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1 Introduction

Over the last twenty-�ve years the majority of empirical studies of exchange rates have

rejected the hypothesis of uncovered interest parity. This hypothesis implies that the (nom-

inal) expected return to speculation in the forward foreign exchange market, conditional on

available information, should be zero. Many studies have regressed ex-post rates of depreci-

ation on a constant and the interest rate di¤erential, rejecting the null hypothesis that the

slope coe¢ cient is one. In fact, a robust result is that the slope is negative. This phenom-

enon, known as the �forward premium puzzle�, implies that, contrary to the theory, high

domestic interest rates relative to those in the foreign country predict a future appreciation

of the home currency.

A particularly interesting explanation of this anomaly has been given by McCallum

(1994a). In an in�uential paper, he shows that models which augment the uncovered in-

terest parity hypothesis with a monetary rule where central banks adjust interest rates to

keep exchange rates stable are better able to capture the forward premium puzzle. In fact,

this policy behavior insight has been widely cited as one of the main explanations for the

rejection of uncovered interest parity (see, e.g., Taylor 1995, Engel 1996, Sarno 2005, and

Burnside et al. 2006).1

Despite its theoretical appeal, the empirical support for this explanation appears tenuous.

The estimates of this policy rule in both Mark andWu (1996) and Christensen (2000)� which

we replicate in this paper� imply that short-term interest rates do not react to exchange

rate �uctuations. However, both papers employ single-equation approaches to estimate this

rule and do not exploit the cross-sectional information contained in the yield curve.

In this paper, we estimate the McCallum (1994a) rule within the framework of an a¢ ne

term structure model with time-varying risk premia. This approach, introduced by Ang,

Dong and Piazzesi (2007) (ADP from now on) in the context of the estimation of a Taylor

(1993) rule, has the advantage of exploiting the information contained in the whole yield

curve as opposed to the information contained only on short-term interest rates. In par-

ticular, long-term interest rates are conditional expected values of future short-rates after

adjusting for risk premia, and these risk-adjusted expectations are formed based on a view

of how the central bank conducts monetary policy. Thus, the whole curve re�ects the mon-

etary actions of the central bank, and the entire term structure of interest rates can be used

to estimate a monetary policy rule. In particular, we estimate a two-country a¢ ne term

structure model using yield curve data over the period January 1979 to December 2005 for

Canada, Germany and the U.K, and taking the U.S. as the foreign country in each case. Our

estimates indicate that, in contrast to the results in Mark and Wu (1996) and Christensen

1Several other explanations for this anomaly are the existence of a rational risk premium in the foreign
exchange rate market, �peso problems�, and violations of the rational expectations assumption. See Engel
(1996) for a review of this literature.
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(2000), the monetary authority in these three countries responds to exchange rate move-

ments. The exchange rate stabilization coe¢ cient is signi�cant at the 5% level for Canada

and the U.K. and signi�cant at the 10% level for Germany which suggests that the mone-

tary authority interprets a depreciating exchange rate as a signal of higher future in�ation

and increases the short rate accordingly.2 Finally, our proposed term structure model with

endogenous risk premia, a main di¤erence with respect to the original work of McCallum

(1994a), replicates the forward premium puzzle for all three datasets.

Our approach also allows us to study the impact of the U.S. short-term interest rate, the

domestic latent factor, and exchange rate on the yield curve. We �nd that the U.S. short rate

tends to be the main driver of the variability of the long-end of the yield curve regardless the

country of examination. For example, 95% of the ten-year ahead variance of the Canadian

ten-year yield, 65% of the variance of the German ten-year yield and 87% of the variance

of the British ten-year yield can be attributed to U.S. shocks. Also, the variability of the

short-end of the yield curve is mainly explained by shocks to the exchange rate. Over 56%

of the one-month ahead variance of the Canadian one-month yield, 87% of the variance of

the German one-month yield, and 90% of the variance of the British one-month yield is

due to exchange rate movements. Finally, both bond and foreign exchange risk premia are

explained by a combination of domestic and foreign exchange shocks with the U.S. short-rate

playing little or no role at all.

The model that we consider in this paper belongs in the literature on international term

structure modeling: see e.g. Saa-Requejo (1993), Frachot (1996), Backus et al. (2001),

Dewachter and Maes (2001), Ahn (2004), Brennan and Xia (2006), Dong (2006), Leippold

and Wu (2007), and Diez de los Rios (2009). These authors exploit the fact that the same

factors that determine the risk premium in the term structure of interest rates in each country

might also determine the risk premium in exchange rate returns. To do so, one usually starts

by specifying the law of motion for the stochastic discount factor in each one of the countries

to then use the law of one price to �nd the process that the exchange rate follows. Using

this approach, the exchange rate is an endogenous variable that is fully determined by the

state variables of the model. In contrast, under a McCallum (1994a) rule, the monetary

authority intervenes in the short-term bond market to respond to exchange rate movements

and, therefore, the rate of depreciation in our model has to itself become a state variable.

Thus, an important contribution of this paper is to show how to restrict the parameters of

the prices of risk to guarantee that the model is consistent: the exchange rate that comes

out of the model is the same as the exchange rate we started with as a state variable. In

this way, we incorporate a feedback e¤ect from exchange rates to the yield curve, a feature

shared with the work of Pericolli and Taboga (2008) who estimate a joint model of bond

2Along these lines, Backus et al. (2009) recently point out a close link between both a Taylor (1993)
policy rule where the monetary authority respond to in�ation and the McCallum (1994a) rule.
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yields, macroeconomic variables and the exchange rate.

Finally, we also estimate the McCallum (1994b) yield-curve-smoothing rule, which was

proposed to explain the rejection of the expectations-hypothesis of the term structure, to

provide a benchmark to compare our results with. To do so, we use the results in Gallmeyer

et al. (2005) who show how to rotate the space of state variables in an a¢ ne term structure

model to relate the short rate to the term premium. Our �ndings indicate that both McCal-

lum rule models seem to provide a similar �t of the yield curve. If there is any di¤erence,

the McCallum (1994a) exchange-rate-stabilization rule seems to do slightly better.

The rest of the paper is organized as follows. In section 2, we brie�y review the forward

premium puzzle and the McCallum (1994a) exchange-rate-stabilization policy rule. Section 3

describes the a¢ ne term structure model and its estimation. Section 4 presents the empirical

results. In Section 5 we compare how both McCallum (1994a) exchange-rate-stabilisation

and McCallum (1994b) yield-curve-smoothing rules �t the term structure of interest rates.

Section 6 concludes.

2 McCallum Rules and The Forward Premium Puzzle

We begin with a review of the forward premium puzzle and the McCallum (1994a)

exchange-rate-stabilization policy rule. Denote the price at time t of a domestic default-

free pure-discount bond that pays 1 with certainty at date t + n as P (n)t . The continuously

compounded yield on this bond, y(n)t , satis�es P
(n)
t � exp(�ny(n)t ). Therefore:

y
(n)
t = � 1

n
logP

(n)
t .

We refer to the short-term interest rate, or short rate, as the yield on the bond with the

shortest maturity under consideration, rt = y
(1)
t . We also de�ne P

(n)�
t and y(n)�t as the price at

time t of a foreign default-free pure-discount bond and its yield, respectively. Similarly, the

foreign short-term interest rate is r�t = y
(1)�
t . Finally, St is the spot exchange rate expressed

as the price in domestic monetary units of a unit of foreign exchange.

Uncovered interest parity relates the expected rate of depreciation of a currency to the

interest rate di¤erential between the countries. It recognizes that portfolio investors at any

time t have the choice of holding either (i) bonds denominated in domestic currency, or (ii)

holding foreign bonds with the same characteristics. Thus, an investor starting with one unit

of domestic currency compares two options. One is to invest in a domestic n-period bond

to accumulate 1=P (n)t = exp(ny
(n)
t ) units of domestic currency. Another option is to convert

his unit of domestic currency at the spot exchange rate into 1=St units of foreign currency,

invest into foreign bonds to accumulate 1=(StP
(n)�
t ) = exp(ny

(n)�
t )=St, and then reconvert

these pro�ts into domestic currency at the prevailing spot exchange rate at t+ n. If agents
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are risk neutral, we get the condition of uncovered interest parity

exp(ny
(n)
t ) = Et

�
St+n
St

exp(ny
(n)�
t )

�
: (1)

Further, if we assume that the spot exchange rate is conditionally log-normal, we can express

the uncovered interest parity hypothesis as:

Et (st+n � st) = �
1

2
V art (st+n � st) + n(y

(n)
t � y

(n)�
t ); (2)

where �1
2
V art (st+n � st) is the Jensen�s inequality term and st denotes the log of the spot

exchange rate.

This theory can be validated empirically by regressing the ex-post rate of depreciation

on a constant and the interest rate di¤erential to, then, test if the slope coe¢ cient is equal

to one. However, such a test reveals that this theory is strongly rejected in the data. In

fact, a robust result in many studies is that the estimated slope is negative and statistically

di¤erent from zero (see Engel, 1996, for a review of the literature). This empirical rejection

is known as the forward premium puzzle and it implies that high domestic interest rates

relative to those in the foreign country predict a future appreciation of the home currency.

Since this puzzle is usually related to the existence of a rational risk premium in the

foreign exchange rate market, the uncovered interest parity is modi�ed as follows:

Et (st+n � st) = n(y
(n)
t � y

(n)�
t ) + �

(n)
t ; (3)

where we have ignored the Jensen�s inequality term and included a risk premium, �(n)t .

McCallum (1994a) proposes a model which augments uncovered interest parity with a

monetary rule where policymakers have some tendency to resist rapid changes in exchange

rates. By modeling monetary policy this way, the resulting equilibrium exchange rate process

is better able to capture the forward premium puzzle. We refer to this rule as the McCallum

exchange-rate-stabilization policy which takes the form:

rt � r�t =  1�st +  2(rt�1 � r�t�1) + et; (4)

where et is the monetary policy shock that summarizes the other exogenous determinants of

monetary policy. This monetary policy rule implies that the central bank intervenes in the

short-term bond market to try to achieve two (perhaps con�icting) goals: �exchange rate

stabilisation�governed by the parameter  1 > 0, and �interest rate di¤erential smoothing�

governed by the parameter j 2j < 1. Note that in this model a depreciating exchange rate
signals higher expected future in�ation, and therefore the monetary authority increases the

short rate.

Combining equations (3) and (4) for n = 1 with a �rst order autoregressive process for

the risk premium such as3

�t = ��t�1 + e�t ;

3McCallum (1994a) also provides a less realistic model for the risk premium where �t is iid with zero
mean.
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where e�t is exogenous white noise, and j�j < 1, McCallum (1994a) obtains, by using the

method of undertermined coe¢ cients, the following reduced form equation for the exchange

rates:

st+1 � st =
 2 � �

 1
(rt � r�t )�

1

 1
�t+1 +

1

 1 +  2 � �
e�t+1: (5)

On this basis McCallum concludes that if  2 is close to 1,  1 is close to 0.2 and �� 1, then

a negative slope coe¢ cient on the forward premium regression may be consistent with the

uncovered interest parity theory.

