meansore than one indicator, for example income,
education, and profession. In the present papeoniiedeal with latent variables that are measumgd
one indicator, though with error. The introductigihlatent variables requires the use of a measureme
model relating the latent variables to their intiicg, and a structural model which presents the
relationships between the latent variables. Fah&rdetails see Oud and Folmer (2008b).



R=I v U R. In this paper, we assume one and the same sgapahdence parameter for
the n state variables, that iR =pl,. This simplification safeguards the commutative

property and has two advantages: (a) conventidiaaldard procedures can be used to
solve the stochastic differential equation implied Equations (1) and (2); and (b)
standard spatial econometric methods can be appldxserve that Model (1)—(2)
includes three parameter matrices to be estim#@te8,(andG) in addition to the spatial
parameterp.

From Equations (1) and (2), we derive:

dx(t) _

X = Ax(t) +Ba(t) +k + (I —-RC) 16— W (t) (3)

dt dt

Equation (3) is solved over intervdls- At, t) of length At by:
X(t)=A,X(t-A)+[ A _dsBa(t-An+[ A_dsk "

+(1-RE)?[" A_GdW(s),

whereA, =1, 0A, A, =€, A_ =1 ,0A_, A_ =9 A _=I,0A_, and
where, for convenience sake, it is assumed thahmnﬂi a(t) can be apprOX|mated by
constants over the relevant intervdts- At,t) (for time-varying inputs, see Oud and
Jansen, 2000). Observe the important role of the trixnaexponential
A, =l = A a5 well as the matrix exponentidl, =€, which appears

-9’

three times inside the integrals. Particulad§™ gives the effect ofx(t-At) over the

whole interval At, while €*®® inside the integrals accounts for the fact thaiutn

subject, and noise effects enter continuously t¢verinterval. These effects (from each
time points to t) must be "summed” (via the integrals) to obtdia total effect. For an

explicit expression of the integrﬁ_mAt_Sds we refer to Oud and Jansen (2000).
We write Equation (4) in compact form as follows:

X(t) = A, X(t - At) + B, G(t - At) + H ,k + (I - RC) "W (t - At),

whereB,, = j:_mAt_s ¢B,
- t )
H

t-At

andw € - At )= j:_mAt_sé dv 6).

For an explicit expression of the covariance matfixv(t — At) we again refer to Oud
and Jansen (2000).



We now turn to the estimation of the continuousetiparameters on the basis of
discrete-time observation time poirt;@{tl,...,tT} . For this purpose, we specify, on the

basis of Equation (5), the so-called exact discretelel (EDM) as follows (Oud and
Jansen 2000):

%, =A%

t —At + BA; G; -At + HA; K+ (l - Iié)_lwti -Nt (6)
where the parameter matrices are as in (5). Equat{p) and (6) look very similar.
However, whereas (5) is a CT model defined fot all CT, DT model (6) is defined for

the DT observation points D{tl,...,tT} only. The CT matrices in (5) impose nonlinear

restrictions on the DT matrices in (6) in ordernake them satisfy the CT model
structure.

The EDM is called exact because the nonlinearicéisins it imposes at the DT points
by solving the differential equation ensure that parameters estimated are exactly equal
to the parameters of the underlying differentiali@gpn model. This is in contrast to
several alternative estimation procedures in therdiure that approximate the CT
parameter matrices in Equation (5) (see, for exanfihger 1990).

The CT parameters can be estimated by means ofmbnear Structural Equation
Model (SEM) procedure (using, for example, the M&ware by Neale et al. 2003). For
that purpose, we formulate the SEM model by firstindng the state, input, and error
vectorsX, U, andw, for successive observation time poitjts

X=[% X, ]
u=|a,,..0, |, (")
W=[%, ~E(&,)W,,..W, ]

Next, we write Equation (6) in comprehensive forsn a

%x=Bx+T,0+T & +( -RC)™W, (8)
where we put allT-1 (Nnx Nn) matrices Ami at the appropriate places in the
(TNnx TN matrix B, theT-1 (Nnx Nr) matricesBAti in (TNnx TNr) matrix [, and
T-1 (Nnx Nn) matrices I:|Ati in the (TNnx Nr) matrix T'_. The block-diagonal
(TNnx TN matrix C =& [ C has (possibly asymmetric) blockd on its diagonal.
Because of the assumptiéh=pl,,, we can write(l — RC)™ as(l -pC)™ with T blocks
(1 —=pC)™ on its diagonal.

