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Abstract

This paper investigates equilibria in a labor market where �rms post wage/tenure

contracts and risk-averse workers, both employed and unemployed, search for better

paid job opportunities. Di¤erent �rms typically o¤er di¤erent contracts. Workers ac-

cumulate general human capital through learning-by-doing. With on-the-job search,

a worker�s wage evolves endogenously over time through experience e¤ects, tenure ef-

fects and quits to better paid employment. This equilibrium approach suggests how

to identify econometrically between experience and tenure e¤ects on worker wages.



1 Introduction

This paper investigates individual wage dynamics in the context of an equilibrium

labour market model where workers become more productive through learning-by-

doing and �rms post contracts where, inter alia, wages paid depend on tenure. The

analysis leads to new insights into two important areas in labour economics - the

nature of equilibrium in search markets, and the empirical decomposition of wages

into experience and tenure e¤ects.

Although there is no free lunch, it is accepted by many that individuals accumulate

human capital freely by working. Typists become better typists while working as

typists, economists become more productive by doing economics, etc. This seems both

an important and intuitive idea. A related idea now common among labour economists

is that human capital can be dichotomized into general human capital and �rm speci�c

human capital. A worker who enjoys an increase in general human capital becomes

more productive at all jobs, whereas accumulating �rm speci�c human capital implies

a worker is only more productive at that �rm. Workers who change job, or those who

are laid o¤, lose their �rm speci�c human capital but keep their general human capital.

Putting the above two ideas together, plus assuming a worker�s wage is an increasing

function of both his/her general and speci�c human capital, leads to at least the

rudiment of a theory of how the wages of workers evolve through their working lives.

There is a signi�cant empirical literature which has attempted to decompose wages

into experience e¤ects (general human capital) and tenure e¤ects (�rm speci�c capi-

tal); see for example, Altonji and Shakotko, 1987, Topel, 1991, Altonji and Williams,

2005, and Dustmann and Meghir, 2005. The di¢ culty faced by this literature is that

tenure and experience are perfectly correlated within any employment spell. As it is

unreasonable to assume a quit, which resets tenure to zero, is an exogenous outcome

which is orthogonal to the wage paid at the previous employer and at the new one,

identifying between tenure and experience wage e¤ects requires an equilibrium theory

of wage formation and quit turnover.

Following seminal work by Burdett and Mortensen (1998), there have been three

di¤erent approaches to explaining quit turnover and employee wage variation in fric-
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tional labour markets. Postel-Vinay and Robin (2002), Cahuc et al (2006) explain

within �rm wage dispersion by assuming �rms respond to outside o¤ers. As an em-

ployee with longer tenure is more likely to have received outside o¤ers, it follows that

wages will be positively correlated with tenure. Stevens (2004) and Burdett and Coles

(2003),(2009) instead assume �rms must treat employees equally, where employees

with the same productivity and tenure are paid the same wage. In that case �rms

optimally set up a seniority wage scale where more senior employees are paid more.

By raising wages paid with tenure, the �rm increases the value of employment at the

�rm and can then pay relatively low wages to new hires.1 Moscarini (200?) instead

assumes worker productivity is uncertain and within �rm wage variation arises as a

�rm learns over time about the productivity of each employee.

In this paper we extend the Burdett and Coles (2003) approach, B/C from now

on, to the case that there is also learning-by-doing; i.e. �rms o¤er contracts where

wages paid depend on tenure and a worker�s productivity also increases over time

while employed. This structure not only generates non-trivial, idiosyncratic earnings

pro�les across each worker�s lifetime, it also yields equilibrium wage dispersion as:

(i) workers are ex-ante heterogeneous - worker i has productivity yi when �rst entering

the labour market;

(ii) di¤erent employees have di¤erent current work experience x;

(iii) di¤erent employees have di¤erent current tenures/seniority � ;

(iv) there is dispersion in wage contracts o¤ered, where �rm j pays piece rate � = �j(�)

to employees with tenure � ;

(v) there is sorting with age, where on-the-job search implies workers eventually �nd

and quit to better paid employment.

Burdett et al (2009) consider a similar framework but restrict each �rm to paying

a single piece rate; i.e. there are no tenure e¤ects.2 That paper �nds that learning-by-

1See Stevens (2004) for a complete discussion of optimal contracting structures when workers

are risk neutral. Most recently Shi (2009) and Menzio and Shi (2009) extend this wage/tenure

contracting approach to a directed search framework with aggregate productivity shocks.
2Also see Bunzel et al (2000) but who assume all learning is lost when the worker is laid-o¤.

Barlevy (2008) considers a partial framework but estimates the underlying parameters using an
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doing goes a long way to improving the empirical properties of the original Burdett

and Mortensen (1998) framework. For example the density of wages paid becomes

single peaked and the right tail is suitably fat (it has the Pareto distribution). Further

as experience is valuable, �rms can pay relatively low wage rates and the worker

will still prefer employment to unemployment. Of course this re�ects why many

summer intern programs pay nothing yet still attract interns by o¤ering �valuable

work experience�. This investment e¤ect is important, however, as it helps resolve

the issue raised in Hornstein et al (2008): that previous equilibrium wage dispersion

models cannot adequately explain the di¤erence between the lowest wage observed

and the mean wage.3

Here we assume �rms compete in piece rate tenure contracts and �nd observed

individual wages can be decomposed as:

logwij(x; �) = log yi + log �j(0) + �x+ log
�j(�)

�j(0)
; (1)

where � is the rate of human capital accumulation while employed. The observed

individual wage thus depends on the worker i �xed e¤ect (log yi), the �rm j �xed

e¤ect (log �j(0) which describes �rm j�s piece rate paid to new hires), experience e¤ect

x and the tenure e¤ect at �rm j: Of course if tenure e¤ects were constant within and

across �rms, so that �j(�) = eg��j(0); we would obtain the standard wage regression

equation of the form:

logwij(x; �) = log yi + log �j(0) + �x+ g� :

Our critical contribution is that �j(:) in (1) is chosen optimally by each �rm j: Not

surprisingly we show tenure e¤ects are not uniform. Indeed, almost by de�nition,

tenure e¤ects are �rm speci�c and a major econometric problem in (1) is separating

the �rm �xed e¤ect from the �rm speci�c tenure e¤ect. We shall argue these �xed

e¤ects are negatively correlated: �rms which pay low starting wages typically pay

interesting application of record statistics.
3B/C also �explains�this puzzle. B/C generates a foot-in-the-door e¤ect: as wages increase with

seniority, an unemployed worker is willing to accept a low starting wage in order to step on the

promotion ladder. Postel Vinay and Robin (2002) also has this e¤ect.
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wages which, at least at �rst, increase steeply with tenure. We shall further show

with a numerical example that the above regression equation, which estimates the

average return to tenure g across all employed workers, may �nd the average return

to tenure is almost zero even though marginal tenure e¤ects for new hires are large.

An important concept in the paper is the baseline piece rate scale. As in B/C,

all optimal contracts correspond to a starting point on an underlying baseline piece

rate scale, where di¤erent �rms o¤er di¤erent starting points on that scale. Over

time an employee simply rises up this scale through accumulated tenure, but quits

whenever an outside o¤er is received which puts him/her on an even higher point.