Note, however, that a limitation of this analysis is the exogeneity of the risk premium: this

theory does not explain how factors driving the risk premium in foreign exchange markets

might be related to factors that a¤ect interest rates. For this reason, we now re-interpret

McCallum�s �ndings in the context of an a¢ ne term structure model.

3 The Model

3.1 General Setup

The McCallum (1994a) exchange-rate-stabilization policy rule captures the notion that

central banks tend to resist rapid changes in exchange rates. In particular, this rule states

that central banks set short-term interest rates in such a way that the interest rate di¤erential

depends on the current rate of depreciation and past values of the interest rate di¤erentials.

Yet, long-term interest rates are conditional expected values of future short rates (after

adjusting for risk premia) and, therefore, the entire yield curve in such a set-up have to

respond to movements in the foreign interest rate and the rate of depreciation. Hence, both

the short-term foreign interest rate and the exchange rate have to themselves become state

variables in the term structure model.

In particular, we assume that there are three state variables:

xt =
�
r�t ft �st

�0
;

where r�t is the foreign (i.e. U.S.) short-term interest rate which, following ADP, we treat

as a latent factor; ft is a domestic latent term structure factor; and, �st � st � st�1 is the

one-period rate of depreciation. We also assume that these state variables follow a VAR(1)

process:

xt+1 = � +�xt + ut+1; (6)

where ut = �1=2"t and "t � iid N(0; I). Since in our empirical application, we choose

the U.S. to be the foreign country, we model the foreign short-rate, r�t , as a �rst-order

autoregressive process: �12 = �13 = 0 in order to guarantee that this variable is not a¤ected
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by domestic factors. Also, we assume that �1=2 has the following form:

�1=2 =

0@ �11 0 0
0 �22 0
�31 �32 �33

1A ;

so that shocks to the foreign short rate and the domestic factor are orthogonal. This as-

sumption guarantees that the model is identi�ed when both r�t and ft are latent factors.

Furthermore, notice that the rate of depreciation is a¤ected by both the shocks to the

foreign short rate and the domestic factor. In addition, we postulate the existence of a third

shock, orthogonal to the previous ones, that only a¤ects the rate of depreciation.

The short rate is related to the set of state variables through an a¢ ne relation:

rt = �0 + �
0
1xt; (7)

where �0 is a scalar and �1 is a 3� 1 vector.
Finally, the model is completed by specifying the stochastic discount factor (SDF) to

take the following form (see Ang and Piazzesi, 2003 and ADP):

mt+1 = exp

�
�rt �

1

2
�0t�t � �0t"t+1

�
; (8)

with prices of risk given by:

�t = �0 + �1xt; (9)

where �0 is 3� 1 vector and �1 is a 3� 3 matrix.
This (strictly positive) SDF, mt+1, prices any traded asset denominated in domestic

currency through the following relationship:

Pt = Et [mt+1Xt+1] ; (10)

where Pt is the value of a claim to a stochastic cash �ow of Xt+1 units of domestic currency

one period later. Using this model to price zero coupon bonds, we obtain the following

recursive relation:

P
(n)
t = Et

h
mt+1P

(n�1)
t+1

i
; (11)

where P (n)t is the price of a zero-coupon bond of maturity n periods at time t.

Similarly, it is possible to show that solving equation (11) is equivalent to solve the

following equation to obtain the price of a zero-coupon bond:

P
(n)
t = EQt

"
exp

 
�
n�1X
i=0

rt+i

!#
;

where EQt denotes the expectation under the risk-neutral probability measure, under which

the dynamics of the state vector xt are also characterized by a VAR(1):

xt = �
Q +�Qxt�1 + ut; (12)
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with

�Q = � ��1=2�0;

�Q = ���1=2�1:

That is, one can price a zero-coupon bond as if agents were risk-neutral by using the (local)

expectations hypothesis once the law of motion of the state variables has been modi�ed to

account for the fact that agents are not risk neutral.

Yet remember that under risk neutrality the nominal expected return to speculation

in the forward foreign exchange market, conditional on the available information, must be

equal to zero. Therefore, uncovered interest parity must be satis�ed under the risk-neutral

measure. This implies that the parameters under Q must satisfy an equivalent version of

equation (2):

EQt �st+1 = �
1

2
e03�e3 + (rt � r�t ); (13)

where �1
2
e03�e3 is the Jensen�s inequality term and ei is a 3� 1 vector of zeros with a one

in the ith position. Substituting (7) into (13) and using (12) to compute the expected rate

of depreciation under the risk neutral probability measure, we get that

e03
�
�Q +�Qxt

�
= �1

2
e03�e3 + (�0 + �

0
1xt)� e01xt;

so the following two restrictions apply:

e03�
Q = �01 � e01; (14)

e03�
Q = �1

2
e03�e3 + �0: (15)

Finally, Ang and Piazzesi (2003) show that the model (6)-(9) implies that the price of a

n-period zero coupon bond satis�es:

P
(n)
t = exp (An +B

0
nxt) ;

where An and Bn satisfy the recursive relations:

An+1 = An +B
0
n�

Q +
1

2
B0n�Bn � �0;

B0n+1 = B
0
n�

Q � �01; (16)

with A1 = ��0 and B1 = ��1. Thus, the continuously compounded yield on an n-period
zero coupon bond at time t, y(n)t , is given by

y
(n)
t = an + b

0
nxt; (17)

where an = �An=n and bn = �Bn=n: Moreover, note that the one-period yield y(1)t is the

same as the short rate rt in equation (7).
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3.2 Stochastic Discount Factors and Exchange Rates

The law of one price tells us that of the three random variables� the domestic SDF, the

foreign SDF and the rate of depreciation� one is e¤ectively redundant and can be constructed

from the other two. In fact, Backus et al. (2001) show that under complete markets the rate

of depreciation and the domestic and foreign stochastic discount factors satisfy the following

relation:

�st+1 = logm
�
t+1 � logmt+1: (18)

In other words, we are implictly assuming a process for the foreign SDF when specifying

the domestic SDF and the rate of depreciation. This is clear once we substitute the law of

motion for the rate of depreciation in (6) and the domestic SDF in (8) into this last equation

and solve for the foreign SDF to obtain:

logm�
t+1 = e

0
3(� +�xt)� rt �

1

2
�0t�t �

�
(�t � (�1=2)0e3

�0
"t+1:

If we now de�ne ��t = �t � (�1=2)0e3 and substitute �t in this equation, we get:

logm�
t+1 = e

0
3(�

Q +�Qxt) +
1

2
e03�e3 � rt �

1

2
(��t )

0(��t )� (��t )0"t+1:

But notice that EQt �st+1 = e
0
3(�

Q+�Qxt) = �1
2
e03�e3+(rt�r�t ) because uncovered interest

parity holds under the risk-neutral measure. Therefore, the foreign SDF has the same form

as (8):

m�
t+1 = exp

�
�r�t �

1

2
(��t )

0(��t )� (��t )0"t+1:
�
;

with a foreign price of risk, ��t , that is also a¢ ne in xt:

��t = �
�
0 + �

�
1xt;

being ��0 = �0 � (�1=2)0e3 and �
�
1 = �1.

Thus, it is straightforward to show that under our framework the price of a foreign

n-period zero coupon bond is also a¢ ne in the set of state variables xt:

P
(n)�
t = exp (A�n +B

�0
nxt) ;

where the scalar A�n and vector B
�
n satisfy a set of recursive relations similar to those in

(16).4 Furthermore, the continuously compounded yield on a foreign n-period zero coupon

bond at time t will be

y
(n)
t = a�n + b

�0
nxt; (19)

where a�n = �A�n=n and b�n = �B�n=n:
4Note that, in this case, r�t = e

0
1xt. Thus �

�
0 = 0 and �

� = e1:
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Finally, we further assume that the foreign (i.e. U.S.) short-rate, r�t , is also a �rst-order

autoregressive process under the risk neutral measure: �Q12 = �Q13 = 0. Such an assumption

guarantees that the foreign yield curve is not a¤ected by domestic factors, and it follows

a one-factor model. This is clearer if we further assume that
����Q11��� < 1 (the short rate is

stationary under the risk neutral measure) because it is possible to solve for b�n to obtain

that:

b�n =

"
1� (�Q11)n

n(1� �Q11)
; 0; 0

#0
;

where both the foreign factor loadings on the domestic latent factor and the rate of deprecia-

tion are zero. Such restrictions might seem restrictive at �rst sight given that it is well known

that we need more than one factor to explain the U.S. yield curve. Yet, given these restric-

tions, our model is still likely to explain well the level of the U.S. curve which, according to

the implications of the McCallum (1994a) monetary rule, should be a main driving factor of

the domestic term structure of interest rates. In addition, note that under this assumption

one avoids the problem of �nding potentially di¤erent estimates of the parameters governing

the U.S. interest rate process depending on the exchange rate under examination. In fact,

augmenting the number of factors in our setup would dramatically increase the number of

parameters involved in the estimation of the model, rendering the estimation exercise almost

impossible.

3.3 Expected Returns

Following ADP, we also analyze expected holding period returns on bonds. Those are

de�ned as:

rx
(n)
t+1 � log

 
P
(n�1)
t+1

P
(n)
t

!
� rt;

= ny
(n)
t � (n� 1)y(n�1)t+1 � rt:

Given that we assume that expectations are rational, the expected value of this variable

is the bond risk premium. In particular, ADP show that expected excess holding period

returns on bonds are also a¢ ne in xt:

Etrx
(n)
t+1 = Axn +B

x0
n xt;

with the scalar Axn = �1
2
B0n�1�Bn�1+B

0
n�1�

1=2�0 and the 3� 1 vector Bx0n = B0n�1�1=2�1.

Note that the expected excess return has three terms: (i) a Jensen�s inequality term; (ii)

a constant risk premium; and, (iii) a time-varying risk premium where time variation is

governed by the parameters in matrix �1.
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Similarly, we can also compute the foreign exchange risk premium as the expected excess

rate of return to a domestic investor on buying a one-period foreign zero-coupon bond:

sxt+1 � log

�
St+1
St

�
+ y

(1)�
t � y

(1)
t

= �st+1 + r�t � rt;

and it is possible to show that the value of this expectation is also a¢ ne in xt:

Etsxt+1 = As +B
0
sxt;

with the scalar As = �1
2
e03�e3 + e

0
3�

1=2�0 and the 3 � 1 vector B0s = e03�
1=2�1.5 As in

the case of the bond risk premium expression, this expected excess return has again three

terms: (i) a Jensen�s inequality term, (ii) a constant risk premium, and (iii) a time-varying

risk premium governed by the matrix �1.

3.4 From A¢ ne to McCallum

In this section, we follow the techniques developed in ADP, to modify the short rate

equation to take the same form as the McCallum exchange-rate stabilization policy rule. We

start by rewriting equation (7) as:

rt = �11r
�
t + ft + �13�st; (20)

where (to ensure that the model is identi�ed) we have set �0 = 0 (to free up the mean of the

latent factor ft) and �12 = 1 (to leave the volatility of the unobserved factor unconstrained).

