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Abstract

A large and growing economic literature in empiricaustrial organization
relies on structural models to infer what typeéimof behaviour (“conduct”) are
associated with prices that exceed marginal cbist of existing studies impose some
restrictionson the value of the conduct parameter across wisens or time. We
instead treat firms’ behaviour as a random param@igr approach is based on
composed error model, where the stochastic péotrised by two random variables -
traditional error term, capturing random shocksl amandom conduct term, which
measures market power. We propose multistage dsetirtinat allows us to obtain time-
varying firm-specific market power scores. Thisiiddal information, usually ignored
in previous structural econometric studies estingationduct parameters provides a
better understanding of firm-level pricing strategiWe illustrate the proposed
approach with an application to the California Eiedy generating market using the
same data as Puller (2007).
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1. Introduction

Starting from seminal research works of lwata ()9%G4&llop and Roberts
(1979), and Appelbaum (1982), measuring the degfreempetition in oligopolistic
markets has become one of key activities in emgirrdustrial organization. A large
and growing economic literature in empirical indigdtorganization relies on structural
models to infer what types of firm behaviour (“coetf) are associated with prices that
exceed marginal costsA typical structural model based on the conduchpeter
approach for homogenous product markets startsspitifying a demand function and
writing down the first-order condition of firm’s gfit-maximization problem:

P(Qt )_mc(qit )+ p(Qt )qit [eit =0 (1)

whereP(Q) is inverse deman®@=5"q; is total industry’s outputy, is the firm’s
output in period tmc(q;) is the firm’s marginal cost, artl is a “conduct” parameter
that parameterizes the firm’s profit maximizatiemdition. Under perfect competition,
0:=0 and price equals marginal cost. WitenN we face a perfect cartel, and when
0<6;<N various oligopoly regimes apply. In these modieés(firm or industry) degree
of market power is measured by a conduct paramMeteat is jointly estimated with
other cost and demand paramefers.

The conduct parameter may vary across time as meokelitions change, and
firms change their own pricing strategielsloreover, the conduct parameter may also
vary across firms as “there is nothing in the lagfioligopoly theory to force all firms
to have the same conduct” (Bresnahan, 1989, p.)f03Bviously, allowing the
conduct parameter to vary both by firms and tingesaesults in an overparameterized
model. To avoid this problem the empirical studrestructural econometric literature
always impose sonrestrictionson the way the value of conduct parameter varies
across firms and time. The overparameterizatiaypiEally solved by estimating the
average of the conduct parameters of the firmkenndustry (Appelbaum 1982),
reducing the time variation into a period of sustglscartel cooperation and a period of

! For an excellent survey of other approaches imatihg market power in industrial organization
literature, see Perloét al (2007).

2 Some studies interpret estimated conduct pararastarconjectural variation’, i.e. how rivals’ put
changes in response to an increase in fisroutput. Bresnahan (1989) and Reiss and Wola®@{P0
argue that with an exception of limited numberpdcal cases (e.g. perfect competition, CournotiNas
and monopoly) there is there is no satisfactoryneauc interpretation of this parameter as a measure
firm behaviour. We therefore interpret this paraenets a simple descriptive measure of firm's degfee
market power.

% As the problem of repeated oligopoly interacti@s heceived greater attention, the estimatiomoé i
varying conduct parameters that are truly dynaraglecome an issue. Indeed, the Stigler's (1964)
theory of collusive oligopoly implies that, in anaertain environment, both collusive and price-war
periods will be seen in the data. Green and P@@884) predict a procyclical behaviour patternraark-
ups because of price reversion during a periodwfdemand. Hence the conduct parameter changes
from collusive value to competitive value when thexr an unanticipated negative demand shock. On the
contrary, Rotemberg and Saloner (1986) predictghiaes and mark-ups are countercyclical, and hence
the conduct parameter will decrease when demaliglis Moreover, Abreu et al. (1986) find that in
complex cartel designs the length of price waes (ihanges in conduct parameter) is random because
there are “triggers” for both beginning a price \aad for ending one. It is therefore difficult tnpose
plausible structural conditions and estimate firamduct over time.

“*In many treatments of oligopoly as a repeated géinnes expect deviations from the collusive
outcome. Firms expect that if they deviate fromabBusive arrangement, other will too. This
expectation deters them from departing from thie@ire of the collusive output. Because these dewvisti
are unobserved in an uncertain environment, eachrfiight have its own expectation about what would
happen if it deviates from collusive output.



price wars or similar breakdowns in cooperationr{&adl983a), allowing for different
conduct parameters between two or more groupsro§f{Gallop and Roberts 1979) ,
or assuming firm-specific, but time-invariant, cactiparameters in a panel data
framework (Puller 2007).

Most of the structural econometric models treatffitme’'s conduct as a common
parameter to be estimated jointly with other cost demand parameters. We instead
propose treating firms’ behaviodg as a random variable. Our approach relies on
estimating composed error model, where the stoichaatt is formed by two random
variables - traditional error term, capturing ramdshocks, and a random conduct term,
which measures market power. The proposed appzache viewed as belonging to
the same family as Porter (1983b), Brander and gl(a®93), and Gallet and Schroeter
(1995) who estimate a regime-switching model wimeagket power enters in the model
as a supply shock. As in our model, the identifacabf market power in these papers
relies on making simple assumption about a speotiicponent in the error term, which
is unobservable. However, while previous papeliseseéd the pricing relationship (1)
assumingl;=6; to be adiscreterandom variable that follows a bimodal distribatio
(“price wars” vs. “collusion”), heré;; varies both across firms and over time and is
treated as aontinuousrandom term. What distinguishes our paper is ttegmgpt to
estimate alouble-bounded distribution that imposes both loavet upper theoretical
bounds (i.e. 86;:<N) to a continuous random conduct term. Moreoveilerthe
switching regression models can only be estimateeihvthere are discrete “collusive”
and “punishment” phases that are either obsenatteuld be inferred from the data,
our model can be estimated in absence of regimietseg The continuous nature of
our conduct random term thus allows us to capguaeual changes in firm behavio(r.

The model can be estimated in three stdg@sce all parameters describing the
structure of the pricing equation (1) are estimatgidg appropriate econometric
techniques (first-stage), distributional assumgion random conduct term are invoked
to obtain consistent estimates of the parametessridéng the structure of the two error
components (second-stage). Conditional on thesener estimates, market power
scores can be then estimated for each firm by dpoeimg the estimated residual into a
noise component and a market-power component {sitége). These firm-specific
market power scores can be used to complementitivagant or common conduct
estimates obtained in the first stage.

Because the firm-specific market power estimatesummodel relies on
distributional assumptions on the two error compisiethey can be obtained just using

® The regime switches only occur when a firm’s qjityaig never observed by other firm and, hence,
deviations cannot be directly observed. This isthetcase in the electricity generating industrglyred

in the empirical section as market participants &exkss to accurate data on rivals’ real-time geioer.

® Kole and Lehn (1999) argue that for many firmsdeeision-making apparatus is slow to changesén th
market environment within which it operates, du¢hi costs to reorient decision-makers to a newnga
plan”. In particular, the existing culture or thenited experience of the firm in newly restructured
markets may be such that strategies to enhanceetrfaoiver may not be immediately undertaken. In
addition, we would also expect gradual changegnmsfconduct in a dynamic framework if firms are
engaging in efficient tacit collusion and are prigcbelow the static monopoly level, and when theie
high persistence in regimes (Ellison, 1994).

" As in Porter (1983b), Brander and Zhang (1993, @allet and Schroeter (1995), Maximum
Likelihood techniques can be used to estimateaalimeters of the model in a unique stage. Howéngr t
does not allow us to address the endogeneity iskaeappear when estimating the pricing equatign (



cross-sectional data sets, unlike in previous bt used a fixed effect treatment to
estimate firm average conduct in a panel data fveorie(see, for instance, Puller,
2007).Therefore, our approach is especially usghdn:i) no panel data sets are
available® ii) the time dimension of the data set is siit) the available instruments
are valid when estimating a common pricing equatitoall observations, but not when
we try to estimate separable pricing equationg&mwh firm; oiv) the assumption of
time-invariant conduct is not reasonable.