8 The notation in (8) is a combination of the semddnotations in state-space modelling and strabtur
equation modelling. Although it would be possibbeittroduce a new notation, we prefer to apply the
combined notation so as to facilitate access t@timstituting literatures.

10



Specification of Equation (8) in terms of the sallyi lagged variablest, =Cx and
. =C,i, gives:

X = Bx+p(l - B)X +I',0—pl G, +

=1
I

(9)

where CI' i=r ,C for C,=1.0COI, and where the transformed unobserved
heterogeneityk.. is related to the originat in Equation (6) as followsk_. = (] -RO)k.

Note that in the derivation of Equation (9) we hawade use of the commutative
property several times.
Equation (9) can be specified as a latent variaBlegel as follows:

for (10)
A=%E=[%. U U & ]\E=W,[=[p(1-B) T, —pl, T, ],

which is conventionally written in variable formather than in terms of units of
observation) as follows:

n=Bn+TE&+¢. (11)

If a SEM contains latent variables (in addition dtructural equations in (11)),
measurement equations are required which specufythe latent variables are measured,
that is, how the observed variablgsare related to the latent variableg &7':

y= Am re (12)

Matrix A in (12) contains the loadings, while the measurdnegrors are given by
(with covariance matrixd). The measurement model parameter matritesd © are

estimated simultaneously with the other parametgrioes of model (11). For reasons of
interpretation and identification, it is customaoyspecify unifactorial observed variables
only, which means that each observed variablg mas a loading on only one single
latent variable ifn" &7

The vectory and its spatially lagged counterpgit are defined analogously t and
X.. Therefore, we assume that their loading matrices and measurement intercept
vectorsd are equal. This gives the following measuremerdehtor X and X

=Lx+d+

<l

(13)

<l

e}

I_l ><¢
D_l

11



We impose no equality constraints between the mmeasant error variances of and
V., since the measurement errorsvig are linear combinations of the measurements

errors inv and therefore typically have lower variance.
If there is (as in the present case study) onky observed variable i§ for a given

latent variable inX as well as one observed variableyin for a given latent variable in
X., theny and X as welly.and X.are equal except for the measurement errorg in

and V. JInsuch a case =1 andd =0, so that no loadings or measurement intercepts

are estimated. This model can typically be turnééniified by specifying the
measurement error variances for the repeated neasuts of the same variable ynor

Y. at successive time points to be eddal.

Estimation of SEM models basically comes dowminimizing, in some metric, the
distance between the theoretical variance-covagiamanoment matrix of the observed
variables (as determined by the model specificajiaand the corresponding sample
matrix. There exist various estimators for SEMsludng maximum likelhood (ML).
Oud and Folmer (2008b) show that in the case of ddtimation the standard SEM
likelihood function for a spatial dependency modedd to be augmented by the Jacobian

correction term Il —pC|, where In denotes the natural logarithm. The sizehe
Jacobian correction depends on the number of depéndriables. In a conventional

spatial error model with only a single dependeniade and weights matriXC, the
correction is:
In|l -pC|. (24)

In a multivariate model with equal spatial depercdeparameter fon variables with
(Nnx Nn) matrix C, the Jacobian correction is:

In|I =pC|=nIn|l -pC]. (15)

In a longitudinal analysis withl observations andC| of order (TNnx TNp, the
correction is:

In|1 =pCl=TnIn|I =pCJ} (16)

Finally, if each of then latent variables is measured twyindicators, a(TNnmx TNnm

matrix C applies and the correction becomes (Oud and FAQX0@8b):

° In the full model (13) (including both matrics and measurement intercept vect&)s more than one
indicator per latent variable is specified.