Equation (6) implies that

ft = �2 + �21r
�
t�1 + �22ft�1 + �23�st�1 + u2t: (21)

Substituting (21) in (20) gives:

rt = �11r
�
t + �13�st + �2

+�21r
�
t�1 + �22ft�1 + �23�st�1 + u2t;

and substituting again for ft�1 in this last expression and rearranging, we obtain:

rt = �2 + �11r
�
t + �13�st (22)

+(�21 � �22�11)r
�
t�1 + (�23 � �22�13)�st�1

+�22rt�1 + u2t:

Under the unrestricted set-up, the short rate depends on (i) current and lagged values

of the foreign short rate and the rate of depreciation, (ii) the lagged short rate and (iii)

5We have used equation (18) to get that Et�st+1 = 1
2 (�

0
0�0 � ��00 ��0) + (�0 � ��0)0�1xt. Substituting

��0 = �0 � (�1=2)0e3 in this expression gives the equation in the text.
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a monetary policy shock. Equating the coe¢ cients in equations (4) and (22) allows us to

obtain:

�11 = 1; �13 =  1; �21 = 0; �22 =  2; �23 =  1 2 (23)

and �2 =  0 if a constant in (4) is included, or �2 = 0 otherwise; and u2t = et is the monetary

policy shock. These restrictions imply that a one percent increase in the foreign short-term

rate translates one-for-one into the domestic short-rate, and that a one percent increase in

the one-period rate of depreciation leads to a  1 percent increase in the short-rate.

Finally note that these restrictions imply that the coe¢ cients in the vector of factor

loadings, bn; in equation (17) are non-linear functions of  1 (and the rest of parameters

under the risk-neutral measure). Thus, the yield curve provides additional over-identifying

assumptions that can be exploited to obtain more e¢ cient estimates of the reaction of the

domestic short-term rate to movements in exchange rates.

3.5 Estimation Method

We estimate our term structure model using the Kalman �lter (e.g., de Jong 2000) with

both domestic and foreign yield data, and assuming that all (both domestic and foreign)

yields are observed with error, so that the equation for each yield is:

ey(n)t = y
(n)
t + �

(n)
t

where y(n)t is the model-implied yield from equations (17) and (19), and �(n)t is a zero-mean

observation error that is i.i.d. across time and yields. We specify �
(n)
t to be normally

distributed and denote the standard deviation of the error term as �(n)� . However, to reduce

the number of parameters to be estimated, we follow Brennan and Xia (1996) to assume the

standard deviation of the yield measurement errors to be of the form: �(n)� = �� where �� is

a single parameter to be estimated.

On the other hand, we could have estimated our model following the usual convention

in the literature (Chen and Scott, 1993, Dai and Singleton 2002; Du¤ee 2002) and assume

that as many yields as unobservable factors are measured without measurement error. In

particular, we could have assumed that the domestic and foreign one-month yields were

observed without measurement error, while the yields on the remaining maturities were

assumed to be measured with serially uncorrelated zero-mean errors. However, such a choice

of bonds to use in the estimation would be arbitrary, and do not guarantee that the estimates

will be consistent with the yields of other bonds. More importantly, ADP point out that by

not assigning several arbitrary yields to have zero measurement error, one does not bias the

estimated monetary policy shocks to have undue in�uence from only those particular yields.

Finally, it is worth mentioning that we employ a score algorithm to maximize the ex-

act log-likelihood function, with analytical expressions for the score vector and information
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matrix obtained by di¤erentiating the Kalman �lter prediction and updating equations as

in Harvey (1989, pp 140-3). Additional details on the estimation method can be found in

Appendix A.

4 Results

Our data set consists of monthly observations over the period January 1979 to December

2005 of the rates of depreciation of the U.S. dollar bilateral exchange rates against Canadian

dollar, the German DM/Euro, and the British pound, along with the appropriate contin-

uously compounded yields of maturities 1, 12, 24, 60 and 120 months for these countries.

We use one-month Eurocurrency interest rates as our one-month yields. Data on the rest of

the zero-coupon yield curve has been obtained from the Bank of Canada. In our empirical

application, we take the U.S. as the foreign country.

Summary statistics for the variables are presented in Table 1. Following Bekaert and

Hodrick (2001), all variables are measured in percentage points per year, and the monthly

rates of depreciation are annualized by multiplying by 1,200. We �nd that summary statistics

of these variables are consistent with those found in previous studies such as, e.g., Backus

et al. (2001) and Bekaert and Hodrick (2001). For example, we �nd that the rates of

depreciation have lower means (in absolute value) than the ones corresponding to the interest

rates, but, on the contrary, exchange rates are more volatile. In addition, bond yields display

a high level of autocorrelation, while the rates of depreciation do not. The rate of depreciation

of the U.S. dollar against the Canadian dollar is less volatile than the rates of depreciation

of the U.S. dollar against the other two currencies. The United Kingdom ranks �rst in terms

of the highest (average) level of interest rates during the sample period, followed by Canada,

the United States, and Germany.

4.1 Parameter Estimates

Tables 2, 3, and 4 present parameter estimates of the a¢ ne term structure model for

Canada, Germany and the U.K., respectively. These three tables are organized in the same

way: Panel a reports the estimates of the McCallum rule; Panel b presents the estimates of

the parameters of the model under the physical measure; and Panel c reports the parameters

of the model under the risk neutral measure. In Panel d, we test if the coe¢ cients under

both the physical and risk neutral measure are the same.

Notice that the estimated coe¢ cients of the exchange-rate stabilisation parameter,  1, in

Panel a of Tables 2�4 are positive for all three countries. This indicates that the monetary

authority interprets a depreciating exchange rate as a signal of higher expected future in�a-

tion and, therefore, it increases the short rate. Also, this coe¢ cient is signi�cant at the 5%

level for Canada and the U.K. and signi�cant at the 10% level for Germany. However notice
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that, while it is positive and signi�cant, the coe¢ cient  1 is well below the hypothesized

value of 0.2 in McCallum (1994a). In particular, these estimates imply that a one percent

shock to the monthly rate of depreciation leads to an increase of 1.75 basis point (bp) per

month in the Canadian short rate, 3.36 bp increase in the German short rate, and 3.13 bp

increase in the British short rate. On the other hand, the interest-rate-smoothing parame-

ter,  2, is close to one for Canada, and bigger than one for Germany and the U.K. While

this result is counter-appealing (McCallum assumes that j 2j < 1), it is reassuring to note
that the eigenvalues of the autocorrelation matrix � in equation (6) are all less than one

in absolute value. Therefore, none of the state variables in our model presents an explosive

behavior despite having  2 > 1 for these two countries.

Comparing coe¢ cients in Panel b of Tables 2�4, we can see that both the U.S. short-term

interest rate and the latent factor are very persistent. This is explained by the fact that the

estimated U.S. short-term rate is highly correlated with the level of the U.S. yield curve, while

the domestic latent factor is higly correlated with the interest rate di¤erential between the

two countries. As widely known in the literature, both variables are highly autocorrelated.

Also, notice in Panel b of Table 2 that both the U.S. short-rate and the Canadian latent

factor signi�cantly Granger-cause the current rate of depreciation. As for the estimates for

Germany in Table 3, we �nd that only the domestic latent factor signi�cantly Granger-

causes changes in the exchange rate. We �nd in Table 4 that both the British domestic

latent factor and the past rate of depreciation Granger-cause the current change in the

exchange rate. We also �nd in these three tables that the impact of the domestic latent

factor on the rate of depreciation is negative for all three countries. This is consistent with

the forward premium puzzle because the latent factor is highly correlated with the interest

rate di¤erential. Finally the estimated matrix �1=2 shows that both shocks to the U.S. short-

term rate and the domestic factors are negatively correlated with the rate of depreciation.

In addition, shocks to the domestic factor seem to be more volatile than shocks to the U.S.

short-rate.

The coe¢ cients of the process that the state variables follow under the risk-neutral mea-

sure are reported in Panel c of Tables 2�4. The analysis of these coe¢ cients reveals that

the U.S. short-term interest rate and the latent factors are also very persistent under the

risk-neutral measure for all three countries. More importantly, we �nd in Panel d of Tables

2�4 that the parameters under both the physical and risk neutral measure are statistically

di¤erent. This indicates that there is a signi�cant constant and time-varying price of risk

in our model. Hence, the U.S. short rate, the latent factor and the rate of depreciation will

play important roles in driving time-varying expected excess returns, as shown below when

analyzing the corresponding variance decompositions.

We also formally test the speci�cation of the model by following de Jong (2000) who

suggests testing the validity of the constraints imposed by the a¢ ne term structure model
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on the general state-space representation of a model that does not impose the no-arbitrage

assumption. In fact, we do not �nd evidence against the validity of the pricing model using

a Lagrange Multipliers (LM) test. In particular, the LM test statistic is 40.686 for Canada,

40.754 for Germany, and 40.689 for the U.K., all smaller than the 5% (and 10%) critical

value of a chi-squared distribution with 31 df (the number of constraints imposed by the

a¢ ne term structure model).

4.2 Back to the Forward Premium Puzzle

While we have found that the monetary authorities in Canada, Germany and the U.K.

respond to exchange rate movements, the motivation for a McCallum�s (1994a) monetary

policy reaction function resides in explaining the forward premium puzzle. Therefore, we

now check if, by adding an endogenous time-varying risk premia to the McCallum rule, our

model is still able to replicate a negative slope coe¢ cient when regressing the ex post rate

of depreciation on a constant and the interest rate di¤erential.

In the spirit of the work by Hodrick (1992) and Bekaert (1995), we obtain an implied

slope coe¢ cient (implied beta) from the a¢ ne model that is analogous to the OLS regression

slope tested in the simple regression approach. This implied beta is simply the ratio of the

model implied covariance between the expected future rate of depreciation and the interest

rate di¤erential to the model implied variance of the interest rate di¤erential. To compute

this statistic, we �rst collect the foreign n-period yield, the domestic n-period yield, and

the rate of depreciation in a vector eyt = �y(n)�t ; y
(n)
t ;�st

�0
to then notice that the model in

section 3 implies the following state-space representation for eyt:
eyt = A+Bxt + �t;
xt = � +�xt�1 + ut;�

"t
ut

����� � yt�1
�t�1

�
;

�
yt�2
�t�2

�
; : : : � N

��
0
0

�
;

�

 0
0 �

��
;

where, again, xt = (r�t ; ft;�st)
0 and

A =

0@ a(n)�

a(n)

0

1A ; B =

0@ b(n)�0

b(n)0

e03

1A ; 
 =

0@ �2� 0 0
0 �2� 0
0 0 0

1A ;

Then, the implied beta from the a¢ ne term structure model will be given by:

�(n) =
1

n
� e

0
3B�(I��)

�1(I��n)	B0(e2 � e1)
(e2 � e1)0(B	B0 +
)(e2 � e1)

; (24)

where, again, ei is a 3 � 1 vector of zeros with a one in the ith position; and 	 is the

unconditional covariance matrix of xt, which can be obtained from the equation vec(	) =

(I��
�)�1vec(�). The numerator of equation (24) is just the model implied covariance
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between the expected future rate of depreciation and the interest rate di¤erential, while the

denominator is the model implied variance of the interest rate di¤erential.