This not only implies quit rates fall with tenure but also �rms that pay the highest

wage rates enjoy the lowest quit rates, both of which are well established empirical

facts. We show the least generous �rms, those which o¤er the lowest value contracts

in the market, o¤er contracts with the strongest positive tenure e¤ect. By paying a

low starting wage, such �rms extract the search rents of each new hire. Paying a low

wage, however, implies the new hire is at risk of being poached by a near competitor.

By raising wages quickly with tenure, the optimal contract increases the new hire�s

expected value to remaining with this employer and so reduces the worker�s quit rate.

As the wage paid becomes more �competitive�, i.e. closer to marginal product, the

marginal tenure e¤ect becomes small.

The paper is organised as follows. Section 2 describes the model and Section

3 characterises the set of optimal contracts o¤ered by �rms. This section formally

establishes the baseline piece rate scale property of the model. Section 4 formally

describes a Market Equilibrium and computes the steady state distributions of ex-

perience and payo¤s across all workers in the economy. Section 5 characterises the

Market Equilibrium and establishes existence. Section 6 discusses the insights yielded

by the model and describes a numerical example. Section 7 concludes while section

8, the technical appendix, contains the more laborious proofs.
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2 THE BASIC FRAMEWORK

Time is continuous with an in�nite horizon and only steady-states are considered.

There is a continuum of both �rms and workers, each of measure one. All �rms are

equally productive and have a constant returns to scale technology. Each worker exits

the market according to a Poisson process with parameter �; while � also describes the

in�ow of new labour market entrants. For the moment we simplify by assuming new

entrants are ex-ante identical - each entrant i has the same initial productivity yi = y0:

As shown below, the results generalize straightforwardly to the case that workers

are ex-ante heterogenous with initial productivity yi drawn from some population

distribution A:

A worker�s productivity y does not change while unemployed. Learning-by-doing

implies productivity y increases at rate � > 0 while employed. Thus after x years of

work experience, a type i worker�s productivity is y = yie
�x. We restrict attention to

� < � so that lifetime payo¤s are bounded. A worker with productivity y generates

�ow output y while employed. We normalize the price of the production good to one,

so y also describes �ow revenue.

Anti-discrimination legislation requires equal treatment of employees. In general

a �rm might pay wage w = w(y; �) to equally productive workers y with the same

tenure � : We restrict attention to piece rate contracts: wages paid take the form

w = �(�)y where �(�) is the piece rate paid at tenure � :

Workers are either unemployed or employed and obtain new job o¤ers at Poisson

rate �; independent of their employment status. Any job o¤er is fully described by

the piece rate contract �(�) o¤ered by the �rm; i.e., an o¤er is a function �(�) � 0

de�ned for all tenures � � 0: There is no recall should a worker quit or reject a job
o¤er. Thus given an outside contract o¤er, say e�(�); the worker compares the value of
remaining at his/her current �rm on contract �(:) with current tenure � ; or switching

to the new �rm on contract e�(�) with zero tenure.
There are job destruction shocks in that each employed worker is displaced into

unemployment according to a Poisson process with parameter � > 0:As typically done

in this literature (e.g. Postel-Vinay and Robin (2001)), a worker with productivity y
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enjoys income �ow by while unemployed, where 0 < b < 1:

In the absence of job destruction shocks, workers would �nd their earnings always

increase over time. An optimal consumption strategy with liquidity constraints would

then imply workers consume current earnings �(�)y: Job destruction shocks, however,

generate a precautionary savings motive. For tractability we simplify by assuming

workers can neither borrow nor save; i.e. consumption equals earnings at all points in

time. We further assume a �ow utility function with constant relative risk aversion;

i.e. u(w) = w1��=(1 � �) with � � 0: As typically done we assume the worker�s

continuation payo¤ is zero in the event of death.4

For simplicity assume �rms and workers have a zero rate of time preference. Firms

are risk neutral and, with no discounting, the objective of each �rm is to maximize

steady state �ow pro�t. Each worker chooses a search and quit strategy to maximize

expected total lifetime utility where the exit process implies each discounts the future

at rate �:

Workers

Let V = V (y; � j�) denote the expected lifetime value of a worker with current
productivity y and tenure � on piece rate contract �(�): As piece rate contracts imply
wages paid are always proportional to productivity y and given a CRRA utility func-

tion with parameter �; the following identi�es equilibria where V is multiplicatively

separable with form

V = y1��U(� j�):

U(� j�) is referred to as the piece rate value of the contract with tenure � ; and U(0je�)
is the piece rate value of the outside o¤er e�.5
Let V U(y) denote the expected lifetime value of an unemployed worker with pro-

ductivity y: Given a CRRA utility function, we characterize equilibria where V U takes

the form

V U = y1��UU ;

4As � > 1 implies �ow utility is negative while alive, we further assume no free exit (no suicide).
5Note, equilibrium will �nd U(� j�) > 0(< 0) when � < 1(> 1) so that payo¤s are always

increasing in productivity y:
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where UU is a constant to be determined.

Although �rms o¤er piece rate contracts e�; workers only care about the piece
rate value U0 = U(0je�) of accepting each contract o¤er. As �rms may o¤er di¤erent
contracts, let F (U0) denote the proportion of �rms in the market whose job o¤er, if

accepted, yields piece rate value no greater than U0. Search is random in that given

a job o¤er, F (U0) is the probability the o¤er has piece rate value no greater than U0.

Let U and U denote the in�mum and supremum of this distribution function.

Standard arguments imply the value of being an unemployed worker using an

optimal search strategy satis�es the Bellman equation

�V U = u(by) + �

Z U

U

max[y1��U0 � V U ; 0]dF (U0);

where V U = y1��UU : Substituting in the functional form for u(:); CRRA ensures all

the y terms cancel out and this Bellman equation reduces to the following equation

for UU :

�UU =
b1��

1� �
+ �

Z U

UU
[U0 � UU ]dF (U0): (2)

Thus each unemployed worker accepts any job o¤er with piece rate value U0 � UU ;

i.e. CRRA and competition in piece rate contracts ensures each worker�s optimal

search strategy is independent of productivity y:

Now consider the value of being employed with piece rate contract �(:):As formally

established in B=C, an optimal contract implies it is never optimal for a worker to

quit into unemployment.6 Thus given an optimal contract, standard arguments imply

V = V (y; � j�(:)) evolves according to

�V (y; � j�(:)) = u(�(�)y)+
@V

@y
�y+

@V

@�
+�

Z U

U

max[y1��U0�V; 0]dF (U0)+�[V U�V ];

(3)

6Suppose an optimal contract implies the worker quits into unemployment at tenure T � 0: Thus
at tenure T , the �rm�s continuation pro�t is zero and the worker obtains V U : The same contract but

which instead o¤ers piece rate �(t) = b for all tenures t � T is strictly pro�t increasing - on-the-job
learning implies the worker obtains an improved payo¤ no lower than V U at T and, by not quitting,

the �rm�s continuation payo¤ is strictly positive (as b < 1). This latter contract then makes greater

expected pro�t which contradicts optimality of the original contract.
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where V (:) = y1��U(� j�): An employed worker enjoys �ow payo¤ u(�(�)y) while

employed at this �rm, enjoys increasing value through on-the-job learning, enjoys

changing value as tenure at the �rm increases over time, at rate � receives an outside

o¤er with piece-rate value U0 and quits whenever such an o¤er yields value exceeding

V; and at rate � becomes unemployed through a job destruction shock. CRRA and

an equilibrium with the above functional forms imply the y terms all cancel out and

this Bellman equation reduces to the following di¤erential equation for U = U(� j�) :

[� + �� �(1� �)]U � dU

d�
=
[�(�)]1��

1� �
+ �UU + �

Z U

U

[1� F (U0)]dU0 (4)

Again this preference structure ensures the worker�s optimal quit strategy is indepen-

dent of productivity y : the worker quits to any outside o¤er which has piece rate

value greater than current value; i.e. when U0 � U = U(� j�): Thus each employee
with tenure s at a �rm with contract �(�) leaves at rate � + � + �[1 � F (U(sj�(:))]:
The probability a new hire survives to be an employee with tenure � is then

 (� j�) = e�
R �
0 [�+�+�(1�F (U(sj�)))]ds: (5)

Firms

Let ue denote the steady state unemployment rate and letN(x) denote the fraction

of unemployed workers who have experience no greater than x: Measure 1 � ue of

workers are thus employed and letH(x; U) denote the proportion of employed workers

who have experience no greater than x and piece rate value no greater than U: Each

of these objects are determined endogenously.