10 of course, a measurement model would not be ne#dldre were only observed variables in the
model in which case we haye=X andy. =X .

12



In|1 =pC|=Tnmin |1 —pCJy (17)

We observe that nonlinear SEM programs like Mx (Ned al. 1999) can be applied to
estimate the Equations (11) and (12), including liakar and nonlinear restrictions
implied by both the CT and the spatial dependepeeiication.

5. Empirical Results

The German regional labor market model outlinedantion 2 can be summarized as
follows. The model is made up of:

* The state variables unemployment change and papulahange. For each state
variable, an autoregressive effect is expected.ebh@r, feedback relationships are
hypothesized between unemployment change and pgapulzhange: a positive effect
of population development on unemployment change, @ negative effect for the
opposite direction from unemployment change to paipan change.

* The fixed input variables wage change and chamfidheomanufacturing sector. We
assume a positive wage change effect and a negatimefacturing change effect on
unemployment change. For population change we asgasitive effects of both input
variables.

» A first-order spatial lag for each of the stateiables. We assume the spatial

dependence parameter for the state variables embel such thaR in Equation (2)
contains only a single spatial parameter

The German regional unemployment model as a CT resemted in Equation
iError! No se encuentra el origen de la referencia., whereud(t) is unemployment
change, pd(t) population changewd(t) wage change, andndt) change of the
manufacturing sector structure:

U~ o ud(y+ 2, pd )+ b wd X+ b miee i+ L,
(18)
PO~ a9+, pd )+ by wd e b, meee e+ T2,

Coefficientsa,, anda,,represent the CT autoregressive effectscdbdindpd, a,, anda,,

the cross-effects gbd on ud and ofud on pd, respectively, whereas the effects of the
input variableswd andmd are given byb,, and b, (onud) and b,, and b,, (on pd).

Finally, b, and b, are the intercepts, and, and x,are the region-specific random
intercepts. Because the random subject effectand «k,represent deviations from the

13



fixed interceptsb, andb,, E(x,) = E(x,) =0. The squared deviations show up in the
model as the variances and ¢, ; their covariance i, .

It should be observed that CT effects basically thee limits of the corresponding
effects in DT for the observation interval goingztero. Due to the nonlinear relationship
between CT and DT effects, the parameter values difear between CT and DT. The
infinitesimal ’cross-effects’a,, and a,, in CT can be interpreted similarly to the
corresponding cross-lagged effezt, and a,,, in DT, but the values o, and a,,
may differ considerably frona,,,, anda,,, , and even the signs may change when going
from the DT coefficients to the CT coefficients &rand vice versa. The reason is that the
CT analysis accounts also for the autoregressifextsfduring the observation interval.
In fact, the estimated cross-lagged effects aretumes of the CT cross- and
autoregressive effects. A variable with a high eedeessive effect, meaning that there is
a strong tendency to sustain its value over tiered$ also to retain the influence of other
variables over a longer time interval than a vdeafith a low autoregressive effect. So,
even a relatively small CT cross-effect can resul relatively high cross-lagged effect
in DT, if the variable influenced has a high augpessive effect. But the converse can
also be true: a relatively strong CT cross-effeatilng only small impact over a DT
interval because of a rather low autoregressivecefh the dependent variable.

The CT autoregressive coefficients (direct feedtbeftects) a,, and a,, additionally
are to be interpreted differently, however, frone ttorresponding DT autoregressive
coefficients a,, and a,,. Suppose the cross-effects to be zero, then a CT
autoregressive effect of 0 B (no change) corresponds to a DT autoregressidn iof
A, , and a CT autoregressive effect-gb in A (maximum negative feedback) to a DT
autoregressive effect of 0 iA,,. So, CT autoregressive effects in the rage®,0) are
transformed to DT autoregressive effects in thged0,1).