The main contribution of the proposed approactb@iathe way the asymmetry
of the composed error term is employed to get Bpeeific market power estimates.
Indeed, while the first-stage of our model is staddthe following stages take
advantage of the fact that the distributadrconduct term is truncated and likely
positively or negatively skewed. As we aware, skesgof conduct parameter in
oligopolistic industry settings is not examined l&ipy in most (if any) of the previous
studies. Skewness and truncation allow us to isdke random conduct term from
other random shocks. In addition to the mean vasdienated in the first-stage of our
procedure, this permits estimating the varianceraade of the random conduct term.
This new knowledge may provide relevant informatidaout the oligopolistic
equilibrium behind the data generating processledd, price or conduct rigidity is
often attributed to reluctance among firms to dist@n existing cooperative
consensu$’ Hence, variation in conduct can be used as a mea$the degree of
collusivedisciplineacross firms and/or over time. For instance, gelaonduct
variation might suggest large differences in firreghduct or, if a cartel exists, that it is
not all-inclusive. A large conduct variation migiiso indicate the existence of
collusion break downs from time to time, graduarges in firm behaviour or simply
that cartel stability is not successful. This ibdity in turn might suggest the existence
of monitoring problems among collusive firms. Theda, on the other hand, might
provide information about the probability of obseryhigher (lower) market power
scores than the estimated average conduct value.

Because variation in conduct can be interpretealragasure of collusive
discipline or instability, we advocate using theffizient of conduct variation
(computed from the market power scores estimatéaeithird stage) as a screening
procedure to detect potential collusive firms orkeapower concentratiott. The
proposed screen can be viewed as a more soplasticatsion of the collusive screen
introduced by Abrantes-Me#t al. (2006) based on price variatidn.particular, our

8 In particular, our approach is useful in crosstisacapplications when there is not prior inforroati
about the identities of suspected cartel membathance a benchmark of non-colluding firms is not
available.

° The fixed-effect treatment is only consistent wheng panel data sets are available (i.e. ass). In
addition, the incidental parameter problem appearsthe number of parameters grows with samgle si
(i.e. as N» ),

1% Carlson and McAfee (1983) and Carlton (1986) aredyprice dispersion for homogeneous goods in an
oligopolistic industry structure and found thatgerdispersion is related to the slope of the maigiast
curves and the degree of competition measuredrdiththe number of firms or the industry
concentration. Note that, from equation (1), prigédity greater than cost fluctuations in oligojstic
settings can be attributed, among other sourcdsywtaonduct dispersion. For subsequent research on
price rigidity and competition see Connor (2005).

1 A screen is a statistical procedure designed tectleonspiracies aimed at illegally manipulating a
market. Because screens do not prove collusionegsnhight exhibit both false positives and false
negatives, they just isolate outcomes that areabgdsle or anomalous in competitive settings. For a
comprehensive survey of this literature, see Almsuietz and Bajari (2009).



screen would identify a potential cartel as grotifrms exhibiting low conduct
variation and high conduct values relative to offrers*> On the other hand, from a
dynamic perspective, the market power scores carsée to detect the creation/decline
of collusion episodes, or to identify abrupt chamgemark-ups which cannot be
explained by “normal” demand and cost random shocks

While economic theory imposes both lower and upipeoretical bounds to the
random conduct term, the skewness of its distriloLis an empirical issu& We argue,
however, that the skewness assumption of theloligton of conduct term is reasonable
because oligopolistic equilibrium outcomes oftegigyiskewed conduct random terms
where large (collusive) conduct values are eitbss lor more probable than small
(competitive) conduct values. For instance, todbmninant firm theory assumes that
one (few) firm(s) has enough market power to ficgs over marginal cost. This
market power is, however, attenuated by a fringg@iofall) firms that do not behave
strategically** The most important characteristic of this equilibniis that the modal
value of the conduct random term (i.e. the mosjdent value) is close to zero, and
higher values ol are increasingly less likely (frequent). In othearketsall firms
might be involved in perfect cartel scheme. In sadartel-equilibrium, firms usually
agree to sell “target” quantities, and the resgltimarket price is the monopoly price,
which is associated with the maximum conduct vadug.fi: =N. Less values of;; are
possible due, for instance, to cheating behavidiis means that the modal value of
the conduct random term in this equilibrium is ongh less values of;; increasingly
less likely.That is, firm-conduct is negative skewé&dgeneral, similar equilibria that
yield asymmetric distributions for the firm-condyarameter with modal values close
to zero or to the number of colluding firms mayoadsise.

We illustrate the model with an application to @aifornia electricity
generating market between April 1998 and DecemB@0 2This industry is an ideal
setting to apply our model because there were ¢ogicerns regarding market power
levels in California restructured electricity matkeuring that period, and detailed
price, cost, and output data are available asudtrefsthe long history of regulation and
the transparency of the production technology. @hais set allows us to compute
directly hourly marginal cost for each firm. We dherefore avoid complications from
estimating cost parameters and focus our researamaoket power, avoiding biases due
inaccurate estimates of marginal cstence, this data set provides a proper

12 A notable caveat to our screen is that condudamae can be higher under the collusive theory of
Green and Porter (1984). Though collusion doesstlt in a higher conduct variance within either a
collusive regime or a punishment regime, the cohdadance is higher when data spans the two
regimes. Hence, like any other collusive markeg,gloposed marker must be used with caution.

3 The economic theory suggests that the conduchpsea always takes positive values, so it might
follow one-sided or double-truncated distributiosisch us a truncated normal, half-normal or
exponential, widely used in the stochastic frorliterature. For a comprehensive survey of thesditure,
see Kumbhakar and Lovell (2000), and Fré¢dl (2008).

14 This partial collusion equilibrium is reasonabiemarkets with many firms where coordination among
all firms is extremely difficult to maintain as timber of firms in the collusive scheme is tochhig
other market characteristics make coordinatioretquensive, e.g. markets with differentiated prosluct
'3 It is well known that secret price cuts (or seersdles) by cartel members are almost always degmmob
in cartels. For instance, Ellison (1994) finds thatret price cuts occurred during 25% of the tpgrgod
and that the price discounts averaged about 20&alSe Borenstein and Rose (1994).

16 See Kim and Knittel (2006) using data from theifBatia electricity market. See also Genesove and
Mullin (1998) and Clay and Troesken (2003) for aggtions to the sugar and whiskey industries
respectively.



framework to discuss methodological issues anghpbyethe empirical approach
proposed in the present paper. In addition, tdes® have been used in previous papers
to calculate the level of market power in Califermarkets. In particular, Borenstein et
al. (2002) and Joskow and Kahn (2001) estimatelyronsrginal cost for the California
market and compare these estimates to wholesalkespithey found that, in certain

time periods, prices substantially exceeded margmst. Puller (2007) analysed the
pricing behaviour of California electricity genergf firms and found that price-cost
margins varied substantially over time.

The rest of the paper is structured as followsSéotion 2 we explain the
empirical model, and its dynamic extensions, asduls how to incorporate conduct
determinants and panel data specifications. Ini@e8twe discuss the three-stage
procedure to estimate the model. The empiricadtitation of the model using
California electricity data is described in SectérSection 5 concludes.

2. Theoretical background and alter native empirical specifications

The traditional structural econometric model ofke& power is formed by a
demand function and a pricing equation. Becausar@grimarily interested in the
estimation of industry or firm-specific market paveeores, we only discuss here the
estimation of the pricing equation (1), given avovas estimates of the demand
parameters’ Otherwise, demand parameters should be is estifwitely with cost
and market power parameters.

In accordance with our empirical application to Wieolesale electricity
industry, in this section we develop a simple madatre firms sell homogenous
products (i.e. Kwh) and choose individual quandigach period so as to maximize their
profits. Firmi’s profit function in period can be written as:

T, = P( Q nB)'qit - C( o ,a) 2)

where £ is a vector of demand parameters already estitnatela is a vector of cost

parameters to be estimated. We assume that firowsehdifferent quantities each
period and their marginal cost varies across fiams over time.

Static specification

We first assume a static model, where firms maxantieir profits each period
without explicit consideration of the competitivevedonment in other periods. We then
extend the model to dynamic setting. In a statidehthe firm’s profit maximization
problem is

max P(Q.B)d, ~C(g,.a) ®3)
The static FOC's are captured by equation (1), ithat
P =mqq,,a)+ git(B) [0,

" This is the strategy followed, for instance, byaider and Zhang (1993), Nevo (2001) and Jaumandreu
and Lorences (2002).



wheremd g, ,a ) stands for marginal cost, amg = -P (Q, B )4, = 0. The stochastic

specification of the above FOC’s can be obtaineddulng the traditional error term,
capturing measurement and optimization errors:

P =mdq,,a)+0g,(B)[6, +V, (4)

Instead of viewing firm’s behaviour as a structyratameter to be estimated we here
treat firms’ behaviour as a random variable. Whaliaining standard assumption that
the noise term isi.d. and symmetric with zero mean, we also assume&jtHatiows a
one-sided distribution once we incorporate the ritacal restriction that<;. The
distinctive feature of our model is that the st@tltapart is formed by two random
variables - the traditionaymmetricerror term, y, and aone-sidedandom conduct
term,gi-0;, that reflects the market power. The one-sidetticiesn makes the
composecerror term asymmetric and allows getting separstienates o), andvi

from an estimate of the composed error term.