Consider now a �rm which posts contract �(:) with starting piece rate value U0 =

U(0j�): If U0 < UU all potential employees prefer being unemployed to accepting this

job o¤er and so such an o¤er yields zero pro�t. Suppose instead U0 � UU : As there

is no discounting, the �rm�s steady state �ow pro�t can be written as7


(�) = �

24 ue
R1
x=0

�R1
0
 (� j�))[1� �(�)][y0e

�x]e��d�
�
dN(x)

+(1� ue)
R U0
U 0=U

R1
x=0

�R1
0
 (� j�)[1� �(�)][y0e

�x]e��d�
�
dH(x; U 0)

35 :
7See Burdett and Coles (2003) for the relevant argument.
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The �rm�s steady state �ow pro�t is composed of two terms. The �rst term describes

the pro�t obtained by attracting unemployed workers, where the bracketed inside

integral is the expected total pro�t per new hire, and each new hire from the un-

employment pool has starting productivity y0e�x with experience x considered as a

random draw from N(:): The second term describes the pro�t obtained by attracting

employed workers who have piece rate values U 0 < U0 and so accept the job o¤er.

This condition can be re-expressed as


(�) = �y0

�Z 1

0

 (tj�)[1� �(t)]e�tdt

�
�
�
ue

Z 1

x=0

e�xdN(x) + (1� ue)

Z U0

U 0=U

Z 1

x=0

e�xdH(x; U 0)

�
:

To determine the contract that maximizes 
 we follow B/C and use the following

two step procedure. First we identify a �rm�s piece rate contract which maximizes�Z 1

0

 (tj�(:))[1� �(t)]e�tdt

�
;

conditional on the contract yielding piece rate value U0: Such a contract is termed an

optimal contract. Assuming an optimal contract exists, let ��(:jU0) denote it, where
��(� jU0) is the optimal piece rate paid at tenure � : If we de�ne maximized pro�t per
hire

��(0jU0) =
Z 1

0

 (tj��)[1� ��(tjU0)]e�tdt;

then an optimal contract yields steady-state �ow pro�ts


�(U0) = �y0�
�(0jU0)

�
ue

Z 1

x=0

e�xdN(x) + (1� ue)

Z U0

U 0=U

Z 1

x=0

e�xdH(x; U 0)

�
:

Given an optimal contract for each U0; the �rm�s optimization problem then reduces

to choosing a starting payo¤ U0 to maximize 
�(U0): Before formally de�ning an

equilibrium, it is convenient �rst to characterise the optimal contract �� for each U0:

3 Optimal Piece Rate Tenure Contracts.

A useful preliminary insight is that because the arrival rate of o¤ers is independent of

a worker�s employment status, an unemployed worker will always accept a contract
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which o¤ers �(�) = b for all t: Further, as b < 1 by assumption, a �rm can always

obtain strictly positive pro�t by o¤ering this contract. Thus, without loss of gener-

ality, we assume (a) all �rms make strictly positive pro�t; 
� > 0; (b) U � UU (as

an o¤er U0 < UU attracts no workers and so makes zero pro�t). We further simplify

the exposition by assuming F has a connected support.

For any starting value U0 � UU ; an optimal contract ��(:jU0) solves the program

max
�(:)

Z 1

0

 (tj�(:))e�t[1� �(t)]dt (6)

subject to (a) �(:) � 0; (b) U(0j�(:)) = U0 and (c) the optimal quit strategies of

workers which determine the survival probability  (:j�). In what follows we assume
the constraint � � 0 is never a binding constraint. Theorem 3 below shows a Market

Equilibrium of this type always exists whenever � � 1: In contrast for � < 1; equi-

librium exist where some optimal contracts have an initial phase where � = 0 binds

(e.g. Stevens (2004) when workers are risk neutral). For ease of exposition, however,

we do not consider such situations.8

Given an optimal contract �� which yields starting value U0; let U � U�(� jU0)
denote the worker�s corresponding piece rate value of employment at duration � :Of

course U�(0jU0) = U0: Similarly given an optimal contract �
� which yields starting

value U0; let ��(� jU0) denote the �rm�s continuation pro�t given an employee with
current tenure � ; i.e.

��(� jU0) =
Z 1

�

 (tj��)
 (� j��) [1� ��(tjU0)]e�tdt:

Theorem 1

For any U0 � U; an optimal contract ��(:jU0) and corresponding worker and �rm
payo¤s U� and �� are solutions to the dynamical system f�; U;�g where

8The analysis generalises straightforwardly but is not particularly interesting and doesnot seem

empirically relevant. All that happens is the baseline piece rate scales (described below) may have

an initial part which is zero.
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(a) � is determined by

�1��

1� �
+ ��� [1� � + [�� �� � � �(1� F (U))]�] (7)

= [� + �� �(1� �)]U � �UU � �

Z U

U

[1� F (U0)]dU0:

(b) � is given by

�(t) =

Z 1

t

e�
R s
t [�+���+�(1�F (U(�))]d� (1� �(s))ds; and (8)

(c) U evolves according to the di¤erential equation

dU

dt
= ���� d�

dt
(9)

with initial value U(0) = U0:

Proof is in the Appendix.

The above characterization of an optimal contract is very general - it allows mass

points in F and the density of F need not exist. In the equilibrium described in

Theorem 3 below, however, the density of o¤ers F 0 exists. In that case, a more

intuitive structure arises if we totally di¤erentiate (7) and (8) with respect to t and

so obtain the following autonomous di¤erential equation system for (�;�; U):

�
� =

�
�
�1��

�
�

F 0(U)�� �� (10)

�
� = [� + �� �+ �(1� F (U))]�� (1� �) (11)

�
U = ����

�
� (12)

As described in detail in B/C, the optimal contract involves a trade-o¤between lower

wage variation (smoother consumption) and reducing marginal quit incentives. (10)

describes the optimal speed at which piece rates increase with tenure. This depends

on the continuation pro�t � by retaining the employee, the degree of risk aversion

� and on the marginal number of competing �rms F 0(U) who might attract this

employee through an outside o¤er: As a new hire with initial experience x0 enjoys
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wage w = �(�)y0e
�(x0+�) at future tenure � � 0; then (10) implies the wage paid along

the optimal contract evolves over time according to

d

dt
logw =

�F 0(U)�

���
: (13)

As it is never e¢ cient to pay a wage above marginal product, an optimal contract

always implies strictly positive continuation pro�t �: Thus wages are always increas-

ing within the employment spell, and increase strictly while the density of competing

outside o¤ers F 0(U) > 0: With no learning by doing, B/C �nd the most generous

contract o¤ered in the market, U0 = U; implies a constant wage (perfect consumption

smoothing) and the worker never quits to a competing �rm. Here instead a constant

wage (perfect consumption smoothing) would require a piece rate �(�) which declines

at rate �: Thus even though an optimal contract implies wages must always increase

within an employment spell, learning-by-doing implies the direct tenure e¤ect may

now be negative; i.e. ��(:) might be a decreasing function, though never declining

faster than rate �:

As in B/C, when F is di¤erentiable (which is true in equilibrium) the optimal

contract is a saddle path solution to the di¤erential equation system (10)-(12). Let

(�1;�1; U1) denote the stationary point of the dynamical system (10)-(12); i.e.