For the error components in Equation
iError! No se encuentra el origen de la referencia., Equation (2) applies with spatial

0
dependence parameterand the parameters,, d,, and g,, in matrix G :(gll . j
21 22

This matrix transforms the two independent standfdieher processes

dw, (t)

we_|
dt dW, ()

dt

into the correlated general Wiener processead@ndpd.
Finally, we discuss the parameters relating toititeal time point when the process
starts. First of all, there are the initial stateamsuxjt and Hy, - their varianceapxj{ ,
0 ) 0

Py, - and covarianceﬁpxjt Xy Because the initial means may differ in regionshwi
] 0o 4o
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different levels ofwd andmd at the initial point, one may regread(t,) and pd(t,) on
wd(t,) and md(t) (which gives the regression coefficiertg , b, , b,, andb,, )

and subtract the regression medmswd(t)+h, md t) and b, wd(t)+ b, md )

to obtain the “pure” initial means. Moreover, cdamhal on the initial inputs, the initial
conditional variances and covariance of the stat@éaklles can be calculated. Finally, as
the region specific random effects and k, are assumed to influence the state variables

before as well as after initial time poityt the four covariances between the initial state
variables and the random region effeaﬁlx%' Peyxy (PszxO and (Pszao are

estimated, since they cannot, in general, be takezero.

We estimate two types of models: one without (i) ane with (I) measurement errors
for the state variables, as well as for their gigtiiagged counterparts. Compared to
Model 1, there are four additional parameters indeloll: the measurement error
variancesf,, and0,, for the observed state variables, and measureemngsit variances

Ovlc and Ovzc for their spatially lagged counterparts (see Equatl3)).

Both Model | and Model Il are estimated by ML. S¥ic=4,n =2 andm= 1 (a single
indicator per latent variable), the Jacobian cdivecterm added to the likelihood

function in both models is In —pC|=Tnmin || -pC||=8In|l —p g|We analyse
unemployment change in 439 German labour markedbmegver the period 2000-2003
by means of the CT spatial-dependence modellingoagp outlined above. All observed
variables in the model (two endogenous (state)abées and two exogenous (input)
variables) are defined as changes, that is difteerbetween successive years. For
computation reasons we divide the changes by 1,600.instance, unemployment
change in region in 2000 is measured as (1/1000) * (unemployecgionr in 2000 -
unemployed in regionin 1999).

The estimation results are given in Table 1. Fofktall, we refer to the spatial
dependence parameter which is 0.375 in Model | and 0.378 in Model Ih both

models,p is highly significant. Since it is rather restivet, we relaxed the assumption of

equal spatial dependence fat andpd in the SEM model. This relaxation, however, did
not lead to any significant improvement in model éis measured by thé-difference
test. We conclude that the assumption of the sgatas dependencg for bothud and

pd is not contradicted by the data.

Table 1 ML parameter estimates and associatediesdbr model | (without
measurement errors) and model Il (with measureeeats)

Par. Model | Model Il
Coefficient t Coefficient t

Spatial parameter

p 0.375 16.30  0.378 14.00

Measurement error variances

0 0.422 16.88

vl
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Par. Model | Model I
Coefficient t Coefficient t
0,, 0.081 1.09
0.1c 0.015 0.82
0.2, 0.044 4.04
State effects . .
am; -1.664 -11.64 -0.594 -6.83
a2 —-0.009 -0.17 0.013 0.54
ax —-0.252 -2.00 -0.498 —4.64
az; -1.363 —-6.75 -1.168 -5.01
Input effects
b1, 0.016 0.39 0.005 0.19
b12 0.047 0.98 0.021 0.78
b2y 0.001 0.01 0.017 0.49
b2 0.033 0.89 0.014 0.34
Fixed intercepts .
by 0.633 10.21  0.463 11.87
b, —-0.136 -1.97 -0.101 -1.65
Random intercept variance .
Py, 0.679 223 0439 1.64
Error parameters .
O11 1.316 2393 0.156 1.61
022 1.196 19.93 1.000 16.40
021 -0.010 -0.18 -0.059 -0.31
Initial (reduced) state means . .
e, —-0.656 -13.39 -0.647 -12.68
0
My, ~0.146 -2.24 -0.148 -2.24
1o
Initial (conditional) state variances and covargnc .
(pxj{o 0.419 1496 0.052 1.85
0x, 1.270 14.76  1.202 11.13
]
Py, %, -0.014 0.40 0.015 0.42
0 0
Initial time point regression coefficients
by, 0.030 0.86 0.010 0.30
b2, —-0.057 -1.63  -0.049 -1.44
by, 0.021 -0.51 -0.018 -0.42
by, 0.029 0.69 0.027 0.63
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Par. Model | Model Il