Dynamic specification

Corts (1999) argued that traditional approachesstmnating the conduct
parameter from static pricing equations, such Yscgh yield inconsistent estimates of
the conduct parameter if firms are engaged in gacfe tacit collusion. The first order
condition for a set of tacitly colluding firms isd solution to maximizing their total
profit subject to an incentive compatibility cormsit (ICC), so that no firm has an
incentive to deviate. Following Puller (2009), theneral model to be estimated within
a dynamic framework can be written as:

— f: l-|Jt ™
R—mo(qn,a)+gn(B)E®n{HWN EZQJW“ ! (5)

wherey is the Lagrange multiplier on the incentive coritgiity constraint, andr? is
the profit of a firm that unilaterally deviates fncthe collusive regime.

In equation (5 is still the same conduct parameter as in statideh(4). Its
estimation is more complex because in (5) firm’sdiect depends both on the value of
conduct parameték;, and on whether the incentive compatibility coiditbinds, i.e.
w>0. This equation captures, as special cases, statie (i.e.y;=0) and dynamic
solutions (i.ey>0). If ;=0 firm’s conduct is consistent with Nash-Bertrdoehaviour.

If, in addition,y=0, this outcome is consistent with the static shet Nash-Bertrand
competition. If6x=1 andy=0, it is perfect collusion. Two imperfect collus®arise. If
w=0, when 0€;<N. Wheny;>0 andf;;=N, conduct is consistent with the dynamic and
efficient tacit collusion. Under efficient tacit lbsion, firms jointly adjust prices so that
no firm has an incentive to deviate from joint rafiaximization. Corts (1999) showed
that when the incentive compatibility conditiomist modelled, the conduct parameter
O is biased and the bias dependsrpected future demand and cd§tBuller (2009)
pointed out that if the static model is correcthgsified, the error term in (5) is a pure
stochastic term and therefore should not affeainai$ pricing behaviour. However, if

18 |n particular, Corts (1999) argued that the robess of the conduct parameter approach dependigon t
discount factor and the persistency of the dem@hd.conduct parameter approach cannot detect any
market power if the discount factor is low and dlegnand is i.i.d. Puller (2007, p.84) argued that
“California market [can be] viewed as an infinitegpeated game with a discount factor between days
very close to 1”. Our application to California eiécity market as a static model is thereforeisidht

for estimating market power consistently.



the ICC is binding (i.ey:>0) and the best-response profits are non-linbarstatic
conduct parameters are biased and inconsistergddi@ss this issue, he noticed that
the dynamic term in (5) is common to all firms ahdnce, Corts’ critique can be
avoided by estimating the pricing equation (6), eejlacing the term in brackets in (5)
by a set of time-dummy variables.

As firm’s dynamic behaviour is affected by currdetmand, expected future
demand, and expected future costs (Borenstein hephard, 1996), and these factors
affect the ICC, consistent estimates can be altmradd by replacing the dynamic term
in (5) by a function of expected demand and costks$, and estimating the following
extended pricing equation:

R =mdq,,a)+ f(x,w,m)+g,(B)6, +v, (6)

wherex; andw; represent respectively industry expected demadaast shocks,
measured relative to current demand and costsabtipe, future market output and
costs can be used to proxy expected values.

Kim (2006) proposed a similar solution to addr€ssts’ critique. He suggested
modelling the conduct parameter asoae time-invariant conduct parametéy;, and a
linear function of dynamic behaviour’s determinanés demand and cost shocks. That
IS:

6, =07 +(mx +1m,w,) (7)

In equation (7), the first term, the core condwarigmeter, measures the firm-
specific average level of collusion over time white second linear term captures the
deviation from the average level. Kim (2006) mem¢id two advantages of the above
specification. First, by specifying a time-varyiognduct parameter we can test the
relationship between the firm’s conduct and botimaied shocks and cost shocks.
Second, we can shed light on the source of biagitenguishes the core conduct
parametep;* and the static conduct parameiavhen the ICC is not binding.

Conduct determinants

We now discuss how the model can be extended lodeaeterminants of the
(one-sided) conduct random term. This allows uantalyze, for instance, the cyclical
behaviour of firm conduct, evaluate bias in staterket-power measures (see above),
identify clusters of firms with different stratedsehaviour, or capture differences
between peak and off-peak hours or between weekvarlend days (see Kim and
Knittel, 2006).

A general specification including a vector of coaddeterminantsz;, can be
written as:

0, =6,(z) (8)

wherez: might include, in addition to other determinanttitons’ behaviour, expected
future demand and expected future costs as suggegtheory. In this general

9 For instance, ik has a negative sign, this implies countercyclizat tonduct and mark-up as in
Rotemberg and Saloner (1986)x{fs positively associated with this implies procyclical firm conduct
and mark-ups as in Green and Porter (1984).



specification the conduct determinants affect hbéshape (i.e. the distribution
characteristics) and magnitude of the one-sidedalanterm, and their coefficients must
be estimated using maximum likelihood (ML) techr@guin an important special case,
if 6 satisfies the so-callestaling propertythe model can be also estimated using a
method-of-moments (MM) estimat8tin this case; can be written as a scaling
functionh(z;,#) times a random variable that does not depend ap that is**

eit - h(zit 1¢)'uit (9)

This property implies that changeszinaffect the scale but not the shapesof
This specification has a similar economic intergtien as in Kim (2006). If firm’s
behaviour is influenced by expected future demartlexpected future costs, this is
captured by the scaling functituiz;, #).%* If we assume an exponential scaling function,
i.e. h(z:,@)=exp(z'¢), the pricing equation (6) can be written as:

P =F.(a,m)+§,(¢.B)u, +v, (10)

whereF, (a,m) = ma(q,,a)+ f(x w,m), and g, (¢, ) = g, (B) exp(z,'9) . Except for
the new vector of parameter,the model to be estimated is the same as (6), & a
estimator can be usétl.

Panel data specification

So far we have assumed that there independent (conditional on th¢ over
time?* Although independence is likely an unrealisticuasgtion, it is generally not
clear how to relax it, i.e. how to allow for comibn over time in a one-sided random
conduct term. However, if scaling property is datwe may consider the following
alternative model:

eit = h(zit !q) )'ui (11)

% See Wang and Schmidt (2002) and Alvaeeal (2006).

L The scaling property in (9) corresponds to a rplittative decomposition df;. An alternative that has
sometimes been proposed in the literature on feoptioduction functions (Huang and Liu, 1994; Bsdte
and Coelli, 1995) is an additive decompositionhaf formé,(z,) = h(z,¢) + 1. However, this can
never actually be a decomposition into indepengdarts, becausg,(z;,¢) > 0 requireg;; < h(z,9).

2 Although it is an empirical question whether ot tie scaling property should hold, it has some
features that we find attractiveor instance, the interpretationg@tioes not depend on the distribution of
Uy, and simple scaling functions yield simple expi@ss for the effect of the;on the dynamic conduct
parametef;. For example, if we use an exponential scalingtion, so that,=exp(z'@)-u;, then the
coefficientsg are just the derivatives of i) with respect to the,, and have standard interpretations as
marginal effects.

3t is worth mentioning that previous papers allogvfor conduct determinants (see, e.g., Gallet and
Schroeter, 1995) have estimated the pricing equgli®) using a MM estimator, but assuming that
0+(z+,d) is an additive function of time-varying and fiuspecific conduct determinants. Therefore, these
papers assumed implicitly th@t satisfied the abovementioned scaling propertyrelax this

assumption, a ML estimator should have been used.