(�1;�1; U1) solves:

[�1]� =
�

��
F 0(U1)�1 (14)

�1 =
1� �1

� + �� �+ �(1� F (U1))
: (15)

There are two types of optimal contracts, initially generous ones whose value con-

verges to U1 from above, and initially ungenerous ones whose value converge to U1

from below. Figure 1 depicts the corresponding contracts ��(:):

Figure 1 here.

Figure 1 depicts two optimal contracts. The bottom curve, denoted �sl(:); depicts

the optimal contract for the least generous �rm, the one which o¤ers starting payo¤

U0 = U < U1: As in B/C the least generous contract corresponds to a path �(:) which

increases with tenure and converges to the limit value �1: As piece rates increase with
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tenure, it follows U increases with tenure (and converges to U1), while continuation

pro�t � decreases with tenure (and converges to �1). The top curve, denoted �sh(:)

instead depicts the most generous contract which o¤ers U0 = U > U1: Although the

wage paid always increases over the employment spell, tenure e¤ects are negative and

the piece rate paid converges to �1 from above: Along that path U also decreases

with tenure (and converges to U1 from above).

It is useful to de�ne the above contracts as the baseline piece rate scales. Cor-

responding to each tenure point on those salary scales is a unique piece rate value,

which we denote U s(t) 2 [U;U ] and continuation pro�t �s(t): Optimality of the base-
line piece rate scale now yields a major simpli�cation. Suppose a �rm wishes to o¤er

starting payo¤ U0 2 [U;U ]: If in addition U0 < U1; then optimality of the base-

line piece rate scale implies the optimal contract yielding U0 corresponds to starting

point t0 on the lower baseline piece rate scale, where U s(t0) = U0; and piece rates

paid at tenure t correspond to point (t0 + t) on the lower baseline piece rate scale.

Conversely if U0 > U1; optimality of the baseline piece rate scale implies the optimal

contract yielding U0; is the starting point t0 on the higher baseline piece rate scale

where U s(t0) = U0; and corresponding piece rate payments at points (t0 + t) along

the higher baseline piece rate scale for all tenures t � 0:
Given this characterization of the baseline piece rate scales, we can now de�ne

and characterize a Market Equilibrium.

4 MARKET EQUILIBRIUM

A moment�s re�ection establishes that new hires do not care about the particular

tenure contract that is o¤ered, only the value U0 obtained by accepting it. To

proceed we transform the equations obtained above into value space (U):

Recall that for any starting value U0 2 [U;U ]; we can identify a unique starting
point on the baseline piece rate scales where the optimal contract yields starting payo¤

U0:We can thus de�ne � = b�(U0) as the corresponding piece rate paid when the worker
enjoys U0 on the baseline piece rate scales, and � = b�(U0) as the �rm�s correspnding
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continuation pro�t. Using the conditions of Theorem 1, Claim 1 identi�es b�(U) andb�(U).
Claim 1

For U 2 [U;U ]; b� evolves according to the di¤erential equation
db�
dU

= �b�� (16)

while b� satis�es
[b�]1��
1� �

+ b��� h1� b� + [�� �� � � �(1� F (U))]b�i (17)

= [� + �� �(1� �)]U � �UU � �

Z U

U

[1� F (U0)]dU0:

Proof Claim 1 follows directly from Theorem 1 and the de�nitions of b�; b�.
By construction, each �rm�s optimized steady state �ow pro�t by o¤ering U0 2

[U;U ] is


�(U0) = �b�(U0)[ueZ 1

x=0

y0e
�xdN(x) + (1� ue)

Z U0

U 0=U

Z 1

x=0

y0e
�xdH(x; U 0)]: (18)

We now formally de�ne a Market Equilibrium.

A Market Equilibrium is a distribution of optimal contract o¤ers, with corre-

sponding value distribution F (U); such that optimal job search by workers and steady

state turnover implies the constant pro�t condition:


�(U0) = 
 > 0 if dF (U0) > 0;


�(U0) � 
; otherwise.
(19)

In an equilibrium, the constant pro�t condition requires that all optimal contracts

o¤ered by �rms must make the same pro�t 
 > 0, while all other contracts must

make no greater pro�t. We next use steady state turnover arguments to determine

the equilibrium unemployment rate ue and distribution functions N , H: Identifying

a Market Equilibrium then requires �nding F (:) so that the above constant pro�t

condition is satis�ed. We perform this task using a series of lemmas. Lemma 1 �rst

speci�es some (well known) technical results which much simplify the exposition.
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Lemma 1. A Market Equilibrium implies:

(a) U = Uu;

(b) ue = (�+ �)=(�+ �+ �)

(c) F (U) = H(U;1) = 1; i.e. there are no mass points at U = U:

Proof. Lemma 1(a) implies the lowest value o¤er in the market equals the value

of unemployment. Its proof uses simple contradiction arguments : U < Uu is in-

consistent with strictly positive pro�t (�rms o¤ering starting value U0 < Uu make

zero pro�t), while U > Uu is inconsistent with the constant pro�t condition (o¤ering

U0 = U is dominated by o¤ering U0 = UU as both o¤ers only attract the unem-

ployed and o¤ering Uu < U generates greater pro�t per hire). Lemma 1(b) follows as

all unemployed workers accept their �rst job o¤er and steady state turnover implies

the stated condition. Lemma 1(c) is also established with contradiction arguments.

If there is a mass point in F at U; then o¤ering contract with starting value U is

dominated by instead o¤ering starting value U0 = U
+
with the following deviating

contract: � = �sh(�) + " for � � �; and � = �sh(�) for all � > �; where "; � > 0 but

small. As a mass of �rms o¤er starting contract with value U; this more generous

deviating contract reduces the new hire�s initial quit rate by a discrete amount and

so raises steady state �ow pro�t by an amount which is of order �: As the increase

in wage paid over this interval implies a �ow pro�t loss of order "� then, for " small

enough, this deviating contract strictly increases pro�t which contradicts the con-

stant pro�t condition. The same contradiction argument implies H cannot contain a

mass point at U; otherwise the above deviating contract yields a discrete increase in

the �rm�s hiring rate while the loss in pro�t per new hire is arbitrarily small. This

completes the proof of Lemma 1.