Coefficient t Coefficient t
Covariances between random intercept and initést . .
- —-0.085 -2.24 -0.091 -2.52
2%y,
O 0.940 525  0.792 4.10
2%,
Fit
2 770.2 650.7
df 206 202
RMSEA 0.081 0.071

From the significance of the measurement erroravae ofud (0.422) and of the
spatially laggedd (0.044), it follows that Model 1l is more adequdit@n Model I. This
conclusion is supported by the significant improeatof model fit when the assumption
of no measurement errors is dropped, as shown by tifference test
(x5 =770.2- 650.7% 119. for df = 206 — 202 = 4). Finally, the RMSEA fit measufe o

Model II (0.071) is smaller than for Model | (0.08and meets the criterion of a
‘reasonable’ fit (Joreskog and S6rbom 1996, p. 12¢ conclude that Model 1l is
preferable to Model I. For the remainder of thipgra we only consider Model I1.

In order to facilitate interpretation, we presenfable 4 the CT state effect matrices A,
as well as the corresponding DT effect matrides for observation intervalAt =1

derived from the CT state effect matrices. (Obsetivat for other intervals than
At =1the DT results would be totally different, as shawifrigures 4 and 5). Moreover,
in Table 2 we present both the standardized (byrtiti@al standard deviations afd and
pd) and unstandardized effectsAnand A, (in Table 1, only unstandardized effects are

presentedj’

Comparison of Models | and Il in Tab®illustrates the disattenuation effect due to
explicitly accounting for measurement errors. Witle exception of the unstandardized
effectud — pdthe coefficients in Model Il are larger than theresponding coefficients
in Model |, indicating that the latter are atterathby measurement errors.

1 standardization prevents the effects from beimmeddent on the measurement scale unit of the tasiab
involved.
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Table 2 CT state effect matricAsand corresponding EDM autoregression matrices
A, = e*™ for Model | (without measurement errors) and Maddélvith measurement

errors), over the one-year observation intetMa¥ 1, in unstandardized and standardized

form
Par. Model | Model I

A AAt:l A AAt:l
Unstandardized
ud a, =-1.664 a,.,= 0190 a,=-0594 a,_, = 0.550
pd - ud a, =-0.009 a,.,=-0.002 a,= 0013 a,._, = 0.006
ud - pd a,, =-0.252 a,,.,=-0.056 a,=-0498 a,,_, =-0.209
pd a, =-1.363 a,,. = 0256 a,=-1.168 a,,. = 0.310
Standardized
ud a, =-1.664 a,.= 0190 a,=-0594 a,_, = 0550
pd - ud a, =-0.016 a,,,=-0.003 a,= 0.063 a,. = 0.027
ud - pd a, =-0.145 a,,_,=-0.032 a,=-0.104 a,,_ =-0.044
pd a,, =-1.363 a,,., = 0.256 a, =-1.168 a,,. = 0.310

From Table 1 and Tabl2, it follows that, in accordance with our expeant (see
Section 3), botlud andpd show substantial autoregressive effects (-0.594-antH8 in
A; 0.550 and 0.310 i\ ). In both models the coefficient, and a,, are negative and

significant, implying that the models are stableorbbver, as hypothesizedd has a
negative effect ompd (standardized value of —0.104), which is highlyngigant. The
cross-effect opd on ud, howeverthough positive, is not significant (standardizedue

of 0.063). This result is in line with the hypotieesl dual population effect on
unemployment (see Section 2), in that supply fact@uch as a potentially larger
workforce) are counterbalanced by demand factansh(sas an increased demand for
goods).