Table 5 presents the term structure of uncovered interest parity slopes implied by the

a¢ ne model. These are computed using equation (24) and taking the parameter estimates

in Tables 2-4 as the true values of the model. We �nd that the estimated implied betas

are all negative, as predicted by the forward premium puzzle. Moreover, they become less

negative as we increase the maturity of the contracts under consideration. For example, the

implied beta for Canada at the one-month horizon is -1.770, while it is -0.104 at the ten-year

horizon. Similar patterns can be found for Germany and the U.K.

We also compute sample estimates of these regression slopes using the coe¢ cients of a

VAR(1) model on the rate of depreciation and the set of interest rate di¤erentials.6 This

model is akin to the vector-error-correction model in Clarida and Taylor (1997). Moreover,

implied uncovered interest parity slope coe¢ cients from a VAR(1) have already been used

in Bekaert and Hodrick (2001).7 When comparing the implied slopes from the a¢ ne model

and these new estimates, we �nd that both implied slopes are close. That is, our model is

able to replicate a negative uncovered interest parity regression slope as predicted by the

forward premium puzzle, and it also provides slope estimates close to what we would have

found using a more traditional estimation method.

4.3 Latent Factor Dynamics

Figure 1 plots the estimated latent U.S. short-term rate together with the monthly yield

on the U.S two-year bond. We plot the time series of the estimate of r�t conditional on

information up to time t: r�tjt = Et (r
�
t j It) where It is the information set at time t. These

are obtained using the Kalman �lter algorithm.8 This �gure highlights the strong relationship

between the estimated short-term rate and the level of the yield curve. Notice that, despite

the estimated U.S. short rate being slightly above the monthly yield on the U.S two-year

6Similar results are found when choosing a second-order VAR model.
7In practice, we would like to compare the implied betas from the a¢ ne model to those computed using

traditional OLS methods. However, such an approach has the main drawback of largely reducing the number
of e¤ective observations when the maturity of the contract under consideration, n, is large. For example, if
we were to compute an OLS slope using one-month yields, we would lose one observation while if we were to
use ten-year yields, we would then e¤ectively lose 120 observations (which is roughly half of the sample) when
computing the ten-year rate of depreciation. Thus a comparison of OLS betas across di¤erent maturities
would be complicated by the use of di¤erent e¤ective samples. Notice also that a similar problem arises
when comparing OLS betas and those computed from the a¢ ne model because the term structure model
parameter estimates are computed using the whole sample. On the other hand, computing implied betas
from a VAR do not su¤er from this problem given that a VAR model is estimated using the whole sample
thus making a fair comparison between those obtained from an a¢ ne model and this approach. In any case,
it is reassuring to �nd that OLS and VAR estimates of the slope coe¢ cient are basically the same when the
contract period is n = 1 (both are computed using the same number of e¤ective observations), and n = 12:

8Note that we have three di¤erent estimates of r�t depending on the country we focus on. Still, these are
highly correlated with each other, and the correlation among the three U.S. short rate estimates ranges from
0.999 to 1. Consequently and for simplicity, we plot the estimate obtained from the U.K. model.
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bond, both variables follow each other. In e¤ect, we �nd that the correlation between our

estimated factor and the yield curve ranges from 0.941 (one-month bond yield) to 0.977

(two-year bond yield).

Figure 2 plots the estimate of the Canadian latent factor together with the di¤erence

between the Canadian and U.S. two-year bond yields, and the rate of depreciation. Figures

3 and 4 plot the same variables for Germany and the U.K., respectively. Again, we plot the

time series of the estimate of ft conditional on information up to time t: ftjt = Et (ftj It).
Note in these graphs that the domestic latent factor are strongly correlated with the term

structure of bond yield di¤erences. For example the correlation with the two-year bond

yield di¤erence is 0.903, while it is 0.904 for Germany and 0.863 for the U.K. Moreover, both

the German and British factors seem to have inherited some volatility from the exchange

rate. In fact, the correlation of the domestic factor with the rate of depreciation is -0.492 for

Germany and -0.564 for the U.K., while it is only -0.207 for Canada.

4.4 Variance Decompositions

Tables 6, 7 and 8 present variance decompositions from the model and the data for

Canada, Germany and the U.K., respectively. These show the proportion of the forecast

variance that is attributed to each factor. Panel a reports variance decompositions of (i)

yield levels, y(n)t ; (ii) expected bond excess returns, Etrx
(n)
t+1; and (iii) yield spreads, y

(n)
t �y(1)t .

Panel b reports variance decompostions of (i) the rate of depreciation, �st+1; and (ii) the

foreign exchange rate risk premium, Etsx
(n)
t+1.

Canada. We �rst focus on the results for Canada in Panel a of Table 6. One interprets
the top row of Table 6 as follows: 1.61% of the one-month ahead forecast variance of the

one-month yield is explained by the U.S. short-term rate, 41.52% by the domestic latent

factor and 56.87% by the rate of depreciation.

Notice that when we look to the one-month ahead variability of bond yields, we �nd

that the proportion of variability accounted by the U.S. short-term yield increases with the

maturity of the bond. This ranges from 1.61% for the one-month yield to 67.31% for the

ten-year yield. Second, we �nd that the proportion of forecast variance explained by the

domestic factor has a hump-shaped pattern. It explains 41.52% of the one-month ahead

forecast variance of the short-rate, the 75.06% of the variability in one-year bond yields,

but it explains only 30.88% of the forecast variance of the long-end of the yield curve. Last,

shocks to the exchange rate do not explain the one-month ahead variability of the yield curve

with the exception of the variance of the one-month yield (56.87%). This picture changes

when we increase the forecasting horizon. For example, once we focus on the one-year ahead

horizon, we �nd that shocks to the exchange rate account for almost 45% of the variability of

the one-year yield (versus 6.65% when looking to one-month ahead variance decompositions).

Yet, this e¤ect decreases as we increase the maturity, and exchange rate shocks only explain
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around 20% of the variability at the long-end of the yield curve. Finally, the U.S. short-rate

has the most explanatory power for ten-year ahead forecast variances at all points of the

yield curve.

Turning to the variance decomposition of the bond risk premium, we �nd that shocks

to the exchange rate are by far the main driving force of expected excess bond returns. In

e¤ect, the rate of depreciation has more explanatory power than the U.S. short-rate and the

domestic factor at all points of the yield curve and for all forecast horizons. Similarly, the

last three columns in Panel a of Table 6 document that shocks to the exchange rate tend to

be the main driving force of yield spreads. However, we �nd that the e¤ect of the domestic

factor in explaining yield spreads becomes non-negligible and accounts for around 30% of

this variability when we increase the maturity of the bond under consideration to one year.

If we further increase the forecast horizon to ten years, we notice that shocks to the U.S.

short-rate explains around 30% the variability of the ten-year spread,

Panel b of Table 6 presents the variance decomposition for the rate of depreciation and

the foreign exchange risk premium, and it is not surprising to �nd that the main driver of

exchange rate variability is the shock to the rate of depreciation. In particular, it explains

around 90% of the variability of the depreciation rate for all forecast horizons. Also, we �nd

that both the domestic latent factor and the rate of depreciation have explanatory power

over the foreign exchange risk premia. In particular, they account for around 40% and 50%

of its variability, respectively. Finally, the U.S. short-rate has little in�uence on both the

exchange rate and its risk premium.

Germany. Focusing on Panel a of Table 7, which presents variance decompositions from
the model and German data, we notice that the rate of depreciation has more explanatory

power than the U.S. short rate and the domestic factor at all points of the yield curve for the

one-month and one-year forecast horizons. Still, the e¤ect of exchange rate shocks decreases

with the bond�s maturity. It explains the 87.68% of the one-month ahead variability of the

short-end of the curve, while it explains 61.08% of the variability of its long-end. Equally

important, the e¤ect of the U.S. short-rate grows with the maturity of the bond under

consideration for all forecast horizons. In fact, this state variable becomes the main driver

of the ten-year ahead forecast variance of the long-end of the German yield curve: Over 65%

of the ten-year ahead variability of the ten-year bond yield is due to the U.S. short-rate.

As a di¤erence with the results for Canada, note in columns 4�6 that the domestic latent

factor is now the main driving force of expected excess bond returns. It explains over 90%

of the variability of bond risk premia at all maturities and for all forecast horizons. The

rate of depreciation, which accounts for almost 90% of the variation of Canadian bond risk

premia, now explains only 5% of the forecast variance of German excess bond returns. We

also �nd in the last three columns of Panel a, that very little of the forecast variance of bond

premia nor yield spreads can be attributed to the U.S. short-term rate. In e¤ect, over 85%
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of the one-month ahead variability of the one-year spread. Yet, the explanatory power of

this variable decreases with bond�s maturity, and the domestic latent factor only explains

25% of the ten-year spread. Finally, the e¤ect of the rate of depreciation tends to increase

with both the bond�s maturity and the forecast horizon.

We also notice another di¤erence with the Canadian dataset when looking to the variance

decomposition of the rate of depreciation in Panel b of Table 7: the main driver of exchange

rate variability is the domestic latent factor. It explains around 95% of the variability of the

depreciation rate for all forecast horizons. When looking to the exchange rate risk premium,

we �nd that its variability at the short horizon can be attributed to both the latent factor and

the rate of depreciation. Each of these two variables explains almost a 45% of the one-month

ahead forecast variance of the exchange rate risk premia. Besides, the proportion of the risk

premium component explained by exchange rate shocks increases to almost 70% and 75%

for the one-year and ten-year ahead horizons, respectively. While the in�uence of the U.S.

short-rate on the exchange rate is almost zero, it accounts for almost 10% of the one-month

ahead forecast variance of the exchange risk premium and almost 17% of its ten-year ahead

variability.

U.K. Last, we focus on the results for the U.K. in Panel a of Table 8. At short maturities,
very little of the one-month and one-year ahead forecast variance can be attributed to the

U.S. short-term rate. In fact, this variability is mostly explained by shocks to the exchange

rate of depreciation. Here, exchange rate movements explain around 95% of the one-year

ahead forecast variance of the one-year yield. However, as we increase the maturity of the

bond under consideration, the U.S. short-rate becomes the main driver of the long-end of

the yield curve, and almost half of the variability of the ten-year bond is due to U.S. shocks.

These results are similar to those for the German variance decomposition.