The next step is to characterize steady state N(x) and H(x; U): The turnover

arguments in Burdett et al (2009) imply the distribution of experience across unem-

ployed workers is:

N(x) = 1� ��

(�+ �)(�+ �)
e�

�(�+�+�)x
(�+�) : (20)

Let N0 = N(0) and note it is strictly positive: N0 describes the proportion of unem-
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ployed workers who have never had a job and so have zero experience. For x > 0;

the distribution of experience across unemployed worker is described by the exponen-

tial distribution. Burdett et al (2009) also determines the distribution of experience

across all employed workers, which here is written as

H(x; U) = 1� e�
�(�+�+�)x
(�+�) : (21)

This distribution is also exponential but, in contrast to N; note that H(0; U) = 0 : in

a steady state the measure of employed workers with zero experience must be zero.

Lemma 2 now characterizes H(:) for all x > 0; U 2 [U;U ]:
Lemma 2. For x > 0 and U 2 [U;U ]; H = H(x; U) satis�es the partial di¤erential

equation:

[�+ � + �(1� F (U)]H +
@H

@x
+

�
U
@H

@U
= (�+ �)F (U)N(x);

where along the baseline piece rate scale
�
U =

�
U(U) is given by:

�
U = b���[(1� b�)� [� + �� �+ �(1� F (U))]b�] (22)

and H satis�es the boundary conditions

H(0; U) = 0 for all U 2 [U;U ];

H(x; U) = 0 for all x � 0:

The Proof of Lemma 2 is in the Appendix.

Although H is described by a relatively straightforward �rst order partial di¤er-

ential equation, a closed form solution does not exist. Nevertheless it still possible to

characterize fully a Market Equilibrium. Given ue obtained in Lemma 1 and N(x)

given by (20), then (18) describing 
� implies the constant pro�t condition requires

�nding F such that

b�(U0)
24 �(�+���)

�(�+�+�)��(�+�)

+ �
�+�+�

R U0
U 0=U

R1
x0=0 e

�x0 @2H(x0;U 0)
@x@U 0 dx0dU 0

35 = 


�y0
for all U0 2 [U;U ] (23)

with H given by lemma 2.
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Fortunately the problem dichotomises. In what follows, Theorem 2 and Lemma 3

below solve (23) for equilibrium b�(:); b�(:): Equation (17) in Claim 1, which describes
the optimal contract, will then determine equilibrium F:

Theorem 2. In any Market Equilibrium, the constant pro�t condition is satis�ed if

and only if

b� = 1

�+ � � �

q
(1� �)(1� b�) for all U0 2 [U;U ];

where � = b�(U) is the highest piece rate o¤ered in the market.
Proof of Theorem 2 is in the Appendix.

Putting � = 0 �nds this solution is the same as that found in B/C. Our next step

is to use Theorem 2 to characterize a Market Equilibrium and so establish existence.

5 Existence and Characterization of aMarket Equi-

librium.

Although an analytic solution does not exist, solving for a Market Equilibrium is

relatively straightforward. The approach is �rst to hypothesize an equilibrium value

for �; the highest piece rate paid in the market, and then use backward induction to

map out the equilibrium outcomes. The free choice of � is tied down by Lemma 1(a),

which requires UU = U .

Given an equilibrium value for � (and thus b�(U) = �); Lemma 3 now describes the

corresponding equilibrium support of o¤ers [U;U ] and fully characterises equilibriumb�(:) over that support.
Lemma 3. For any equilibrium value � 2 (0; 1); a Market Equilibrium implies b�(U)
is given by the implicit functionq

(1� �)

2(�+ � � �)

Z �

b�
1

(1� �0)1=2 [�0]
� d�

0 = [U � U ] (24)

for all U 2 [U;U ] where U;U are uniquely determined by
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[�]1��

1� �
= [�� �(1� �)]U + �[U � U ] (25)q

(1� �)

2(�+ � � �)

Z �

�

1

(1� �0)1=2 [�0]
� d�

0 = [U � U ]; (26)

and � � b�(U); the lowest piece rate paid in the market, is given by
(1� �) =

�
�+ � � �+ �

�+ � � �

�2
(1� �): (27)

Proof is in the Appendix.

As we only consider equilibria where � � 0 does not bind, (27) implies we need

only consider � � 1 �
h

�+���
�+���+�

i2
. For any � 2 (1 �

h
�+���
�+���+�

i2
; 1); it is trivial to

show a solution to the above equations always exists, is unique, is continuous in �

and implies 0 < � < � and U < U:

Given (24) describes the solution for equilibrium b�; Theorem 2 now gives equilib-

rium b�(:): All that remains is to determine equilibrium F: It is convenient to de�ne

the surplus function

S(U) =

Z U

U

[1� F (U 0)]dU 0:

Noting that UU = U in a Market Equilibrium, (17) implies equilibrium S is deter-

mined by the linear di¤erential equation

[b�]1��
1� �

+ b��� �1� b� + [�� �� � + �
dS

dU
]b�� = [� + �� �(1� �)]U � �U � �S (28)

for all U 2 [U;U ] with initial value S(U) = 0: As b� > 0;this linear di¤erential equa-

tion contains no singularities. Thus S is uniquely determined by backward iteration

from U; using the solutions above for b�; b�; U with initial value S(U) = 0: Of course

the surplus function uniquely determines F: The �nal step, then, is to note a Market

Equilibrium also requires UU = U where UU is given by (2).

Theorem 3. [Existence and Characterization]. The necessary and su¢ cient condi-

tions for a Market Equilibrium with � > 0; is a � 2 (1�
h

�+���
�+���+�

i2
; 1) with

(A) the support of o¤ers [U;U ] (and corresponding �) given by (25)-(27), where over

that support,
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(B) b�(:) is given by (24), b�(:) is given by (23), S(:) is the solution to the initial value
problem (28) with S(U) = 0;

and UU ; given by (2), satis�es UU = U . Furthermore such a Market Equilibrium

exists for any � � 1.
Proof. By construction these are necessary conditions for a Market Equilibrium.

Given any such solution, then by construction all optimal contracts which o¤er U0 2
[U;U ] yield the same steady state �ow pro�t. Consider now any deviating contract.

Clearly, a suboptimal contract which o¤ers U0 2 [U;U ] yields lower pro�t. Further
any contract which o¤ers value U0 < U yields zero pro�t as UU = U and all workers

reject such an o¤er. Finally any contract which o¤ers U0 > U attracts no more workers

than an optimal contract which o¤ers U while the latter contract earns strictly greater

pro�t per hire. As no deviating contracts exist which yield greater pro�t, a solution

to the above conditions identi�es a Market Equilibrium.

We now establish existence of a solution when � � 1. Given an arbitrary value

for � 2 (1 �
h

�+���
�+���+�

i2
; 1); let eF (:j�) denote the solution for F implied by solving

parts A,B of Theorem 3 above. Further de�ne eUU(�) as the solution for UU where
�UU =

b1��

1� �
+ �

Z U

UU
[1� eF (U0j�)]dU0: (29)

Thus eUU(�) is the optimal reservation piece rate UU of unemployed workers given
o¤er distribution eF (:j�): Let U(�) denote the lowest value contract o¤ered in the
market, as determined in Theorem 3A. A Market Equilibrium requires �nding a

� 2 (1 �
h

�+���
�+���+�

i2
; 1) such that eUU(�) = U(�): Simple continuity arguments now

establish existence.