24 Estimates from (9) will be consistent even if domduct tern®; is not independent over time, so long
as the model is otherwise correctly specified. Ewsv, the estimated variances (or standard erobrs)
the estimated parameters, calculated under thengsisun of independence, will not be correct if
independence does not hold. It is possible toutatie asymptotically valid “corrected” estimated
variances that allow for non-independence of urifipddorm. These points are known in the
econometric literature. For example, see Haya€0@Rand Alvarez, Amsler, Orea and Schmidt (2006).



whereu; is atime-invariant individual effect. Several cavediswd be made here.
First, this specification is a restricted versidr{9), with the restriction ofi;=u;. This
implies thatd; only changes throughout the time-varying functién,@). If we use

(11) into (6), the model to be estimated is thesams(10), and, in addition to MM and
ML, a “fixed-effect” estimator can be used to estteu;.?> Second, the specification in
(11) can be viewed as a multiplicative versionhaf &dditive conduct decomposition of
0 suggested by Kim (2006). In fact, the tannecan be viewed as the so-called (time-
invariant) core conduct parametT andh(z;, @) as the dynamic term in (7) that is
modelled as a function of demand and cost shodpeotivelyThird, a distinctive
feature of (11) is the interaction between the tiragying functionh(z;,¢) and the
individual effectu;. Models of this form have been proposed in thezdiiure of
production frontier functions, but all of this litgure considered a “random-effects”
treatment and proposed specific (truncated nordistjibutions for they;, with
estimation by maximum likelihoo®. Because some regressors are endogenous and
might be correlated with random effects (ug, a “fixed-effects” treatment or a
generalized method of moments (GMM) method shoalérployed.

3. Estimation strategy

We now turn to explaining how to estimate theipgaelationships presented in
the previous section. Two estimation methods assipte: a method-of-moments
(MM) approach and maximum likelihood (ML). The MNd@roach involves three
stages. In thérst stage, all parameters describing the structutlkeopricing equation
(i.e. cost, demand and dynamic parameters) ama&tstil using appropriate econometric
techniques. In particular, because some regreasermndogenous, a generalized
method of moments (GMM) method should be emplogegkt consistent estimates in
this stage. The GMM estimator has the additionahathge over ML in that it does not
require a specific distributional assumption fag grrors, which makes the approach
robust to nonnormality and heteroskedasticity dnawn term (Verbeek, 2000, p.
143). This stage is thus independent of distrimati@ssumptions on either error
component. In theecondstage of the estimation procedure, distributi@sslumptions
are invoked to obtain consistent estimates of #rarpeter(s) describing the structure of
the two error components, conditional on the fitsige estimated parameters. In the
third stage, market power scores are estimated forfeathy decomposing the
estimated residual into an error-term componenteanmirket-power component.

The ML approach uses maximum likelihood technigoesbtain second-stage
estimates of the parameter(s) describing the streicif the two error components,
conditional on the first-stage estimated parametecsin be also used to estimate
simultaneously both types of parameters, if theogedous regressors in the pricing
equation are previously instrumented. In this cds=ML approach combines the two
first stages of the method of moments approachanto

While the first-stage is standard in the New Emcplrindustrial Organization
(NEIO) literature, the second and third stages takentage of the fact that the conduct

% Han, Orea and Schmidt (2005) shown, however atifiked-effects” estimation of this type of models
is not trivial due to the incidental parametersipem.

% Orea and Kumbhakar (2005) have estimated a maittebvspecification of one-sided random term
(the efficiency of production) equivalent to (1Their model is in turn a slight generalization ledse
introduced by Kumbhakar (1990) and Battese andlidd8B2) where g=t.
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term is likely positively or negatively skewed, @apling on the oligopolistic

equilibrium that is behind the data generating pssc Models with both symmetric and
asymmetric random terms of the form in Section ZHaeen proposed and estimated in
the stochastic frontier analysis literatdfe.

First stage

Let us rewrite the pricing equation (6) as:
R =F/(a,m+g,(B)B+eg, (12)

wherea is the vector of cost parameté?syare parameters of the dynamic term to be
estimated, are demand parameters already estim&tei(4,), and

g, =V, +9,(B){p, -6} (13)

The possible endogeneity of some regresatdtdead to least squares being
biased and inconsistent. This source of inconsigtean be dealt with by using GMM.
Though first-step GMM parameter estimates are sterst, they are not efficient by
construction because thigs are not identically distributed. Indeed, assugrtimat &;
andvi, are distributed independently of each othersdwnd moment of the composed
error termcan be written as:

E(e) = 0] +9:(B)o; (14)

whereE(viY)= &%, andV(8,)= 0. Equation (14) shows that the error in the regoess
indicated by (12) is heteroskedastic. Thereforefinient GMM estimator is needed.
Suppose that we can find a vector of m instrumkhtthat satisfy the following
moment condition:

E[M it 'sit] = El.M it '(yit - F(a,m) - git(B)w)J = E[mt( a ,T[,e)] =0 (15)
The efficient two-step GMM estimator is then thegmaeter vector that solves:
(o, 78) = argmin=,z,m, (a,m0)} W[z, %,m,(a,18)] (16)

whereW is an optimal weighting matrix obtained from a sistent preliminary GMM
estimator’’

Clearly, we can estimate the above model for emshvihen a panel data set is
available, as it is the case in our empirical aggtion. Similar to Puller (2007), this
would allow us to estimate the average conduceémh firm in this stage, and temporal
deviations from these individual averages in follogvstages (not carried out in Puller’s
paper)*® However, we simply estimate a common pricing equefdr all firms and
compare it to that estimated by Puller (2007) assgras well a common conduct term

%" See, in particular, Simar, Lovell and Vanden Eetka994), and the references in Kumbhakar and
Lovell (2000).

8 In the empirical illustration below we include ardmy variable for binding capacity constraints that
helps explaining the differential of prices overrgiaal costs. This variable is interpreted hera as
determinant of marginal cost.

% This optimal weighting matrix can take into accbbath heteroskedasticity and autocorrelation ef th
error term.

% This implies in turn that other moments of theaact random term are also firm-specific.
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for all firms. We then compute day-to-day deviasidrom this industry average to
show the advantages of our procedure.

Second stage

The pricing equation (12) estimated in the firsigstis equivalent to standard
specification of a structural market power econagimebhodel, where an industry-
average market power level is estimated (jointlhwather demand and cost parameters
in most applications). As we mentioned earliethia introduction section, our paper
aims to exploit the asymmetry of the composed demn (i.e. the skewness of the
conduct random variable) to get firm-specific mangxewer estimates in the second and
third stages. These stages therefore are the ttnes paper.

In thesecondstage of the estimation procedure, distributi@ssumptions are
invoked to obtain consistent estimates of the patar(s) describing the structure &f
andv; (i.e. o, anday), conditional on the first-stage estimated parans&t This stage
is critical as it allows us to distinguish collusidiscipline/instability, measured loy,

from demand and cost volatility, measuredogyThis stage of the procedure can be
implemented using either the MM or ML estimatoreT¥M estimates of the two

parameters describing the structurédpandv;; are derived using the second and third
moments of the error term. The third momengofan be written as:

E(e}) = g(B)E|(®, - 6f| (17)

Equation (17) shows that the third momengois simply the third moment of
the random conduct term, adjustedgy3) . The variance of the traditional error term

does not appear in (17) because it is symmetriciiyibuted. That is, while the second
moment (14) provides information about bathandag, the third moment (17) only
provides information about the asymmetric randomde@t term. Now, if we assume a
specific distribution fog;, we can infelog from the third moment of;;, and thero,

from its second moment.

We can also estimatg, andog by maximum likelihood. Given that we have
assumed a particular distribution for the condeott the ML estimators are obtained
by maximizing the likelihood function associatedhe error term
g =V, +8, =v, +g,(B)8, that can be obtained from an estimate of the-§itage

pricing equation (12).

In practice, the MM approach has two potentiabpgms. First, it is possible
that, given our distribution assumptioss has the “wrong” skewness implying a
negativeos. The second problem arises whgras the “right” skewness, but the
implied o is sufficiently large to caus®,<0.**Overall, these “unexpected” outcomes

3L Our approach can also be extended in order tavdtioa heteroskedastic error term.

%2 Olsonet al (1980) showed that resorting to a ML procedusteiad of a MM procedure does not
resolve the first problem as the ML estimategfends to be equal to zero whgrhas the “wrong”
skewness. Based on the results of a Monte Carlerampnt, they concluded that the choice of estimato
(ML versus MM) depends on the relative values efthriance of both random terms and the sample
size. When the sample size is small and the vaziahthe one-sided error component, compared to the
variance of the noise term, is not large the MMpeuforms ML in a mean-squared error sense.
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suggest that either the distributions chosen toehtbe underlying oligopolistic
equilibrium, or the deterministic part of the pnigiequation (12) are misspecified, and,
hence, they need to be revised.