Also, the domestic latent factor is the main driving force of expected excess bond returns

and explains around 87% of the variability of bond risk premia at all maturities and for all

forecast horizons. Likewise, the rate of depreciation accounts for 10% of the forecast variance

of the U.K. risk premium, and the e¤ect of U.S. shocks are almost negligible. When looking

to the variance decomposition of British bond spreads, we �nd again that very little of the

forecast variance of yield spreads can be attributed to U.S. shocks. In fact, the domestic

latent factor tends to explain most of the variability of the one-year spread, while the rate of

depreciation explains the forecast variance of �ve and ten-year yields. That is, the e¤ect of

the domestic factor tends to decrease and the e¤ect of exchange rates tend to increase with

the maturity of the contract under consideration.

Panel b of Table 8 reveals that the the variance decomposition of the rate of depreciation

in the U.K. is similar to that of Germany: the main driver of exchange rates is the domestic

latent factor which explains around 95% of the variability of the rate of depreciation at all

forecast horizons. Turning to the exchange rate risk premium, we �nd that its variability at
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the short horizon is explained by both latent factor and exchange rate shocks. For example,

the domestic latent factor explains 67.24% of the variance of the foreign exchange risk premia

at the one-month horizon. Once we increase the forecast horizon to one year, we �nd that

both the latent factor and the exchange rate have signi�cant explanatory power over the risk

premia: 42.74% and 49.49%, respectively. Finally, over 62% of the ten-year ahead forecast

variance of the risk premium can be attributed to exchange rate shocks.

Overall comments. There are several messages that emerge from these tables. First,

the U.S. short rate tends to be the main driver of the variability of the long-end of the yield

curve regardless of the country being examined or the forecast horizon. Second, the forecast

variance of the short-end of the yield curve is mainly explained by shocks to the exchange

rate. Finally, U.S. shocks do not explain expected excess returns (risk premium). This is true

for both bond and foreign exchange risk premia and these are explained by a combination

of domestic and foreign exchange shocks.

4.5 Pricing Errors

Table 9 reports mean pricing errors (MPEs) and mean absolute pricing errors (MAPEs)

obtained from the a¢ ne term structure model. These are computed as �(n)t = y
(n)
t �an�b0nxtjt

where xtjt is the estimate of the vector of state variables xt conditional on information up to

time t: xtjt = Et (xtj It).
Overall, MPEs tend to be small. In fact, they are less than one bp per month (in absolute

value) for all countries and maturities with the exception of the one-month and one-year yield

in the U.K. These are still close to one bp per month: 1.1 bp and -1.2 bp, respectively. It

is also interesting to highlight that MAPEs of bonds at the middle of the yield curve are

smaller than those at the long-end of the yield curve. Nonetheless, they tend to be fairly

large. For example, the MAPE of the Canadian one-month yield (ten-year yield) is 5.21bp

(5.87 bp) per month, it is 2.92 bp (3.94 bp) for Germany, and 4.59 bp (5.79 bp) for the

U.K. As in the case of ADP, we do not �nd these results surprising because our system only

has one latent factor. Additionally, we will argue in section 5 that the magnitudes of these

pricing errors are similar to those that we would have obtained by estimating a two-factor

arbitrage-free Nelson-Siegel model.

Finally, one-month interest rates tend to have larger MAPEs than the rest of the yields.

Therefore, constraining these yields to have zero measurement errors in order to recover

latent factors from data on selected yields might lead to misspeci�cation issues.

4.6 Comparison with Other Estimation Methods

Finally, we compare our estimates of the McCallum (1994a) exchange-rate-stabilisation

rule to those obtained in previous attempts of estimating this rule. Following Christensen

(2000), Panel a of Table 10 reports ordinary least squares estimates of this rule, while Panel b
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reports exponential GARCH estimates of these parameters. Note that, when using these two

approaches, the exchange-rate-stabilisation parameter,  1, is small and positive for Canada

and negative for Germany and the U.K. However and as a di¤erence with our no-arbitrage

estimates, it is not possible to reject that this coe¢ cient is equal to zero at the conventional

con�dence levels.

We also follow Mark and Wu (1996) to estimate the policy rule using instrument vari-

ables.9 The reason is that the monetary policy shock in the McCallum rule (4) can be

correlated with the rate of depreciation. The results can be found in Panel c. We now �nd

that  1 is negative for Canada and Germany, while it is positive for the U.K. Again, it is

not possible to reject that this coe¢ cient is equal to zero for any of the three countries that

we include in our study.

Finally and for the sake of comparison, we provide again the estimates of the McCallum

rule obtained using an a¢ ne term structure model. Here, we �nd that the exchange rate

stabilisation coe¢ cient is positive and signi�cant at the 5% level for Canada and the U.K.,

and it is positive and signi�cant at the 10% level for Germany. Therefore, by exploiting

information from the entire term structure, we are able to estimate the underlying structural

parameters in the policy reaction function more e¢ ciently.

5 Which McCallum Rule?

Monetary policy behavior is not only a solution to the forward premium puzzle but also

helps solving another major puzzle in �nancial economics: the drastic inconsistency of data

with the expectation hypothesis of the term structure of interest rates highlighted in, e.g.,

Fama and Bliss (1987). In particular, McCallum (1994b) shows that by augmenting the

expectations-hypothesis model with a monetary policy rule that uses a short-term interest

rate instrument and that is sensitive to the slope of the yield curve one can reconcile data

and theory. We refer to this rule as the McCallum yield-curve-smoothing policy rule and it

takes the form:

rt = '0 + '1(y
(n)
t � rt) + '2rt�1 + vt (25)

where vt is the monetary policy shock. This policy rule is similar in spirit to that in (4) and

it implies that the monetary authority intervenes to try to achieve two goals. The �rst one

is �yield-curve smoothing� governed by the parameter '1 > 0. That is, the central bank

interprets a widening term spread as a signal of higher future in�ation and, therefore, raises

the short-rate accordingly. The second objective is �interest-rate smoothing�governed by

the parameter j'2j < 1.
Therefore, we have two competing monetary policy rules trying to explain two di¤erent

puzzles in �nancial economics. In this section, we compare our results to those that we

9In particular, we use the instrument set given by (1;�st�1;�st�2; rt�1 � r�t�1; rt�2 � r�t�2):
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would have obtained by embedding the McCallum (1994b) yield-curve-smoothing policy

rule into an a¢ ne term structure. Still, this is a much easier task than the estimation of the

exchange-rate-stabilization rule because Gallmeyer et al. (2005) show that one can rotate

the space of state variables in an a¢ ne term structure model to relate the short rate to the

term premium as in equation (25). In particular, they show that a given m factor a¢ ne

term structure model can be rotated into a new set of state variables that includes the short

rate and the yield spread on m � 1 bonds of longer maturity. This way, one can express
the coe¢ cients in McCallum (1994b) rule as non-linear functions of the parameters of the

term structure model. Hence, estimating this rule using a no-arbitrage model amounts to (i)

estimating a two-factor a¢ ne term structure model, (ii) rotating the space of state variables,

and (iii) recovering the coe¢ cients '0; '1 and '2 as functions of the parameters of the

original term structure model.

5.1 A no-arbitrage discrete-time Nelson-Siegel model

As previously mentioned, the estimation of a McCallum (1994b) rule requires as a �rst

step the estimation of a two-factor a¢ ne term structure model. In particular, we choose

to estimate a discrete-time version of the arbitrage-free Nelson-Siegel model presented in

Christensen et al. (2007) and introduced in Diebold et al. (2005).10 This model has several

advantages. For one, it is parsimonious and provides a good �t of the yield curve with only

a few parameters. Second, it is quite easy to estimate. Third, it is constructed under the

no-arbitrage hypothesis and thus it imposes the desirable theoretical restrictions that rule

out opportunities for riskless arbitrage. Last, the two latent factors in this model can be

interpreted as the level and slope of the yield curve.

In this model, the short rate is just the sum of two latent factors:

rt = z1t + z2t; (26)

which, under the physical measure, follow independent AR(1) processes with Gaussian errors:�
z1t+1
z2t+1

�
=

�
�1
�2

�
+

�
�1 0
0 �2

��
z1t
z2t

�
+

�
�1 0
0 �2

��
�1t
�2t

�
; (27)

where j�ij < 1 for i = 1; 2.
The model is completed by specifying the process that zt = (z1t; z2t)0 follows under the

risk-neutral measure.11 Here we assume again that each latent factor follows an independent

AR(1) processes with Gaussian errors:�
z1t+1
z2t+1

�
=

�
1 0
0 �

��
z1t
z2t

�
+

�
�1 0
0 �2

��
�1t
�2t

�
: (28)

10While the original no-arbitrage Nelson-Siegel models were set-up in continuous-time, we have decided
to use discrete-time techniques here in order to be consistent with the modeling choice made on the rest of
the paper.
11One can easily specify the set of restrictions that guarantee that the prices of risk deliver such a process

under the risk neutral measure (see Diebold et al. 2005).
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The di¤erence is that z1t has now a unit root under the risk neutral measure, while we

assume j�j < 1 to guarantee that z2t is stationary.
Notice that this model falls under the general framework of an a¢ ne term structure

model. In particular, we can use a set of recursions similar to those in (16) to price bonds

in this economy and obtain that

y
(n)
t = aNSn + (bNSn )0zt;

with the factor loadings being

bNSn =

�
1;
1� �n

n(1� �)

�0
:

These two coe¢ cients in bNSn share the same properties of the �rst two factor loadings in

the Nelson-Siegel model in Diebold and Li (2006). The �rst loading is unity which implies

that the �rst latent factor, z1t, a¤ects yields of all maturities one-for-one. Thus, it can be

viewed as a long-term/level factor. On the other hand, the second factor starts at one for

n = 1, and goes to zero as the maturity increases (n!1). This way, it a¤ects mainly short
maturities, and it can be viewed as a short-term/slope factor. The yield-adjustment term,

aNSn , is similar to that in the arbitrage-free Nelson-Siegel model presented in Christensen et

al. (2007).

Finally, we rotate the set of latent factors as shown in Gallmeyer et al. (2005) to relate

the short rate to the yield spread on the n-period bond as in the McCallum�s (1994b) rule.12

We show in appendix B that the short rate can be expressed as

rt = '0 + '1

�
y
(n)
t � rt

�
+ '2rt�1 + vt;

where the parameters '1 and '2 satisfy that:

'1 =
n(1� �)

n(1� �)� (1� �n)
� �1 � �2

�2
; (29)

'2 = �1; (30)

and '0 is a highly non-linear function of the parameters of the term structure model. This

way, we recover the coe¢ cients on the McCallum (1994b) as functions of the estimated

underlying parameters of this term structure model and obtain standard errors of these

estimates using the delta method.

5.2 Results

We estimate the discrete-time version of the two-factor arbitrage-free Nelson-Siegel model

using the Kalman �lter. We assume that all yields are observed with measurement error.

12We choose n = 120 months.
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While not reported for space considerations, we �nd that our estimated model share many

similar features to those in Diebold and Li (2006) and Christensen et al. (2007). For instance,

we �nd that both the level and the slope factor are very persistent and that the slope factor is

more volatile than the level factor. Finally, the estimate (standard error) of the parameter �

is 0.961 (0.002) for Canada, 0.974 (0.001) for Germany and 0.915 (0.005) for the U.K. These

numbers are similar to the equivalent (discretized) parameter estimates found in Christensen

et al. (2007).