First note that as � ! 1; (27) implies �! 1: As all piece rates � paid must then lie

in an arbitrarily small neighborhood around one, frictions (� <1) and b < 1 implyeUU < U:

Instead consider the limit � ! 1� [(�+ � � �)=(�+ � � �+ �)]2 which, by (27),

implies �! 0: � � 1 implies the �ow payo¤ by accepting the lowest � o¤er, �1��=(1�
�); becomes unboundedly negative in this limit. (25) and (27) imply U! �1 as

�! 0: But (29) implies �eUU > b1��

1�� and thus
eUU > U in this limit.
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As the solutions for b�(:); b�(:); S(:) and U are all continuous in �; continuity now

implies a � 2 (1 �
h

�+���
�+���+�

i2
; 1) exists where eUU = U and so identi�es a Market

Equilibrium. This completes the proof of Theorem 3.

Note the existence proof does not consider the case � < 1: If � < 1; a Market

Equilibrium might instead �nd the constraint � � 0 binds on the optimal contract.
Theorem 3 establishes this does not occur if � � 1. Alternatively, as argued in B/C,
one could consider 0 < � < 1 but then restrict attention to b su¢ ciently large that

� � 0 does not bind.

6 Discussion and a Numerical Example.

6.1 Ex-ante worker heterogeneity.

It is straightforward to show the results obtained above extend directly to ex-ante

heterogeneous workers, where each new entrant has productivity yi drawn from some

population distribution A with support [y; y]: In a Market Equilibrium with CRRA

and competition in piece rate contracts, all workers use the same search strategies.

Thus the unemployment rate and distributions of experience is the same for all types

and as described above. The only di¤erence to the analysis is that the constant pro�t

condition becomes


�(U0) = �b�(U0)Z y

y

24 ue
R1
x=0

yie
�xdN(x)

+(1� ue)
R U0
U 0=U

R1
x=0

yie
�xdH(x; U 0)

35 dA(yi) = 
 for all U0 2 [U;U ]
(30)

Let � =
R y
y
yidA(yi) denote average entrant productivity. Solving the constant

pro�t condition then reduces to

b�(U0)
24 ue

R1
x=0

e�xdN(x)

+(1� ue)
R U0
U 0=U

R1
x=0

e�xdH(x; U 0)

35 = 


��
for all U0 2 [U;U ]:

Thus replacing y0 with � implies the previous analysis applies:
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6.2 Equilibrium Wage Outcomes.

If yi denotes the initial productivity of worker i; then the equilibrium wage earned

by this worker after x years experience, with tenure � ; at �rm j o¤ering piece rate

contract �j(:) is:

logwij(x; �) = log yi + log �j(0) + �x+ log
�j(�)

�j(0)
:

The observed wage thus depends on the worker �xed e¤ect (log yi), the �rm �xed e¤ect

(log �j(0) which describes �rm j�s starting piece rate paid to new hires), experience

e¤ect x and the tenure e¤ect at �rm j: The econometrician�s problem then is to

separately identify the (�rm speci�c) tenure e¤ect log[�j(�)=�j(0)] from the �rm �xed

e¤ect log �j(0). Below we shall argue these e¤ects are negatively correlated - �rms

which pay low starting salaries will, in equilibrium, have large tenure e¤ects.

As �rm j chooses the contract �j(:) optimally, (10) implies optimal wage growth

within any employment spell is given by

d

dt
logw(x; �) =

�F 0(U)�

���
: (31)

Given the previous wage equation, it is perhaps surprising that � does not appear in

this latter expression. This re�ects that an optimal contract smooths the worker�s

entire future wage (consumption) pro�le against the increased risk that the worker is

poached by a near competitor. The numerical example below �nds that wage growth

within the employment spell is greatest at �rms which o¤er the lowest value contracts

(those �rms whose starting piece rates are closest to �) and only for relatively short

tenures. This occurs as, by (31),

(i) along the baseline piece rate scale, �rms which pay low piece rates enjoy relatively

high continuation pro�t � per worker. Higher per worker pro�t implies stronger

tenure e¤ects: the �rm more quickly raises wages with tenure to reduce the likelihood

of a quit to a near competitor. As wages paid become more �competitive�, in the

sense of closer to marginal product, the more slowly wages increase over time.

(ii) AMarket Equilibrium �nds most starting o¤ers are concentrated around � (see the

numerical examples below). As in B/C, there is a mass of �rms which o¤er starting
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pay rate � = �: These �rms only attract unemployed workers and extract maximal

search rents: O¤ering a starting payrate �0 slightly above � is also advantageous as it

is likely to poach a new hire at �rms in the mass point, and such hires still generate

a large expected pro�t. Of course relatively intense competition for such employees

leads �rms in the mass point to raise wages relatively quickly with tenure.

Before turning to the numerical examples, however, we further point out that a

Market Equilibrium rules out negative tenure e¤ects. Putting U = U and noting The-

orem 2 �nds b�(U) = (1��)=(�+���); then inspection establishes that (�; U; b�(U))
is the stationary point of the di¤erential equations describing the baseline piece rate

scale; i.e. there is no upper baseline piece rate scale (or instead �sh(:) = �):

6.3 A Numerical Example.

We use numerical examples to gain some qualitative insights on how tenure e¤ects

and learning-by-doing e¤ects interact on equilibrium wage outcomes. Using a year as

the reference unit of time we use the following parameter values:

� = 0:025 (workers have a 40 year expected working lifetime)

� = 0:055 (job destruction rate of 5.5% p.a.)

� = 0:01 (productivity growth 1% through learning-by-doing)

y0 = 1 (identical labour market entrants)

b = 0:7 (home productivity is 70% of workplace productivity),

� = 2 (degree of relative risk aversion).

The above numbers are relatively standard (see Burdett et al (2009) for a full

discussion). We consider two separate values for �. For the U.S., Jolivet et. al.

(2006) estimate job separation rate � = 0:055 and �1 = 0:15;i.e. employed workers

receive outside o¤ers every 6.7 years. As that paper identi�es �1 by assuming no wage

tenure contracts, this estimate of �1 is downward biased. Indeed in Stevens (2004)

with risk neutral workers, employed workers receive outside o¤ers at rate � but never

quit which would lead the the econometrician to infer b� = 0: In our main example

we consider � = 2 so that employed workers on average receive two outside o¤ers
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each year. As we assume employed and unemployed receive job o¤ers at the same

rate, this also implies an average duration of unemployment equal to 6 months. For

reasons that will become clear, we refer to this latter case as the low frictions case.

� = 0:15 is termed the high frictions case.

The low frictions case (� = 2): Solving the conditions of Theorem 3 for the

above parameter values �nds F (U) = 0:21;i.e., a Market Equilibrium implies 21% of

all �rms o¤er reservation starting piece rate �= 0.30. Note this reservation starting

piece rate is far below b = 0:7: This low value occurs for two reasons. First there is the

foot-in-the-door e¤ect as described in B/C: although the worker might start employ-

ment at a very low pay rate, he/she anticipates rapid promotion to higher payrates.

This promotion mechanism lowers the unemployed worker�s reservation piece rate

(and raises �rm pro�t). Second experience is valuable and the low reservation piece

rate re�ects the investment value of employment.

Although the theory determines the distribution of starting payo¤s, F = F (U);

it is empirically more interesting to describe instead the distribution of starting piece

rates denoted F�(�); where F�(b�) = F (U): Figure 2 describes the density of F� for

� > �:

Figure 2 around here.

Along with the mass point at �, most �rms o¤er relatively low starting piece rates.

Of course relatively intense competition for employees on low piece rates implies

tenure e¤ects are steep. Figure 3 describes the corresponding baseline piece rate

scale.