Table 1 shows that neither of the two input vaBahlwage change and change of the
structure of the manufacturing sector) has a siamt effect on either of the two state
variables. The insignificant effect of wage changaunemployment change is surprising.
It could be due to the rigidity of wage setting @erman (particularly wages are set
nationally rather than regionally or at firm leyeduch that regional wages insufficiently
reflect the regional unemployment structure. Itsignificant effect on population
development could be due to the many constraintdabour mobility (such as, for
example, inefficiencies in the housing market). g@ntime lags (and hence longer time
series) may be needed for significant effects tmshp.

The fixed intercept ofid is positive, substantial (0.463) and highly sigraht, whereas
the fixed intercept opd is negative (—0.101) and not significant at theeb gent level.
The random intercept variance and covariances ﬁpr(¢Kl,¢le%,¢ ) were not

KiXa,
significant and have been left out of the finallgsia because they affect the estimations
of all other model parameters. However, becausedvariances ofc, with the initial
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state variablesgp and ¢ , are significant, the assumption of the presenca of
KZX]tO KZX%

random intercept fopd (variance Py, =0.439) is supported by the data and therefore

included in the model. From these results it foBothat regions resemble each other
much more with regard to unemployment change thapulation change. Particularly,
for the latter random intercepts are needed to @seh region its own expected
development curve. For unemployment change on tiner diand, the data support only
onesingle expected curve towards which each regiddmmany regresses.

With regard to the error variances of the strudtecuations, we find thai;; and gy,
are insignificant. However, we do not impose restins of the type;; = 0 andg,; = 0,
since it is unrealistic to assume that the modgplas all the variance ind and all the
covariance betweeid andpd.

The initial state variance afd (0.052 in Model 1l) is not significant. This outoe,
together with the insignificance of its random m&pt variance, means that regression
for ud is not only towards the same expected curve foregfions, but also that the
variance of the regions around this common expectede is quite small. The initial
state variance opd, however, is significant, meaning that from thartsin 2000 the
regions show clear differences in population change

The initial means of the state variables over tB8 German labour market regions
show that both unemployment and population decredsthe beginning of 2000 (-
0.647% and -0.148, respectively). The initial mean unemployment geis much larger
(in absolute value) and has a highgalue than the initial mean population chanige €
12.68 versug = —2.24). It should be noted that these means Ih@en reduced by

subtracting the (insignificant) regression mears, wd(t)+h, mdt and

b, wd(t,) + b, md ) from the initial means (insignificant) regressioffeets. The
uncorrected initial means are even larger in alsolalue (—0.975 foud and —0.288 for

pd).

4.1 Autoregression Functions, Cross-Lagged Effectdions, and Means Trajectories

The estimates of Model Il will now be used to depie autoregression functionsuaf
and pd (Figure 4), the standardized cross-lagged effeottfans ofud - pd and
pd - ud (Figure 5), and the means trajectoriesudfand pd (Figure 6) in CT. Figure 4
shows the decay as indicated by the autoregres$igets ofud andpd. The decay is
slower forpd than forud. Forpd, the decay is approximately 70 per cent after twarge
Forud, the decay is approximately 90 per cent over émeesperiod.

Because the model is asymptotically stable, boghatltoregression functions and the
cross-lagged effect functions go to zero. The stedided cross-lagged effect functions in
Figure5 show the effects in terms of standard deviatioitswof the dependent variable
from a standard deviation unit increase in the axalory variable. The cross-lagged
effect functions start from zero, then reach a maxn d - ud), and a minimumud
- pd), respectively, and finally die out towards zdroboth directionsd - pdand
pd - ud), the effects are very small and in both casese#teeme values are reached

12 Meaning a mean decrease of 647 unemployed pepsoriabor market region over the previous year.

19



after 1.15 years. Figure 5 shows that a standavehiiten increase in unemployment
change diminishes population change by 0.044 stdndaviation, while a standard
deviation increase in population change increasgd@/ment change by 0.027 standard
deviation (standard deviations over regions). Olsdhat the effects die out rather
slowly: in both cases, after four years, more thauarter of the maximum impact is left.