Next, we recover the coe¢ cients of the McCallum (1994b) yield-curve-smoothing policy

rule '0, '1 and '2 from the estimated parameters of the Nelson-Siegel model and compute

their standard errors using the delta method. These are reported in Panel a of Table 11.

Notice that the estimated yield-curve smoothing parameter, '1, is positive for all three

countries. This suggests that the monetary authority interprets a widening term spread as

a signal of higher future in�ation and, therefore, intervenes in the short-term debt market

raising the short-rate accordingly. This coe¢ cient is signi�cant at the 5% level for Canada

and the U.K. and signi�cant at the 10% level for Germany. Yet, this coe¢ cient tends to

be small: a one percent change in the spread leads to a 1.68 bp per month increase in the

Canadian short rate, 1.01 bp increase in the German short rate, and 2.34 bp increase in the

British short rate. On the other hand, the interest rate smoothing parameter, '2, is close to

one for all three countries under consideration.

To compare how both McCallum rule models �t the yield curve, Panel b of Table 11

reports MPEs and MAPEs obtained from the Nelson-Siegel model. Note that this panel is

analogous to Table 8. We �nd that the MPEs obtained from the Nelson-Siegel model are all

larger than those reported for the McCallum (1994a) a¢ ne term structure model. They are

now larger than one basis point. For example, the MPE of the Canadian one-month yield

(ten-year yield) is 3.75bp (2.25 bp) per month, 2.39 bp (0.91 bp) per month for Germany,

and 3.61 bp (1.71 bp) per month for the U.K. Looking to MAPEs, we �nd a similar picture:

the McCallum (1994a) a¢ ne term structure model still tends to do better. However, we

now �nd that the Nelson-Siegel model provides a better �t for the long-end of yield curve.

For example, the MAPE for the Nelson-Siegel model (McCallum exchange-rate-stabilization

model) is 4.48 bp (5.87 bp) for Canada, 2.87 bp (3.94 bp) for Germany, and 3.79 bp (5.79

bp).

To conclude, both McCallum rule models seem to provide similar �ts of the yield curve.

If any, the McCallum (1994a) exchange-rate-stabilisation rule seems to do slightly better.

6 Final Remarks

In this paper we estimate the McCallum (1994a) rule within the framework of an a¢ ne

term structure model with time varying risk premia. Using yield curve data over the period
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January 1979 to December 2005 for Canada, Germany and the U.K., we �nd that the

monetary authority in these three countries responded to exchange rate movements. In

particular, we �nd that the exchange rate stabilisation coe¢ cient is signi�cant at the 5%

level for Canada and the U.K. and signi�cant at the 10% level for Germany. This indicates

that the central bank interprets a depreciating exchange rate as a signal of higher expected

future in�ation and, therefore, it increases the short rate. More importantly, the proposed

a¢ ne term structure model replicates the forward premium puzzle, as it is able to replicate

a negative slope coe¢ cient on a regression of the ex-post rate of depreciation on a constant

and the interest rate di¤erential for all three datasets.

Similarly, we �nd that the U.S. short-rate tends to be the main driver of the variability

of the long-end of the yield curve regardless of the country being examined. For example,

95% of the ten-year ahead variance of the Canadian ten-year yield, 65% of the variance

of the German ten-year yield and 87% of the variance of the British ten-year yield can be

attributed to movements in the U.S. short-rate. Second, the variability of the short-end of

the yield curve is mainly explained by shocks to the exchange rate. Over 56% of the one-

month ahead variance of the Canadian one-month yield, 87% of the variance of the German

one-month yield, and 90% of the variance of the British one-month yield is due to exchange

rate movements. Finally, both bond and foreign exchange risk premia are explained by a

combination of domestic and foreign exchange shocks with the U.S. short-rate playing little

or no role at all.

While in this paper we only estimate a McCallum (1994a) rule, our modelling framework

can be easily extended to estimate other monetary policy reaction functions where the central

bank respond to the rate of depreciation (see the open-economy Taylor-rules of Svensson,

2000, and Taylor, 2001). In such cases, the estimation of these rules requires to include the

exchange rate into the set of state variables, and, therefore, one has to guarantee again the

self-consistency of the model.

We have also found that while the McCallum (1994a) exchange-rate-stabilisation provides

a better �t of the curve overall, the McCallum (1994b) yield-curve-smoothing rule provides

a better �t of the long-end of the yield curve. Thus, it would be desirable to obtain a rule

that combines both aspects of the monetary policy explanation. That is, a rule such that

the central bank increases the short-rate in response to a depreciating exchange rate and to

a widening term spread. Such a rule was proposed by Kugler (2000) and its estimation using

no-arbitrage methods remains an open research question.

Finally, since we do not rely on a microfounded model, our modelling strategy has the

main drawback that we are unable to link the prices of risk to individuals� preferences.

Constructing an open-economy version of the structural model in Gallmeyer et al. (2005) or

Gallmeyer et al. (2008) would allow us to better understand the monetary policy reaction

function of such central banks.
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Appendix

A Estimation

If eyt is the 11�1 vector of observed variables eyt = (y�0t ;y0t;�st)0, where y�t = (y(1M)�
t ; : : : ; y

(10Y )�
t )

and yt = (y
(1M)
t ; : : : ; y

(10Y )
t ), then one can express the model in section 3 as

eyt = A+Bxt + �t;
xt = � +�xt�1 + ut;�

"t
ut

����� � yt�1
�t�1

�
;

�
yt�2
�t�2

�
; : : : � N

��
0
0

�
;

�

 0
0 �

��
;

where, again, xt = (r�t ; ft;�st)
0 and

A =

0BBBBBBBBB@

��0
...

a�10Y
�0
...

a10Y
0

1CCCCCCCCCA
B =

0BBBBBBBBB@

��0

...
b�010Y
�0

...
b010Y
e03

1CCCCCCCCCA
;

and


 =

�
�2�I10 0
0 0

�
;

where I10 is the 10� 10 identity matrix.
Given this state-space formulation, we can evaluate the exact Gaussian likelihood via the

usual prediction error decomposition:

lnL(�) =
TX
t=1

lt;

with

lt = �
N

2
ln(2�)� 1

2
ln jFtj �

1

2
v0tF

�1
t vt; (31)

where N = 11 is the dimension of eyt, � is the vector of parameters of the continuous-time
model, vt is the vector of one-step-ahead prediction errors produced by the Kalman �lter,
and Ft their conditional variance. The Kalman �lter recursions are given by

xtjt�1 = � +�xt�1jt�1
Ptjt�1 = �P

0
t�1jt�1�+�

vt = eyt � a�Bxtjt�1
Ft = BPtjt�1B

0 +

xtjt = xtjt�1 +Ptjt�1B

0F�1t vt
Ptjt = Ptjt�1 �Ptjt�1B0F�1t BPtjt�1

9>>>>>>=>>>>>>;
(32)
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where xtjt�1 = Et�1(xt) and Ptjt�1 = E
�
(xt � xtjt�1)(xt � xtjt�1)0

�
are the expectation and

covariance matrix of xt conditional on information up to time t� 1, while xtjt = Et(xt) and
Ptjt = E

�
(xt � xtjt)(xt � xtjt)0

�
are the expectation and covariance matrix of xt conditional

on information up to time t (see Harvey, 1989). Given that we are assuming that the state
variables are covariance stationarity, we initialize the �lter using x0 = E(xt) = (I ��)�1�
and vec(P0) = (I��
�)�1 vec(�).
The prediction error decomposition in (31) can also be used to obtain �rst and second

derivatives of the log likelihood function (see Harvey, 1989), which we need to estimate the
variance of the score and the expected value of the Hessian that appear in the asymptotic
distribution of the Gaussian ML estimator of �. In particular, the score vector takes the
following form:

@lt(�)

@ i
= st(�) = �

1

2
tr

��
F�1t

@Ft
@ i

��
I� F�1t vtv0t

��
� @v0t
@ i

F�1t vt;

while the ij -th element of the conditionally expected Hessian matrix satis�es:

�Et�1
�

@2lt
@ i@ j

�
=
1

2
tr

�
F�1t

@Ft
@ i

F�1t
@Ft
@ ij

�
+
@v0t
@ i

F�1t
@vt
@ j

:

In turn, these two expressions require the �rst derivatives of Ft and vt, which we can
evaluate analytically by an extra set of recursions that run in parallel with the Kalman �lter.
As Harvey (1989, pp 140-3) shows, the extra recursions are obtained by di¤erentiating the
Kalman �lter prediction and updating equations (32). In our a¢ ne term structure model, the
analytical derivatives of the Kalman �lter equations with respect to the structural parameters
require the derivatives of the bond price coe¢ cients an = �An=n and bn = �Bn=n. These
are obtained using the following di¤erence equations:

@An+1
@ i

=
@An
@ i

+
@B0n
@ i

�Q +B0n
@�Q

@ i
+
@B0n
@ i

�Bn +
1

2
B0n

@�

@ i
Bn �

@�0
@ i

;

@B0n+1
@ i

=
@B0n
@ i

�Q +B0n
@�Q

@ i
� @�01
@ i

:

with @A1=@ i = �@�0=@ i and @B1=@ i = �@�1=@ i.

B Latent factor rotation

In this appendix, we use the methodology developped in Gallmeyer et al. (2005) to rotate
the space of state variables in our a¢ ne term structure model and relate the short rate to
the term premium as in equation (25). In particular, a given m factor model can be rotated
into a new set of state variable that includes the short rate and the yield spread on m � 1
bonds of longer maturity. Since in our equation McCallum (1994b) rule we only have the
spread on the n-period bond, we focus only on the rotation of models with only two latent
factors.
Let xt be a 2� 1 vector of state variables such that the short rate is:

rt = �0 + �
0xt;
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and xt follows a VAR(1) under both the physical measure:

xt+1 = � +�xt +�
1=2"t+1; (33)

and the risk-neutral measure:

xt+1 = �
Q +�Qxt +�

1=2"t+1: (34)

Under these assumptions, we know that there is an a¢ ne term structure for continuously
compounded yields:

y
(n)
t = an + b

0
nxt;

where an and bn solve some recursive relations. Note that our model in section 4 belongs to
this category.
Following Gallmeyer et al. (2005) we de�ne a new 2� 1 vector of state variables, zt, to

include the short rate and the yield spread on the n-period bond:

zt =
�
rt; s

(n)
t

�0
;

where s(n)t = y
(n)
t � rt. This new vector of state variables is an a¢ ne function of the original

state variable. That is, zt = d+Hxt, where

d =

�
a1

an � a1

�
; H =

�
b01

b0n � b01

�
:

Moreover, provided that H has full rank (as it is in the case of our Nelson-Siegel model), we
can rotate the original set of state variable to write:

zt = e� + e�zt�1 + vt;
where e� = (I �H�H�1)d+H�, e� = H�H�1 and �t = H�1=2"t. In particular, this last
equation allows us to express the short rate as:

rt = e�1 + e�11rt�1 + e�12s(n)t�1 + �1t;

as well as the spread, s(n)t�1, as

s
(n)
t�1 =

1e�22 s(n)t �
e�2e�22 �

e�21e�22 rt�1 � 1e�22 �2t;
Substituting s(n)t�1 into rt we get equation a McCallum (1994b) rule:

rt = '0 + '1

�
y
(n)
t � rt

�
+ '2rt�1 + vt;

where '0, '1, and '2 are non-linear functions of the underlying parameters of the term
structure model satisfying:

'1 =
e�12e�22 ;

'0 = e�1 � '1e�2; '2 = e�11 � '1e�21;
and vt = �1t � '1�2t. Specializing these previous equations to the discrete-time no-arbitrage
Nelson-Siegel model in section 4, we obtain equations (29) and (30) in the text.
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Table 1
Summary Statistics

Autocorrelation
Variable Mean Std. Dev Min. Max. 1 2 3
U.S.
1-month yield 6.844 3.941 1.016 20.250 0.979 0.955 0.932
1-year yield 6.630 3.300 1.060 15.870 0.985 0.966 0.950
2-year yield 6.896 3.161 1.300 15.730 0.987 0.969 0.954
5-year yield 7.394 2.869 2.350 15.310 0.989 0.974 0.962
10-year yield 7.750 2.593 3.580 14.860 0.990 0.978 0.966

Canada
Rate of Depreciation -0.093 17.964 -52.402 54.441 0.019 -0.039 0.018
1-month yield 7.667 4.209 2.016 22.313 0.987 0.969 0.947
1-year yield 7.582 3.585 2.020 18.820 0.987 0.971 0.953
2-year yield 7.760 3.341 2.400 18.080 0.986 0.968 0.952
5-year yield 8.160 3.001 3.270 17.420 0.987 0.973 0.960
10-year yield 8.537 2.895 3.830 17.290 0.990 0.979 0.969

Germany
Rate of Depreciation -0.452 38.424 -100.314 132.246 0.060 0.054 0.029
1-month yield 5.431 2.618 2.016 15.000 0.985 0.973 0.963
1-year yield 5.534 2.487 1.930 13.170 0.992 0.978 0.962
2-year yield 5.734 2.326 2.040 12.330 0.991 0.977 0.962
5-year yield 6.246 1.985 2.560 11.490 0.990 0.977 0.963
10-year yield 6.648 1.650 3.210 10.240 0.989 0.975 0.963

U.K.
Rate of Depreciation 0.547 36.552 -163.359 157.402 0.063 0.002 0.010
1-month yield 8.949 3.909 3.375 18.625 0.988 0.976 0.961
1-year yield 8.294 3.186 3.230 14.960 0.988 0.975 0.962
2-year yield 8.352 3.037 3.320 15.120 0.988 0.974 0.960
5-year yield 8.517 2.960 3.770 15.540 0.989 0.976 0.964
10-year yield 8.584 2.983 4.050 15.440 0.993 0.984 0.976

Note: Data are sampled monthly from January 1979 to December 2005. All variables are mea-
sured in percentage points per year, and monthly rates of depreciation are annualized by multiplying
by 1,200.



Table 2
Estimates of McCallum (1994a) A¢ ne Term Structure Model: Canada

Panel a: McCallum Rule
 0 �st rt � r�t

0.0004 0.0175 0.9934
(0.0022) (0.0053) (0.0188)

Panel b: Physical Measure
� �1=2

� r�t ft �st r�t ft �st
r�t 0.0008 0.9983 0 0 0.0129 0 0

(0.0009) (0.0017) - - (0.0004) - -
ft  0 0  2  1 2 0 0.0266 0

- - - - - (0.0030) -
�st -0.0744 0.6571 -3.3871 -0.0537 -0.4786 -0.2086 1.5383

(0.1927) (0.3127) (0.7691) (0.0645) (0.0865) (0.5047) (0.0840)

Panel c: Risk Neutral Measure
�Q

�Q r�t ft �st
r�t 0.0166 0.9935 0 0

(0.0013) (0.0004) - -
ft 0.0014 0.0006 0.9597 0.0033

(0.0078) (0.0008) (0.0056) (0.0050)
�st �1

2
e03�e3 0 1  1
- - - -

Panel d: Tests
H0 Wald d.f p-value

� = �Q 81.86 7 <0.0001
� = �Q 151.98 3 <0.0001
� = �Q

�
160.76 3 <0.0001

Note: This table lists the estimated coe¢ cients for the a¢ ne term structure model in equations
(6)-(9) subject to the restrictions in equation (22) for Canada. We assume that all (both domestic
and foreign) yields are observed with error. Panel a reports the estimates of the McCallum (1994a)
rule in equation (4): rt � r�t =  0 +  1�st +  2(rt�1 � r�t�1) + et. Panel b presents the estimates
of the parameters of the model under the physical measure, while panel c reports the parameters
of the model under the risk neutral measure. In panel d, we test whether the coe¢ cients under
both the physical and risk neutral measure are the same. The estimate (standard error) of the
standard deviation of the measurement error is �� = 0:0634 (0:0008). Data are sampled monthly
from January 1979 to December 2005.



Table 3
Estimates of McCallum (1994a) A¢ ne Term Structure Model: Germany

Panel a: McCallum Rule
 0 �st rt � r�t

0.0063 0.0336 1.0409
(0.0079) (0.0192) (0.0410)

Panel b: Physical Measure
� �1=2

� r�t ft �st r�t ft �st
r�t 0.0010 0.9980 0 0 0.0130 0 0

(0.0010) (0.0019) - - (0.0004) - -
ft  0 0  2  1 2 0 0.1049 0

- - - - - (0.0637) -
�st -0.2667 0.0211 -1.6227 -0.0674 -0.2886 -3.3188 0.5893

(0.2093) (0.1423) (0.8876) (0.0464) (0.1435) (0.1536) (0.3709)

Panel c: Risk Neutral Measure
�Q

�Q r�t ft �st
r�t 0.0149 0.9920 0 0

(0.0019) (0.0003) - -
ft 0.1693 -0.0040 0.9459 0.0285

(0.1117) (0.0008) (0.0194) (0.0174)
�st �1

2
e03�e3 0 1  1
- - - -

Panel d: Tests
H0 Wald d.f p-value

� = �Q 66.69 7 <0.0001
� = �Q 241.80 3 <0.0001
� = �Q

�
258.08 3 <0.0001

Note: This table lists the estimated coe¢ cients for the a¢ ne term structure model in equations
(6)-(9) subject to the restrictions in equation (22) for Germany. We assume that all (both domestic
and foreign) yields are observed with error. Panel a reports the estimates of the McCallum (1994a)
rule in equation (4): rt � r�t =  0 +  1�st +  2(rt�1 � r�t�1) + et. Panel b presents the estimates
of the parameters of the model under the physical measure, while panel c reports the parameters
of the model under the risk neutral measure. In panel d, we test whether the coe¢ cients under
both the physical and risk neutral measure are the same. The estimate (standard error) of the
standard deviation of the measurement error is �� = 0:0532 (0:0007). Data are sampled monthly
from January 1979 to December 2005.



Table 4
Estimates of McCallum (1994a) A¢ ne Term Structure Model: U.K.

Panel a: McCallum Rule
 0 �st rt � r�t

-0.0194 0.0313 1.0861
(0.0119) (0.0115) (0.0520)

Panel b: Physical Measure
� �1=2

� r�t ft �st r�t ft �st
r�t 0.0008 0.9985 0 0 0.0130 0 0

(0.0009) (0.0016) - - (0.0004) - -
ft  0 0  2  1 2 0 0.0931 0

- - - - - (0.0378) -
�st 0.7826 0.0791 -3.9614 -0.2354 -0.4053 -3.3186 1.0292

(0.3295) (0.2044) (1.1898) (0.0545) (0.1061) (0.1916) (0.4196)

Panel c: Risk Neutral Measure
�Q

�Q r�t ft �st
r�t 0.0159 0.9932 0 0

(0.0015) (0.0004) - -
ft 0.1399 0.0048 0.9456 0.0222

(0.0711) (0.0008) (0.0117) (0.0103)
�st �1

2
e03�e3 0 1  1
- - - -

Panel d: Tests
H0 Wald d.f p-value

� = �Q 99.23 7 <0.0001
� = �Q 299.48 3 <0.0001
� = �Q

�
202.81 3 <0.0001

Note: This table lists the estimated coe¢ cients for the a¢ ne term structure model in equations
(6)-(9) subject to the restrictions in equation (22) for the U.K. We assume that all (both domestic
and foreign) yields are observed with error. Panel a reports the estimates of the McCallum (1994a)
rule in equation (4): rt � r�t =  0 +  1�st +  2(rt�1 � r�t�1) + et. Panel b presents the estimates
of the parameters of the model under the physical measure, while panel c reports the parameters
of the model under the risk neutral measure. In panel d, we test whether the coe¢ cients under
both the physical and risk neutral measure are the same. The estimate (standard error) of the
standard deviation of the measurement error is �� = 0:0628 (0:0008). Data are sampled monthly
from January 1979 to December 2005.



Table 5
Implied Betas

Maturity Canada Germany U.K.
in months (n) A¢ ne Sample A¢ ne Sample A¢ ne Sample

1 -1.770 -1.348 -1.261 -1.201 -2.835 -2.556
12 -1.246 -0.699 -1.221 -1.375 -2.283 -2.616
24 -0.872 -0.529 -1.187 -1.294 -2.047 -2.209
60 -0.336 -0.276 -1.006 -1.036 -1.345 -1.191
120 -0.104 -0.082 -0.652 -0.671 -0.655 -0.541

Note: This table presents the term structure of uncovered interest parity regression slopes
implied by the a¢ ne term structure model in equations (6)-(9) subject to the restrictions in equation
(22). These are computed using equation (23) in the main text and by treating the estimates
displayed in tables 2-4 as truth. For comparison purposes, we also compute sample estimates of
these regression slopes from the coe¢ cientes of a VAR(1) on the rate of depreciation, �st, and the
set of interest rate di¤erentials (y(1M)

t � y
(1M)�
t ; : : : ; y

(10Y )
t � y

(10Y )�
t ). Data are sampled monthly

from January 1979 to December 2005.