In the low frictions case, tenure e¤ects are very steep for workers on low pay

rates. This re�ects that employed workers regularly receive outside o¤ers. After 4

years tenure, a worker who started on piece rate � will be enjoying a wage close

to marginal product. Of course in those intervening 4 years, the worker expects to

receive 8 outside o¤ers and is likely to quit to a better job o¤er.

A useful consistency check is to de�ne 1�G(U) as the number of employed workers
with current piece rate value no lower than U: As G(U) = ue (and ue is given by
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lemma 1), standard turnover arguments imply G(U) evolves according

dG

dU
=
�+ � � [�+ � + �[1� F ]]G

�
U

;

where
�
U =

�
U(U) is given by (22). The consistency check is that G ! 1 as U ! U:

Doing this not only �nds all is well, but one can use the computed G(:) to infer

the density of piece rates paid across all employed workers. Figure 4 describes that

density.

Figure 4 here.

With low frictions, most currently employed workers enjoy a wage close to mar-

ginal product. This occurs as employed workers regularly receive outside o¤ers and

competition for employed workers imply tenure e¤ects are steep. At these high pay-

rates, however, tenure e¤ects are almost zero. Suppose then the econometrican were

to estimate a standard wage equation of the form

logwij(x; �) = log yi + log �j(0) + �x+ g� :

This equation includes a worker �xed e¤ect, a �rm �xed e¤ect but, crucially, assumes

the return to tenure (g) varies neither between �rms and between workers within a

�rm. As average tenure e¤ects across the whole working population are small, the

estimated �average�tenure e¤ect, g; would be close to zero. Nevertheless marginal

tenure e¤ects are large for certain workers: the recently unemployed who currently

earn low piece rates.

The high frictions case (� = 0:15):

A Market Equilibrium implies 27% of all �rms o¤er the reservation starting piece

rate, which is now slightly higher at �= 0.34. The higher reservation piece rate (rela-

tive to the low frictions case) re�ects the reduced foot-in-the-door e¤ect: promotion

rates are much reduced when frictions are high. Figure 3 plots the baseline piece rate

scale for the high frictions case. As employed workers are much less likely to receive

an outside o¤er, the marginal tenure e¤ect at low pay rates is signi�cantly weaker

than before. The reduced competition for employed workers also implies � is now a

signi�cant distance from marginal product. Further as promotion and quit rates are
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low, it is no surprise that steady state �nds a large number of employed workers now

earn payrates signi�cantly below �: Nevertheless the same qualitative insights hold:

marginal tenure e¤ects are largest for workers earning currently low piece rates while

average tenure e¤ects across the entire working population may be relatively small.

7 Conclusion

Aside from Becker (1974) in a perfectly competitive framework and Bagger et al

(2008) in a frictional framework, we are not aware of an alternative equilibrium

framework where wages depend endogenously on both experience and tenure e¤ects.

A central contribution of this paper is to provide a framework within which such wage

e¤ects might be formally identi�ed.

As tenure e¤ects are �rm speci�c, a major econometric problem is to separately

identify the �rm speci�c return to tenure from the �rm �xed e¤ect. The theory

strongly suggests these will be negatively correlated: �rms which pay the lowest

starting salaries will have the steepest tenure e¤ects. The model also demonstrates

clearly why a mispeci�ed wage equation, one which estimates the �average�return to

tenure, �nds the average return to tenure is small even though marginal tenure e¤ects

can be large for new hires. The identi�cation arguments presented in Dustmann and

Meghir (2005) would seem the most promising way forward: �rst to identify � using

re-employment wage data for those workers laid-o¤ through plant closure, then use

�rm level wage data to infer the underlying baseline piece rate scale.
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8 Appendix.

Proof of Theorem 1. Let �(t) = e�t (tj�(:)): The �rm�s optimal contract solves

max
�(:)�0

Z 1

0

�(t)[1� �(t)]dt (32)

where on-the-job learning and optimal job search by employees implies

:

� = [�� �� � � �(1� F (U))]� (33)

dU

dt
= [� + �� �(1� �)]U � [�(t)]

1��

1� �
� �UU � �

Z U

U

[1� F (U0)]dU0: (34)

and starting values

 (0) = 1;U(0) = U0: (35)

De�ne the Hamiltonian

H = �(t)[1� �(t)] + ��[�� �� � � �(1� F (U))]�

+�U

"
[� + �� �(1� �)]U � [�(t)]

1��

1� �
� �UU � �

Z U

U

[1� F (U0)]dU0

#
:

Whenever the corner constraint � � 0 is not binding, the Maximum Principle implies
optimal �(:) satis�es the �rst order condition

@H

@�
= ��(t)� �U�(t)

�� = 0

and ��; �U evolve according to the di¤erential equations

d��
dt

= �[1� �(t)]� ��[�� �� � � �(1� F (U))]

d�U
dt

= ����F 0(U)�� �U [� + �+ �[1� F (U)]� �(1� �)]

with �(t); U given by the di¤erential equations stated above. No discounting implies

the additional constraint H = 0 (e.g. p298, Leonard and Long (1992)) and so we

also have
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0 = �(t)[1� �(t)] + ��[�� �� � � �(1� F (U))]�

+�U

"
[� + �� �(1� �)]U � [�(t)]

1��

1� �
� �UU � �

Z U

U

[1� F (U0)]dU0

#
:

While � > 0 along the optimal path, optimality implies �U = ��=(���): Substi-
tuting out �U in the previous expression implies

0 = [1� �(t)] + ��[�� �� � � �(1� F (U))] (H=0)

� 1

���

"
[� + �� �(1� �)]U � [�(t)]

1��

1� �
� �UU � �

Z U

U

[1� F (U0)]dU0

#
:

Now integrating the linear di¤erential equation for �� yields:

��(t) =

Z 1

t

e�
R s
t [�+���+�(1�F (U(�))]d� (1� �(s))ds+ A0e

R t
0 [�+�+�(1�F (V (x)))��]dx

where A0 is the constant of integration. Denote the �rst term as the �rm�s continu-

ation pro�t �(t) and note �(t) evolves according to (?) stated in the Theorem.

Using

��(t) = �(t) + A0e
R t
0 [�+�+�(1�F (V (x)))��]dx;

to substitute out ��(t) in the [H = 0] condition yields

0 = [1� �] +
h
�(t) + A0e

R t
0 [�+�+�(1�F (V (x)))��]dx

i
[�� �� � � �(1� F (U))](36)

� 1

���

"
[� + �� �(1� �)]U � [�(t)]

1��

1� �
� �UU � �

Z U

U

[1� F (U0)]dU0

#
:

A contradiction argument now establishes A0 = 0: As � and U are uniformly bounded

(to be proved), A0 6= 0 and � > � implies the second term in (36) grows exponentially

as t ! 1: Thus, (36) requires � ! 0 in this limit: But such a contract with b > 0

implies all workers quit at a �nite tenure date, which contradicts optimality of the

contract. Thus A0 = 0:

Putting A0 = 0 in (36) with some rearranging yields

[�(t)]1��

1� �
+ ��� [1� � + [�� �� � � �(1� F (U))]�(t)]

= [� + �� �(1� �)]U � �UU � �

Z U

U

[1� F (U0)]dU0:
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Using this to substitute out [�(t)]
1��

1�� in (??) and now gives:

dU

dt
= ��� [1� � + [�� �� � � �(1� F (U))]�(t)] (37)

= ���� d�
dt
: (38)

then yields (9). Connected F implies (�1; V 1;�1) is the unique stationary point

of this di¤erential equation system. This completes the proof of Theorem 1.