1.00
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\
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o

1

pd

Autoregression
o
=
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1

ud

0.00 T T T T T T
[ 10 20 30 40 50 6.0 7.0 8.0 a0 100
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Figure 4 Autoregression functions based on Modpatameter estimates.
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Figure 5 Standardized cross-lagged effect functimsed on Model Il parameter
estimates
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Figure 6 Means trajectories based on Model Il patamestimates

Figure 6 depicts the autonomous developments ainens ofid andpd , independent
from input effects. They are given by (see Oud dartsen 2000):

E[x()] = E[x(t,)] + A {e”™ ~1]b, (19)

where b includes the fixed intercepts. The mean developmsndriven by two
components: the autoregression effect of the Initiaans E[x(t,)] and the integrated

effect of the interceptb over the entire time period considered. Modelstireates are
used for the specification ok, b, and x(t,) in (19). Figure 6 shows that, over the

observation period 2000-2003, shortly after 200k, mean unemployment decrease
turned into an unemployment increase which stadeelling off after 2003. The mean
population decrease diminished until shortly bef20®1, and then the downward trend
increased again. Both trajectories tend to a stalgjeilibrium position. This stable
equilibrium position implies foud a mean unemployment increase of 770.1 per region
and, forpd, a mearpopulation decrease of 414.4.

5. Conclusions
In this paper, continuous-time modelling, as introed in econometrics in the 1950s by,
amongst others, Koopmans (1950) and Phillips (1,988¥ in sociology by Simon

(1952) and Coleman (1968), is used to analyseomadjiunemployment change in
Germany on the basis of a data set for the per@@D-22003. For this purpose, we
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combine the continuous-time modelling approach pesl by Oud and Jansen (2000)
with the spatial dependence approach by Oud andd¥q2008a).

Our results shed light on the determinants of regjionemployment and labour supply
as measured by regional population development. fte that both unemployment
change and population development change haveasiiadtautoregressive effects. They
show persistence over time, which, however, is wedér unemployment change than
for population change. Regarding cross-effects msults show that an increase of
regional unemployment change leads to a decredseaifpopulation change: increased
unemployment change in a given region leads toceas®d out-migration. This result is
consistent with theoretical expectations. On theeohand, we do not find a significant
effect of increased population change (which ugugdinerates pressure on the regional
job market) on unemploymen tchange. While thisifigds worth further investigation,
we may — at this stage — attribute it to demandofac(such as increased economic
activity stimulated by increased population change)ich counterbalance the labour
supply effect. Wage change and changes of spetializ in manufacturing do not
significantly impact on unemployment change nor yapon change. A possible
explanation for this finding is that wage settimyGermany takes place at the national
level and that there are only minor regional déferes in wage changes in Germany. The
non-significance of specialization in manufacturimgy be explained by the fact that
changes in economic structure rarely happen istloet run.

Secondly, we find that regions resemble each othach more with regard to
unemployment change than with regard to populatttange . Particularly, regression of
unemployment change is not only towards the saxpeated curve for all regions, but
also the variance of the regions around the comexpected curve is quite small. This
result confirms the uniform change of regional upgyment in Germany.

Thirdly, we find that, for both unemployment chareyed population change, regional
shocks are absorbed rather fast (50 per cent isrladas$ within 14 months), and have
generally a short lifespan. They are slightly landger population change than for
unemploymen tchange , most likely because of theyncanstraints to mobility, such as
housing market imperfections. The reciprocal claggled effects between
unemployment and population change, though defingmall, are long-lasting. A peak
is reached shortly after one year, and is redue@® tper cent after four years.

From a policy-making viewpoint, our findings suggtsat wage change does not have
a significant effect on regional unemployment cleangvhich could be due to the fact
that wages are set nationally on a sectoral bagsgermany. Therefore, locally set wages,
which reflect regional unemployment change, mightdonsidered as in instrument to
reduce unemployment.
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