Table 6
Variance Decomposition: Canada

Panel a: Bond Yields
Yield Levels Bond Risk Premia Yield Spreads

r�t ft �st r�t ft �st r�t ft �st
One-month ahead
1-month yield 1.61 41.52 56.87 - - - - - -
1-year yield 18.29 75.06 6.65 8.45 1.32 90.23 7.76 0.63 96.61
5-year yield 45.69 51.23 3.08 8.35 1.21 90.43 3.89 19.82 76.29
10-year yield 67.31 30.88 1.81 8.20 1.21 90.59 1.78 30.55 67.67

One-year ahead
1-month yield 8.18 38.49 53.33 - - - - - -
1-year yield 12.85 40.40 46.75 8.64 2.08 89.28 6.34 8.76 84.90
5-year yield 39.79 28.00 32.21 8.62 1.82 89.57 1.51 35.86 62.63
10-year yield 64.08 16.70 19.21 8.58 1.80 89.61 0.66 39.49 59.85

Ten-year ahead
1-month yield 65.76 14.35 19.89 - - - - - -
1-year yield 71.19 13.09 15.72 9.08 2.28 88.63 12.50 9.80 77.70
5-year yield 87.74 5.58 6.68 9.38 1.97 88.65 19.63 30.03 50.34
10-year yield 94.18 2.65 3.17 9.87 1.94 88.19 27.62 29.06 43.32

Panel b: Exchange Rates
Depreciation Rate FX Risk Premia
r�t ft �st r�t ft �st

One-month ahead 8.68 1.65 89.67 7.48 42.89 49.62
One-year ahead 8.68 2.95 88.37 7.61 39.30 53.09
Ten-year ahead 8.69 3.31 88.00 7.42 39.26 53.32

Note: Panel a reports one-month, one-year and ten-year ahead variance decompositions of
forecast variance for (i) yield levels, y(n)t , (ii) bond risk premium, Etrx

(n)
t+1 = ny

(n)
t �(n�1)y(n�1)t+1 �rt,

and (iii) yield spreads, y(n)t � y
(1)
t . Panel b reports forecast variance decompositions of (i) the rate

of depreciation, �st+1, and (ii) the foreign exchange rate risk premium, Etsx
(n)
t+1 = �st+1 + r

�
t � rt.

We ignore observation errors when computing these variance decompositions. Data are sampled
monthly from January 1979 to December 2005.



Table 7
Variance Decomposition: Germany

Panel a: Bond Yields
Yield Levels Bond Risk Premia Yield Spreads

r�t ft �st r�t ft �st r�t ft �st
One-month ahead
1-month yield 2.50 9.81 87.68 - - - - - -
1-year yield 7.08 3.63 89.29 0.71 95.26 4.03 1.11 85.10 13.79
5-year yield 19.46 4.50 76.04 0.68 95.25 4.07 1.20 42.86 55.94
10-year yield 35.18 3.73 61.08 0.64 95.28 4.08 0.50 25.16 74.34

One-year ahead
1-month yield 4.36 6.62 89.01 - - - - - -
1-year yield 6.33 5.98 87.68 0.74 94.90 4.36 1.03 60.81 38.16
5-year yield 17.79 5.36 76.84 0.73 94.82 4.45 0.62 13.24 86.14
10-year yield 33.02 4.38 62.60 0.74 94.81 4.46 0.13 9.00 90.87

Ten-year ahead
1-month yield 29.03 4.74 66.23 - - - - - -
1-year yield 32.90 4.38 62.72 1.49 93.23 5.28 3.70 34.47 61.83
5-year yield 50.07 3.28 46.65 1.82 92.72 5.46 6.01 8.09 85.90
10-year yield 64.68 2.32 33.00 2.36 92.20 5.45 8.68 6.65 84.67

Panel b: Exchange Rates
Depreciation Rate FX Risk Premia
r�t ft �st r�t ft �st

One-month ahead 0.73 96.24 3.03 10.78 45.11 44.11
One-year ahead 0.75 96.13 3.12 16.94 13.31 69.76
Ten-year ahead 0.80 95.86 3.34 17.06 7.88 75.06

Note: Panel a reports one-month, one-year and ten-year ahead variance decompositions of
forecast variance for (i) yield levels, y(n)t , (ii) bond risk premium, Etrx

(n)
t+1 = ny

(n)
t �(n�1)y(n�1)t+1 �rt,

and (iii) yield spreads, y(n)t � y
(1)
t . Panel b reports forecast variance decompositions of (i) the rate

of depreciation, �st+1, and (ii) the foreign exchange rate risk premium, Etsx
(n)
t+1 = �st+1 + r

�
t � rt.

We ignore observation errors when computing these variance decompositions. Data are sampled
monthly from January 1979 to December 2005.



Table 8
Variance Decomposition: U.K.

Panel a: Bond Yields
Yield Levels Bond Risk Premia Yield Spreads

r�t ft �st r�t ft �st r�t ft �st
One-month ahead
1-month yield 0.01 9.96 90.03 - - - - - -
1-year yield 3.34 17.83 78.84 1.57 87.95 10.49 2.89 76.91 20.20
5-year yield 23.49 17.68 58.84 1.52 87.75 10.72 6.14 37.58 56.28
10-year yield 49.69 11.81 38.50 1.43 87.82 10.75 5.56 22.58 71.87

One-year ahead
1-month yield 1.69 1.46 96.85 - - - - - -
1-year yield 4.01 1.78 94.20 1.57 87.96 10.47 4.00 64.66 31.34
5-year yield 26.33 1.74 71.93 1.54 87.74 10.71 7.16 10.65 82.19
10-year yield 53.68 1.11 45.21 1.51 87.76 10.73 4.92 4.55 90.53

Ten-year ahead
1-month yield 39.17 0.42 60.41 - - - - - -
1-year yield 46.75 0.45 52.80 1.62 87.90 10.48 4.47 53.09 42.44
5-year yield 74.28 0.28 25.44 1.78 87.48 10.74 6.45 5.47 88.08
10-year yield 87.44 0.14 12.42 2.21 87.07 10.72 6.65 2.16 91.20

Panel b: Exchange Rates
Depreciation Rate FX Risk Premia
r�t ft �st r�t ft �st

One-month ahead 1.34 90.00 8.66 4.47 67.24 28.29
One-year ahead 1.48 89.02 9.50 7.77 42.74 49.49
Ten-year ahead 1.58 88.08 10.33 8.93 28.69 62.37

Note: Panel a reports one-month, one-year and ten-year ahead variance decompositions of
forecast variance for (i) yield levels, y(n)t , (ii) bond risk premium, Etrx

(n)
t+1 = ny

(n)
t �(n�1)y(n�1)t+1 �rt,

and (iii) yield spreads, y(n)t � y
(1)
t . Panel b reports forecast variance decompositions of (i) the rate

of depreciation, �st+1, and (ii) the foreign exchange rate risk premium, Etsx
(n)
t+1 = �st+1 + r

�
t � rt.

We ignore observation errors when computing these variance decompositions. Data are sampled
monthly from January 1979 to December 2005.



Table 9
Pricing Errors in Basis Points

1 month 1 year 2 year 5 year 10 year
Canada
Mean Pricing Error 0.81 -0.77 -0.62 0.11 0.10
Mean Absolute Pricing Error 5.21 2.44 2.71 4.03 5.87

Germany
Mean Pricing Error 0.55 0.01 -0.60 -0.06 0.23
Mean Absolute Pricing Error 2.92 1.97 2.22 2.96 3.94

U.K.
Mean Pricing Error 1.09 -1.24 -0.71 0.74 -0.30
Mean Absolute Pricing Error 4.59 3.10 3.19 4.40 5.79

Note: This table reports mean pricing errors and mean absolute pricing errors for the a¢ ne
term structure model. These are computed as �(n)t = y

(n)
t � an � b0nxtjt where xtjt is the estimate

of the vector of state variables xt conditional on information up to time t: xtjt = Et (xtj It). Data
are sampled monthly from January 1979 to December 2005.



Table 10
Comparison of McCallum Rule Estimates

Panel a: OLS Estimates
 0  1  2

Canada 0.0083 0.0007 0.8735
(0.0066) (0.0031) (0.0585)

Germany -0.0047 -0.0042 0.9510
(0.0043) (0.0012) (0.0153)

U.K. 0.0144 -0.0040 0.9159
(0.0057) (0.0014) (0.0213)

Panel b: E-GARCH Estimates
 0  1  2

Canada 0.0013 0.0006 0.9458
(0.0015) (0.0011) (0.0105)

Germany -0.0047 -0.0004 1.0003
(0.0010) (0.0004) (0.0052)

U.K. 0.0023 -0.0020 0.9738
(0.0018) (0.0006) (0.0086)

Panel c: Intrumental Variables Estimates
 0  1  2

Canada -0.0011 -0.0166 0.9413
(0.0049) (0.0336) (0.0471)

Germany -0.0047 -0.0032 0.9756
(0.0037) (0.0187) (0.0190)

U.K. 0.0033 0.0221 0.9741
(0.0327) (0.0603) (0.1635)

Panel d: No-Arbitrage Estimates
 0  1  2

Canada 0.0004 0.0175 0.9934
(0.0022) (0.0053) (0.0188)

Germany 0.0063 0.0336 1.0409
(0.0079) (0.0192) (0.0410)

U.K. -0.0194 0.0313 1.0861
(0.0119) (0.0115) (0.0520)

Note: Panel a reports ordinary least squares of the parameters of the McCallum (1994a)
rule in equation (4): rt � r�t =  0 +  1�st +  2(rt�1 � r�t�1) + et. Panel b reports exponential
GARCH estimates of these parameters. Panel c reports estimates of the McCallum rule when using
the instrument set given by (1;�st�1;�st�2; rt�1 � r�t�1; rt�2 � r�t�2). Panel d reports again the
estimates of the coe¢ cients in the McCallum rule obtained using an a¢ ne term structure model in
Tables 2-4. Data are sampled monthly from January 1979 to December 2005.



Table 11
Estimates of McCallum (1994b) Rule

Panel a: McCallum Rule
'0 y

(n)
t � rt rt�1

Canada -0.0011 0.0168 0.9998
(0.3051) (0.0071) (0.0003)

Germany -0.0013 0.0101 0.9997
(0.2774) (0.0060) (0.0004)

U.K. 0.0008 0.0234 0.9999
(0.3219) (0.0105) (0.0001)

Panel b: Pricing Errors in basis points
1 month 1 year 2 years 5 years 10 years

Canada
Mean Pricing Error 3.75 -1.90 -3.38 -2.75 2.25
Mean Absolute Pricing Error 5.38 2.92 4.26 4.43 4.48

Germany
Mean Pricing Error 2.39 -0.60 -1.82 -1.75 0.91
Mean Absolute Pricing Error 3.62 1.86 2.80 2.96 2.87

U.K.
Mean Pricing Error 3.61 -3.75 -3.64 -1.64 1.71
Mean Absolute Pricing Error 3.95 4.27 4.70 4.27 3.79

Note: Panel a reports estimates of the McCallum (1994b) yield-curve-smoothing policy rule in
equation (24): rt = '0+'1(y

(n)
t �rt)+'2rt�1+vt. These are functions of the underlying parameters

of the no-arbitrage Nelson-Siegel model in equations (25)-(29). Standard errors are computed using
the delta method. Panel b reports mean pricing errors and mean absolute pricing errors for the
no-arbitrage Nelson-Siegel. Data are sampled monthly from January 1979 to December 2005.



Figure 1: U.S. short-rate latent factor estimate
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Figure 2: Canadian Latent Factor Estimate
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Figure 3: German Latent Factor Estimate
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Figure 4: British Latent Factor Estimate
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