To carry out the second (and third) stage we neetidose a distribution for the
asymmetric term. The selected distribution fordhe-sided conduct term reflects the
researcher’s beliefs about the underlying oliggg@iequilibrium that generates the
data. Hence, different distribution for the condwstdom term can be estimated to test
for different types of oligopolistic equilibrium.hE pool of distribution functions is,
however, limited as we need to choossrapledistribution for the asymmetric term to
be able to estimate the empirical model. The thaldyaprinciple prevents us from
using more sophisticated distributions that, fatamce, would allow us to model
industries formed by two groups of firms with twifferent types of behaviour, i.e. an
industry with two modes of the conduct term.

The distribution functions for the conduct randami can be classified into
three classes: 1) thewer-bounddistributions that impose the theoretical reswitthat
0<6%, but do not impose any upper bound; 2)upper-boundlistributions that impose
the theoretical restriction thét<N, butdo not impose any lower bound; and 3) the
double-boundedistributions that impose both theoretical lowed aipper bounds, i.e.
0<6i<N.

Examples of the so-callddwer-bound(or one-sided) distributions are the
exponential distribution, gamma-distribution, tre@fimormal distribution, and the
truncated normal distribution, which are well-knowarthe production frontier
literature®® The half-normal distribution is obtained from thencation below zero of a
random variable which follows a normal distributieith zero mean and variancg’.

In this case, the density function@f>0 is given by

f(0.)= 2 fexp- O (18)
" 2nG, 202
If 6 >0 follows an exponential distribution, the dengitgiction is:
f(6,)=— Eexr{'e"} (19)
GU GU

Both half-normal and exponential are single-parameistributions. The
truncated normal distribution is a generalizatibthe one-parameter half-normal
distribution®* If we assume that; follows a truncated normal distribution, i6g.
~N*(p,0,), the density function is:

£(6,)= r @D‘l(u/o )@xp[ @, “)} (20)

2 2

where®(+) is the standard normal cumulative distribufi@nction. In Table 1 we list
the first three population (central) moment®pfor the truncated normal distribution

% For a comprehensive discussion of these one-sigributions, see Kumbhakar and Lovell (2000).
It is one of the most employed distributions ia fitoduction frontier literature.
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which are essential for the MM estimation (see Ia¥004). The moments for the half
normal distribution can be obtained by setiirg. >

As mentioned earlier, in the second stage of ttimason procedure we invoke
distributional assumptions to obtain consistenteses of the parameter(s) describing
the structure of the two error componegtmditionalon the first-stage estimated
parameters, which includes the estimate of theageevalue of conduct paramefer
The first moment in Table 1 can thus be viewed asrdinear constraint betwegnand
oy. Using the first-stage residuals, the two equatimnmed by the nonlinear constraint
and the (sample counterpart of the) third momenh®fcomposed error term

Ae = “+r]00-u (21)
N T 3

122{%} = -n,0: +N2028+n,0,0° (22)

NT Z =] 9.(B)

provide estimates ofi and o,, which yield an estimate ofi, = @y/o, )@ (y/o,)

and using the second moment of the composed enor, these estimates together yield
an estimate ob.

As regards the maximum likelihood estimation, teasity function for a normal
(vit) plus a truncated-normal error term)(can be written as:

f(5)= 1¢-1[uj m{'““j @(u ﬂj (23)
o) g, o ON O
whereg =v+u, 0 = (oﬁ +o§)1/2, A =0,/0,, and we have dropped the subscripts for

convenience. TAhe ML estima}es in our model can airdd by replacing andoy, in
(23) with plg,(B)and g, [g,(B).

As illustrated in Figure 1, each of these distridmgs assumes the existence of
one mode, with high values of the conduct param®teoming increasingly less likely.
However, from a theory perspective, the most imgrdrcharacteristic of these
distributions is that all of them have a positikewness. This suggests that the one-
sided distribution has low probabilities for lar@ellusive) conduct values and high
probabilities for small (competitive) conduct vau€&inally, the values not supported
by the theory can still be obtained here becaussetdistributions do not impose the
theoretical restriction th#;<N. These values might appear when the model is nibt we
specified or when the estimated error terms arasionally high (e.g. due to large
measurement errors).

Theupper-boundlistributions ob;; are negative skewed. From the theory
perspective, this suggests that collusive condalttes are more probable than
competitive values, i.e. that only a small fractairthe firms is behaving competitively,
while a large fraction is colluding. Similar to tlever-bound distributions, values not

% We do not present the moments for the exponetiisaibution because there is some evidence in the
frontier literature that neither rankings of firtog their efficiency (here conduct) scores or the
composition of the top and bottom scores decilegarticular sensitive to the single distributibalf-
normal vs. exponential) assigned to the one-sidext term (see Kumbhakar and Lovell, 2000, p. 90).
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supported by the theory can still be obtained beedliese distributions do not impose
the theoretical restriction theg=0.3°

The third class is formed louble-boundedistributions that impose both
lower and upper theoretical bounds, i.€4&N. Imposing both theoretical restrictions
simultaneoushand allowing forsimpleasymmetric distributions is a complex problem.
No applicable double-bounded distribution for tme-sided term has been published
yet.

A first (and promising) attempt to develop doubtatbhded distributions is
Almanidiset al.(2010). In particular, these authors propose a ineldere the
distribution of the one-sided (inefficiency) tersndoubly truncated normal, that is, a
normal distribution truncated at a point (say B)tloa right tail as well as at zero. They
also introduce the so-called truncated half nonrmadlel, which is a particular case of
the doubly truncated normal, and the truncated egptal model. In Table 2, we
reproduce the density functions of these doubleitied distributions, which are
essential for the ML estimation.

Once we impose that the upper bound is equal tadh®er of firms (i.e. B=N)
these models can be used to estimate the distibafithe conduct term. The doubly
truncated normal model is very flexible as it nextser one-sided distributions such as
truncated normal or half normal. One desirableui@abf this model is that the doubly
truncated normal distribution may be either posiinor negatively skewed. In
particular, as illustrated in Figure 2, it may eh{positive) negative skewness if the
truncation on the right is closer (further thanjlie mode than that on the left. And
therefore it allows modelling oligopolistic equilibms with a large fraction of firms
behaving competitively, and vice versa.

While both the truncated model and the truncatgube&ntial model are globally
identified (i.e. can be estimated using traditiodal techniques), it is not clear that the
doubly truncated normal is globally identifiablenfanidiset al.(2010) show that these
identification problems arise when both the meathefpre-truncated normal
distribution (1) and the upper-bound (B) are estimated simultasigpand the
combination of these two parameters yield a (pasteated) symmetric distribution.
This problem might be quite important in the statltafrontier framework where both
parameters are permited to vary with freedom. Hawethe identification problems in
the market power framework are less severe asgpertbound is fixed by the theory
and it does not need to be estimated in practice.

Although the doubly truncated normal is not glopadlentifiable, Almanidiset
al. (2010) show that particular versions of this maatel identified and can be
estimated. A couple of them are of special interesur framework: i) the truncated
half normal with B=N which is positive skewed; andhe double-truncated normal
with B=p=N, which is negative skewed. As these particd@arble truncated models
allow us to “adjust” the traditional one-sided distitions mentioned above making
them to satisfy both lower and upper theoreticairats, they are our preferred models.

% These distributions have not been used in editézature because negative values do not makesens
for estimating stochastic frontiers. However, thatation over one can be converted into a (more
traditional) truncation below zero if we just defity,=(N-0;*), where0;*>0.
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Third stage

The third stage is to obtain the estimates of nigskever for each firm. We
have estimates o, =¢; +g,(B)[0, =¢; +06,, which obviously contains information
ondi. The problem is to extract the information tigatontains or¢y;. Jondrowet al.

(1982) face the same problem in the frontier pradadunction literature and propose
using theconditionaldistribution of the one-sided random term (r@r)egiven the

composed error term (hegg). In Table 3 we provide under several distribugilon
assumptions for the analytic form (8, | €, ), which is the best predictor of the

conduct term (see Kumbhakar and Lovell, 2000, almdaidiset al.,2010)*” Once we
have a point estimator féf, a conduct scoré; can be obtained using the identity

6, =8, /g, (B).*® Two comments are in order. First, althoghs the minimum mean
squared error estimate &f , and it is unbiased in the unconditional sense

[E(B, -6,)=0], it is a shrinkage of;; toward its mean (Wang and Schmidt, 2009).
An implication of shrinkage is that on average wik everestimated; when it is small
and underestimat® when it is large. This result, however, simplyjeefs the familiar
principle that an optimal (conditional expectatidorecast is less variable than the thing
being forecast. Second, in practice, this estimases the estimater as a measure of
historical demand and cost random shocks, and adjusts thallosor term from
“normal” random shocks in order to get an estindit@;. Therefore, the estimated
market power scores can be interpreted as markhapsannot be explained by
“normal” demand and cost random shocks.