Proof of Lemma 2: Consider the pool of employed workers who have experience

no greater than x > 0 and piece rate value no greater than U: Then for U < U1; the

total out�ow of workers from this pool, over any instant of time dt > 0; is

(1� ue)H(x; U)[�+ � + �(1� F (U)]dt+ (1� ue)

Z U

U 0=U

Z x

x0=x�dt

@2H

@U@x
dU 0dx0

+(1� ue)

Z Us(t)

U 0=Us(t�dt)

Z x

x0=0

@2H

@U@x
dU 0dx0 +O(dt2);

where the �rst term is the number who die, lose their job or quit through receiving

a job o¤er with value greater than U; the second is the number who exit through

achieving greater experience, while the third is the number who exit through internal

promotion, where U s(t) = U: The in�ow is �ueF (U)N(x)dt which is the number of

unemployed workers with experience no greater than x who receive a job o¤er with

value no greater than U: Setting in�ow equal to out�ow, using the solution for ue in

lemma 1 and letting dt! 0 implies H satis�es:

H(x; U)[�+ � + �(1� F (U)] +

Z U

U 0=U

@2H

@U@x
dU 0

+
�
U

Z x

x0=0

@2H

@U@x
dx0 = (�+ �)F (U)N(x):

Integrating thus yields

H(x; U)[�+ � + �(1� F (U)] + [
@H[x; U ]

@x
� @H[x; U ]

@x
]

+
�
U

�
@H[x; U ]

@U
� @H[0; U ]

@U

�
= (�+ �)F (U)N(x):

30



But H(0; U) = H(x; U) = 0 implies @H[x;U ]
@x

= @H[0;U ]
@U

= 0 which with the above

equation yields the stated solution. This argument but for U > U1 establishes the

same di¤erential equation. This completes the proof of Lemma 2.

Proof of Theorem 2. we begin with two preliminary facts. As @H(0; U)=@U = 0

(by Lemma 2), then putting x = 0 in the pde for H implies

@H(0; U)

@x
= (�+ �)N0F (U):

Also using the solution for N(:) straightforward algebra establishes:Z 1

0

e�x
0
dN(x0) =

� (�+ � + �)

�+ �

�
�+ � � �

� (�+ � + �)� �(�+ �)

�
:

we now turn to solving the constant pro�t condition. The key is to solve for
R1
x0=0

R U0
U 0=U e

�x0 @2H(x0;U 0)
@x@U 0 dx0dU 0

with H(.) as described by lemma 2. First note that as the measure of employed work-

ers with no experience is zero, thenZ 1

x0=0

Z U0

U 0=U

e�x
0 @2H(x0; U 0)

@x@U 0
dx0dU 0 =

Z
x0>0

Z U0

U 0=U

e�x
0 @2H(x0; U 0)

@x@U 0
dx0dU 0

=

Z
x0>0

e�x
0 @H(x0; U0)

@x
dx0:

Thus (23) requires solving

b�(U0) � �(�+ � � �)

� (�+ � + �)� �(�+ �)
+

�

�+ �+ �

Z
x0>0

e�x
0 @H(x0; U0)

@x
dx0
�
=




�y0
for all U0 2 [U;U ]:

(39)

First put U0 = U in (39) and let � = b�(U): As, by (21), H(x; U) = 1 � e�
�(�+�+�)x
(�+�)

then straightforward algebra establishes

�

�
�(�+ � � �) + ��

� (�+ � + �)� �(�+ �)

�
=




�y0
: (40)

Now consider U0 2 [U;U ]: Using (39) and di¤erentiating wrt U0 implies24 db�
dU

h
�(�+���)

�(�+�+�)��(�+�) +
�

�+�+�

R
x0>0 e

�x0 @H(x0;U0)
@x

dx0
i

+b� h �
�+�+�

R
x0>0 e

�x0 @2H(x0;U0)
@x@U

dx0
i 35 = 0 for all U0 2 [U;U ]: (41)
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To compute the integral in the second line then, for x > 0; partial di¤erentiation wrt

x of the pde for H; given by lemma 2, implies

�
U
@2H

@x@U
= (�+ �)FN 0(x)�

�
[�+ � + �(1� F )]

@H

@x
+
@2H

@x2

�
;

where
�
U =

�
U(U) is given by (22). ThusZ

x0>0

e�x
0 @2H(x0; U0)

@x@U
dx0 =

1
�
U

Z
x0>0

e�x
0
�
(�+ �)FN 0(x)�

�
[�+ � + �(1� F )]

@H

@x
+
@2H

@x2

��
dx0:

(42)

Straightforward algebra using the solution for N(:) �ndsZ
x0>0

e�x
0
(�+ �)FN 0(x)dx =

��� (�+ � + �)

(�+ �) [� (�+ � + �)� �(�+ �)]
F (U)

The second term is computed using an appropriate integrating factor:Z
x0>0

e�x
0
�
[�+ � + �(1� F )]

@H

@x
+
@2H

@x2

�
dx0

=

Z
x0>0

e[��[�+�+�(1�F )]]x
0
�
e[�+�+�(1�F )]x

0
�
[�+ � + �(1� F )]

@H

@x
+
@2H

@x2

��
dx0

=

�
e�x

0 @H(x0; U0)

@x

�1
0+
�
Z
x0>0

[�� [�+ � + �(1� F )]]e�x
0 @H(x0; U0)

@x
dx0

= [�+ � � �+ �(1� F )]

Z
x0>0

e�x
0 @H(x0; U0)

@x
dx0 � �(�+ �+ �)

�+ �
F:

Inserting this solution into (42) now yields a closed form expression for
R
x0>0 e

�x0 @2H(x0;U0)
@x@U

dx0:

Using that solution to substitute out
R
x0>0 e

�x0 @2H(x0;U0)
@x@U

dx0 in (41) then yields a

closed form solution for
R
x0>0 e

�x0 @H(x0;U0)
@x

dx0: But this expression is the same asR1
x0=0

R U0
U 0=U e

�x0 @2H(x0;U 0)
@x@U 0 dx0dU 0: Substituting this closed form solution into (23) and

simplifying then yields

b�2 = [� (�+ � + �)� �(�+ �)] 


�(�+ � � �)[� + �� �+ �]�y0
(1� b�) for all U0 2 [U;U ]:

Using (40) to substitute out 
 yields

b�2 = �

(�+ � � �)
(1� b�) for all U0 2 [U;U ]:
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Finally setting U0 = U implies

� =
1� �

�+ � � �
: (43)

and combining the last two expressions yields the Theorem. This completes the proof

of Theorem 2.

Proof of Lemma 3. Using Theorem 2 to compute db�=dU and using (16) in Claim

1 implies b�(:) satis�es
�(�+ � � �) + ��

2�(�+ � � �)[� + �� �+ �]

q
(1� �)(1� b�)�1=2b��� db�

dU
= 1

with b� = � at U = U: Integrating implies (24). Putting U = U in (17) and using

(43) in the Appendix implies (25). Noting @H(x; U)=@x = 0; then putting U = U in

(39) and using (40), (43) and Theorem 2 yields (27). Finally putting U = U in (??)

implies (26). This completes the proof of Lemma 3.
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