4. Empirical illustration

In this section we illustrate the proposed appraogith an application to the
California electricity generating market. This ketrwas opened to competition in
1998 allowing firms to compete to supply electysicth the network. The wholesale
prices stayed at “normal” levels from 1998 to M&PQ, and skyrocketed during
summer and fall 2000, resulting in breakdown oédddized electricity market by the
end of 2000. While California electricity crisisascomplex problem, driven by a
number of factors, such as poor wholesale marksgdeabsence of long-term
contracting, unexpected increase in generationtiopsts, hike in end-use electricity

%" Both the mean and the mode of the conditionatitlision can be used as a point estimator for the
conduct term’ﬁit . However, the mean is, by far, the most employettié frontier literature.

% While we can get unbiased estimates of all pararseif the pricing equation (12)vf is
heteroskedastic and it is ignored, an unwarrargsdraption of homoskedasticity vp causes a wrong
application of the conditional expectation that nhégs the firm-specific conduct estimates. That is,
estimating market power with a composed error meelplires capturing not only the appropriate
distribution for the conduct random term but alsostrof the variables which enters in the supply
relationship because uncaptured differences among find over time might wrongly interpreted as
differences or changes in conduct due to both pinena shift the supply relationship. The procedure
outlined above, however, can be generalized inrdamaccommodate for a heteroskedagticThis can
be achieved by modelling the variancespés a function of firm-specific size-related vargsbbr, when
a panel data is available, by estimating a diffecghfor each firm.
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demand due to unusually hot weather, a numbeudfest pointed to the evidence of
significant market power in this restructured marBsrenstein (2002) and Wolak
(2005) are two excellent surveys of the Califoreliactricity market restructuring
disaster.

Our empirical application analyzes the competibedavior of five strategic
large firms from Puller’s (2007) study of monopglgwer in California restructured
electricity markets using the same sample periadr(fApril 1998 to November 2000).
Following Puller (2007§; we define five large firms that owned fossil-fuitle
generators (AES, DST, Duke, Reliant and Southesrgteategic’ firms, i.e. pricing
according to equation (1). The competitive fringsuaned to supply at marginal cost
includes generation from nuclear, hydroelectricl amall independent producers, and
imports from outside California. These suppliethei are relatively small or do not
face strong incentives to influence the pfitBecause electricity storage is
prohibitively costly, both strategic and non-stgagefirms had to produce a quantity
equal to demand at all tim&sAnd the residual demand for electricity was reklt
inelastic, which allowed individual firms to raipeces unilaterally.

As the main contribution of the proposed procedsitbe estimation of firm-
specific market power scores (i.e. our second hind stages), we first carry out a
standard econometric exercise and estimate contjsbyy GMM the parameters of the
pricing equation (1). In particular, and in ordetdie sure that our first stage is sound,
we try to reproduce Puller’s (2007) results, ugimgsame dataset, , the same
specification for the pricing equation (1), and ane set of dependent and explanatory
variables. Our results are similar to those obthimgPuller, but they do not fully
coincide because of small measurement error intaan®n of marginal cost§
slightly different set of instruments and balancing the datagétAs we mentioned

39 See also Borenstein, Bushnell and Wolak (2002)kindand Knittel (2006).

4O The independent and nuclear units were paid uredgdatory side agreements, so their revenues were
independent of the price in the energy market. Geers of hydroelectric assets were the sameiesilit
that were also buyers of power and had very duieentives to influence the price. Finally, firms
importing power into California were likely to beleacompetitively because most were utilities wita t
primary responsibility of serving their native damdaand then simply exporting any excess generation.

“1 Modelling of market power in wholesale electriciharkets becomes more complex if firms forward-
contract some of their output. As Puller (2007 5pi8otes, in the presence of unobserved contract
positions the estimate of conduct parameters woeldiased. This was generally not an issue in
California wholesale electricity market during sdaenperiod. As Borenstein (2002, p. 199) points out,
“Although the investor owned utilities had by 20@@eived permission to buy a limited amount of powe
under long-term contracts, they were [...] still prang about 90 percent of their “net short” positio
[...] in the Power Exchange’s day-ahead or the systpanator’s real-time market. Puller (2007, p. 85)
argues that “there is a widespread belief thali®02Duke forward-contracted some of its producti¢i.
data on contract positions were available, onectoairect this bias by adjusting infra-marginaksaby
the amount that was forward-contracted. Unfortugiates in earlier studies on market power in
California wholesale electricity market the contrpgasitions are not observable in our dataset.

“2This is because we did not observe the spot pfizesatural gas for California hubs in 1998 an@4,9
using prices from Henry Hub instead. The differebetveen natural gas prices between these hubs
before 2000 (for which we have the data availabis relatively small (see Wa al, 2006, p. 2062,
Fig. 2).

“3 Though our instruments were somewhat differert,Hansen tests seem to indicate that we cannot
reject them.

“ Puller (2007) estimated the models by ignoringsdaiien the price began to hit the price cap in
summer 2000. We cannot drop those days from oupleal@cause we do not know when the price hit
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earlier, our analysis here is so far restricteth&éestimation of the pricing equation (1),
conditional on previous estimates of the demandrpaters. The elasticity demand
needed for the second and third stages of our guveas taken from Puller’'s (2007)
estimates as we use the same definition of stidtemi-strategic firms.

After estimating the parameters of the pricingagmun, we carry out the second
and third stages assuming particular distributionshe conduct random term. In
particular, we use both the traditional (one-sidealj-normal distribution that imposes
the conduct term be positive, and the truncatetinmaimal distribution, from Almanidis
et al.%OlO), that also imposes the conduct term bethessthe number of strategic
firms.

Pricing equation and data

Following Puller (2007, eq. 3) the pricing equattorbe estimated in the first
stage of our procedure is:

(P-mc), =a [CAPBIND, +y[~|'§i+sit , (24)

fringet

wherea andyare parameters to be estimatéds market pricemg; is firm’s marginal
costsgi is firm’s output,CAPBIND; is a dummy variable that is equal to 1 if capacity
constraints are binding and equal to O otherwisd@frmge,t is supply by the
competitive fringe, i.e. total demand minus totedtegic demand. Note that in this
equationy is the expected value of the conduct random t&raivided by the elasticity
of fringe demand already estimated, thatyis:8/3 = E(8, )/ 3. Once the parametgr

is estimated consistently, we use Puller’s (20@mMand elasticity estimates to compute
the expected value of the conduct random term.

We use hourly firm-level data on output and marigoost. Following Puller
(2007), we focus on an hour of sustained peak ddrfram 5 to 6 p.m. (hour 18) each
day, when inter-temporal adjustment constraintgherrate at which power plants can
increase or decrease output are unlikely to bindil& to earlier studies on market
power in California electricity markets mentiondzbae, we have calculated the hourly
marginal cost of fossil-fuel electricity plantstae sum of marginal fuel, emission
permit, and variable operating and maintenancestbg¥e assume the marginal cost
function to be constant up to the capacity of theegator. A firm’s marginal cost of
producing one more megawatt hour of electricitgeined as the marginal cost of the
most expensive unit that it is operating and tlzest éxcess capacity.

the cap. However, we do not expect significant glearin our results in the first-stage, where amage
conduct value is estimated for the whole periodabse this only affected 7.8% of his observations i
2000. It should be noted, on the other hand, tlegt tonduct values can be obtained in the thirdests
our procedure in those days as the first-order itiondunderlying the supply relation does not hwafth
equality. This problem is less severe when doublended distributions are used as they restrict the
conduct values to be smaller than the number afegiic firms.

> In next versions of the paper we will try to esitmother distribution functions as well as to gaut
model selection tests to choose the specificatianfits better the data. However, given the small
conduct values obtained by Puller (2007), the ithigtions currently selected here seem to be quite
probable.

“® For more details, see technical appendix in P(#667). Also see footnote 38.
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Our measure of output is the total production lghdam’s generating units as
reported in the Continuous Emissions Monitoringt&ys(CEMS), that contains data
on the hourly operation status and power outp@ibsdil-fuelled generation units in
California. We use the California Power Exchang€)(fay-ahead electricity price,
because 80%—-90% of all transactions occurred ifP¥ePrices vary by location when
transmission constraints between the north anchdmntd. Most firms own power
plants in a single transmission zone, so we us¢ zoRal price. Table 4 reports the
summary statistics for all these variables.

Price-cost margins are shown in Figure 3. Thigrigs almost the same as
Figure 1 in Puller's (2007) paper, and shows thatgims vary considerably over my
sample period. They are also higher during thel third fourth quarters of each year,
when total demand for electricity is high. We naralyze the extent to which higher
margins resulted from less competitive pricing badrarather than less elastic demand.

Pricing equation estimates

Let us comment in detail the econometric strafeggstimating (24) and
obtaining the first-stage parameter estimateseP(2007) pointed out that actual
output is likely an endogenous variable as thereemne;; in (24) includes marginal
cost shocks that are observed by the utility. udaé correlation between actual output
and the unobserved error, we need proper instrurrﬁerﬁ’t-qt/QSfringe,t (hereafter;),
which are correlated with actual output. Table fgorés useful information on the
specification, estimation and fit of the pricinguatjon using different set of instruments
for the two periods analyzed in Puller (2007).

In regression 1 we tre&t as an exogenous variable. The negative sign of
CAPBIND; and the implicit large value for the average condué3) are likely caused
by the endogeneity of; (Puller’s 2007 estimate is about one). In regoes8iwe
instrument the variabbe; with firm’s capacityk;;, which we assume orthogonal to the
error term because it can be viewed as a quagi-fieaeiable, independent of current
levels of operation. Usinky; as an instrument we get a dramatic improvemehboth
parameter estimates, especially the coefficie@APBIND; that now is positive and
closer to Puller’'s estimate. In regression 3 we @ghcity square as an additional
instrument. This allows us to carry out a Hans¢h®82) J test. The Hansen’s J test
statistic value suggests that some endogeneitijlipresent or that just addirlg and
I%i is not sufficient to control for the endogeneifyxpgiven the poor temporal
information contained in firm’s capacity.

Puller (2007) instrumented utility output with tday-ahead forecast of total
demandFQ:.. Unlike ki, this instrument does not vary among utilities, ¢thanges over
time. In Regression 4 we replace by FQ.. The increase in the value of the Hansen
test indicates that adding day-ahead forecasttaf dt@mand as an additional instrument
works even worse than usikg. This is confirmed by regression 5 where fo& is
used as instrument &f, obtaining similar results as in Regression 1 mith
instruments (in particular, a negative sigrC&PBINLD).

It should be noted, however, that the day-aheaetst error is also notably
correlated with the supply of competitive fringehiah is in the denominator of;xFor
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this reason, instead of using day-ahead forecdstaifdemand, in Regression 6 we use
its reciprocal, JFQ; as instrument of % obtaining an improvement in the parameter
estimate ofCAPBIND:. Finally, in Regression 7 we a#lgas an additional instrument
for x; to the previous modgebbtaining a further improvement in the equationUising

the Hansen’s (1982) J test we cannot reject thehgpbthesis that the model is well
specified and that the set of instruments are valik is our preferred estimate.

Regarding the second period from April 1999 to Noker 2000, the sequence
of results is quite similar to that obtained foe first period. Again, the Regression 7 is
our preferred model as the Hansen test suggesththmodel is well specified and the
instruments are valid. As in Puller (2007), theftioent of x;; is similar in both periods,
whereas the coefficient &APBIND; is much larger in the second period than in the
first one, likely as a result of a higher demanthm second period. Using the estimates
of demand elasticities from Puller (2007) the iroplaverage conduct values in both
periods are 1.05 and 1.09 respectively, quite doskose obtained by Puller (20d7).

In general, we can conclude that our GMM paramedstisnates of the pricing
equation (24) are analogous to those obtained lierRupaper, and we are therefore in
a good situation to carry out the second and #tades of our procedure. In addition, at
the bottom of both Tables 5a and 5b we also repmrtnormality test. In all
specifications, we can reject that the composeat égrm is normally distributed. This
seems to suggest that we can go ahead with thadecal third stages as they take
advantage of the skewness of the composed randam te

Firm-specific market power scores

Once all parameters of the pricing equation (24 )estimated, we can get
estimates of the parameters describing the streictuthe two error components
included in the composed random tegp{second-stage). Conditional on these
parameter estimates, market power scores can betienated foeachfirm by
decomposing the estimated residual into a randoon eomponent and a market-power
component (third-stage).

Given the small conduct values obtained in thé §tage, we just provide an
application using the truncated half normal disttibn. As explained in section 2, this
distribution satisfies both lower and upper theoettoounds, i.e. 96;<N, and is
positive skewed. In particular, this distributionplies that?; comes from pre-truncated
normal distribution, N(@5,?), that is truncated below zeamd above the number of
strategic firmsN . Table 6 compares the parameter estimates d¢fttheated half-
normal of the two parameters describing the streadfif; andv;; (i.e. o, anday),
conditional on the first-stage estimated paramet@scomparison grounds, we also
present the traditional half-normal distributiomtlonly imposes the conduct term be
positive, and hence it might yield market powenssdigher than the number of
strategic firms in the third stage. This allowgasneasure the convenience of using
double-bounded distributions in practié&while the truncated half normal model is

4" Puller (2007) obtained an identical conduct patant&=0.97 for both periods that is statistically
indistinguishable from unity.

“8 \We have tried to estimate doubly-truncated nomfigttibutions withu>0, but we have found
convergence problems. This result is frequent énpitoduction frontier literature. Indeed, Rittedan
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estimated using ML techniques, the traditionaldna@ifmal model is estimated using
both ML and MM approaches in order to evaluaterétative performance of both
types of estimator§?

In general, the truncated half-normal and the adeeshalf normal models yield
similar values for both the random error term vaec&o,, and the the pre-truncated
conduct varianceg,. Moreover, both ML parameter estimates are eversdme in the
case of the second subperiod. In all cases, thducbwariance is much lower than the
variance of the traditional error term. This outeimdicates that both demand and cost
random shocks, which are captured by the traditiemmar term, explains most of the
overall variance of the composed error teog Although both truncated and one-sided
half-normal models yield similar variance estimataarket power scores higher than N
are expected in the one-sided half normal modedimsethe upper boudg<N is not
imposed. We also find that, whatever the modelytr@tion of the random conduct
term is smaller in the second subperiod than irfiteeone.

Based on the previous estimates, the third stdgesals to get firm-specific
market power scores. Table 7 provides the aritfoveeterage scores of each firm
obtained using both ML truncated-half normal anti-harmal distributions that does
not impose the theoretical restricti@cN. This table displays an interesting finding:
the market power scores for the half-normal distidns are, on average, much higher
than the upper-bound indicated by the thebkyT his usually occurs when, like in the
present application, the estimated first-stagergterms are large. In this scenario, the
traditional conditional expectation operator usethee third-stage tends to exagerate the
one-sided error term. As this might be the casaany marker power applications, the
above result suggests that the one-sided speaisatiraditional in the stochastic
frontier literature, should not be used in the prespplication, and theory-consistent
double-bounded distributions need to be estimated.

As regards the double-bounded distributions sewetalesting points are worth
mentioning. First, like in Puller (2007), the estited market power values are closer to
Cournot @i =1) than to static collusio®{ =N). Unlike Puller, we do not find an
increase in market power if we compare the avevagees in the first period (1.21)
with those obtained in the second (0.95). Secomrdimd notable differences among
utilities in terms of market power. This suggeb&t tassuming a common conduct
parameter for all firms is not appropriate. Pu{l&07) found also a similar outcome
using a fixed-effect treatment for the conduct pseters. Here, this result is obtained
without involving panel data estimators. Moreows shown in Figure 4, our market
power estimates are quite similar to that estimbteBuller. This result is quite
important because it means that we can get comlearedwults using two different
modeling strategies, and hence both approacheis gaimciple be used to estimate
firm-specific market power scores.

Simar (1997) shown that, the parameters descriioge-sided random term are hard to estimate, excep
for simple distributions such as exponential of-hakmal. In addition, Almanidist al. (2010) pointed

out that identification problems may arise whernesting a Of<N.

91t should be noted that ML estimates were obtainidout imposing that the average conduct implied
by the estimated two-stage model should be equhktdirst-stage estimate of the average conduds T
restriction is imposed by construction when a MMreator is used.
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Our procedure has the advantage over Puller’s apprthat it can be applied
when no panel data sets are available, when theedimension of the data set is sort
and, or when separable pricing equations cannestimated consistently because the
available instruments are not valftinteresting enough, Puller (2007) pointed out that
Dynegy'’s (i.e. DST) conduct parameter is biasedargwOur approach based on the
estimated distribution of the random conduct telimnaus to avoid this bias, as our
point estimates for this firm are sound and satisé/theoretical restrictions.

Figures 5 and 6 depict the histograms of the marketer scores by firm for the
two periods analyzed in the paper. The histograntsgure 5 indicate that firms’
pricing strategies are similar, i.e. all densityvas are tightly peaked and concentrated
about their modal value, indicating that those galare quite persistent over time.
Regarding the second period, the histograms inr€i§suggest an important change in
firms’ pricing strategies though the average condatue estimated for the whole
industry in the first-stage of our procedure doetsalmange from the first subperiod to
the next. Now, all density curves, except thatD&T, are flatter indicating the
existence of both relative competitive and collessirategies over time.

In the introduction section we propose using aesttesed on the coefficient of
variation of the firm-specific market power scotesdentify collusive firms. In Table 8
we show the computed coefficients of variationdach firm using the estimated
market power scores obtained using the double-temintbdel. Our screen tries to
identify potential collusive firms that exhibit loeonduct variation and high conduct
values relative to other firms. In general, we fiad coefficients of variation in the
first subperiod, suggesting that the estimated! leieompetition/collusion is quite
stable. From Table 8, we also find that DST hadipkest (average) conduct value in
the first subperiod, but also the highest coeffitef variation. This result, hence, casts
doubts about the superior market power of this.fiReliant has more market power
based on the coefficient of variatiGhin general, we find a notable increase in all
coefficients of variation from one period to thexpesuggesting a reduction in collusion
discipline or market stability. This higher instigigimight be caused by the entrance of
Southern. The increase is especially remarkahileeirtase of Duke and Relaint with
coefficients that are twice those in the first seropd, indicating an important change in
the pricing strategies of these firms.

Table 9 tries to analyze the coordination amongdiover time. In general, we
can conclude from this table that the temporalgpast of the market power scores often
differ notably among firms, though some firms aemadily more (less) competitive. For
instance, AES and DST seem to behave independetheir correlation in the first
subperiod is quite low (0.28). The correlation bstw AES and DST in the second
period is much higher, indicating an important af@m the pricing strategies of these
firms. All coefficients of correlation for Duke atpiite low in the second period, and
much lower than in the first period. This might gast that, in the second period, Duke

*% Indeed, following Puller (2007), we have estimaquticing equation for each firm using the sante se
of instruments as in Table 4 and 5. The estimatediect parameters (not shown) were quite similar to
those obtained by Puller (2007). However, in aflessa except one, we rejected the null hypotheats th
the model was well specified.

*1 Obviously, another explanation is possible ifdigie market power variance is caused by punishment
episodes implemented by this firm to restore mapketer in the next future.
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becomes a “maverick” firm with a pricing stratetpat is notably different from the
pricing strategies of other firms.

In a panel data setting the most important advantdg@ur methodology is that
we can analyze changes in market conduct over timdeed, because our approach
does not model the temporal path of these scdreg,nmight change from one day to
the next. This evidence can be used to complenmagatitivariant (firm-specific)
conduct estimates obtained in the first stageidnres 7 and 8 we show the temporal
evolution of the average market power scores ofdb#gfive strategic firms during the
two periods analyzed in the present papém. particular, our results suggest that market
power scores do vary on average over time. Foamtst, we can see that, after a few
months, market power was quite persistent over imtke first period, except at the
begining of the period were higher market powerasavere found. Another
remarkable finding is that market scores are muctennstable in the second period.
This instability in turn rises a lot since June @0@hich coincide with the skyrocketing
prices in 2000. Note also that, on average, marieter scores increased in this period
of instability.

Our market power estimates also allow us to analfeether each firm reacts
differently to changes in cost and demand conditiém Figures 9 and 10 we show the
market power score of each firm. These figurepldisinteresting findings. First, the
temporal patterns of the market power scores ddliffer a lot among firms, especially
in the first subperiod. Second, the ranking of ,rragower scores is quite stable. Some
firms are steadily more (less) competitive alorgwhole period. Compare, for
instance, Duke and DST.

And, third, the estimated market power scores tsmlze used to identify
patterns of behavior inconsistent with competige#tings. Harrington (2006) pointed
out, for instance, that unless the market is chiaraed by some cyclical factors such as
seasonal demand or supply movements, it would hleelynfor competition to result in
significant price declines and then a steadilyhggprice over the span of a few periods.
Interesting enough, this pattern is found at thgirbeg of the first subperiod (see
Figure 7) where after a conduct declining, marketgr scores steadily rose and stayed
stable for several weeks.

5. Summary and future agenda

Measuring the degree of competition in oligopatistiarkets is a key activity in
empirical industrial organization. Earlier studiesused on estimating conduct
parameters imposed some restrictions on the wayaloe of conduct parameter varies
across firms and time. However, firms likely dost@are the same conduct parameter
and this parameter varies over time as market gdondichange, and firms change their
own pricing strategies, which is generally the dasecent restructured electricity
markets. As allowing for the conduct parameteraoy\freely both by firm and
observation results in an overparameterized medekuggest treating firms’ behaviour
as a random parameter. In doing so, we estimateragosed error” model where the

2 Our market power scores vary along the week. Teosimthe market and firm temporal series we have
used 7-day moving averages of the observations.
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stochastic part is formed by two random varialles the traditional error term,
capturing random shocks, and a random conduct tehich measures market power.

The model can be estimated in three stages udimgy @ross-sectional or panel
data sets. While the first stage of our modelasdard, the following stages allow us to
first distinguish collusion discipline/instabilifyom demand and cost volatility, and
second to get firm-specific market power scoreaddmnal on the first-stage parameter
estimates. These stages take advantage of thin&che conduct term is likely
positively or negatively skewed. As we aware, skesgof conduct parameter in
oligopolistic industry settings are not examinegleitly in most (if any) of the
previous empirical papers. The main contributiothef paper is that once all
parameters describing the structure of the trathlipricing equation are estimated,
additional information can be inferred from the hstages of our procedure. This
information, usually ignored in previous papersneating conduct parameters, provides
a better understanding of pricing strategies afithrelevel. In particular, the estimated
conduct variation can be used as a measure oktireel of collusive discipline across
firms and/or over time, and the market power scoassbe used to detect the
creation/decline of collusion episodes, or to idgratbrupt changes in mark-ups which
cannot be explained by “normal” demand and costeanshocks.

We illustrate the proposed approach with an appba to the California
wholesale electricity market using the same damfde period, specification for the
pricing equation, and set of dependent and indes@ndariables) as Puller (2007).
After estimating the parameters of the pricing ¢igma we have carried out the second
and third stages using both the traditional hatiamal distribution and the so-called
truncated half normal distribution, recently deyed by Almanidiset al.(2010) in the
stochastic frontier literature but adapted hemnéasure market power.

Our first-stage results are quite similar to thobtined by Puller (2007). The
estimated market power values are closer to Coyfhetl) than to static collusion
(6=N). However, we find notable differences amongtigs in terms of market power.
Our results suggest that market power varies ongr. tAlthough some firms are
steadily more (less) competitive along the wholegak the temporal patterns of the
market power scores also differ among firms. Moegpwur firm-specific market power
scores are quite similar to that estimated by P{@@07) using fixed-effect approach.
This important result demostrate that both appreadan in principle be used to
estimate firm-specific market power scores. Oucpdure has the advantage over
Puller’'s approach that it can be applied with cresstional or sort data sets; or when
individual pricing equations cannot be consistergymated with the available
instruments. In addition, our results suggest datapproach based on the estimated
distribution of the random conduct term yield mogasonable market power scores
than a fixed-effect approach.

A simple empirical application in the present papestrates how the proposed
methodology works. In the future we will try to dyme the robustness of our results to
different specifications for both the pricing eqaat(first-stage) and the following
stages of our procedure. In particular, as sugddstehe preliminary results, we will
try to estimate other distribution functions aslvaslto carry out model selection tests
to choose the specification that fits better thiadgor the first-stage, we will estimate
simultaneously both demand and pricing parametisisg more accurate sample
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selection and allowing for cyclical behaviour ahficonduct and differences in
strategic behaviour among firms and between pedlo#irpeak hours or between week
and weekend days. We also expect to extend the@mguation into a dynamic
framework as discussed in the first section.
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Table 1. Central moments @; for the truncated normal distribution
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Table 2. Double-bounded density functions(&B)
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Table 3. Conditional means for selected distributions

One-sided distributions
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Table4. Summary statistics (hour 18)

July 1, 1998 - April 15, 1999

Mean St.dev. Min Max Obs
Price @) 37.03038  26.24066 4.93 180.4462 1156
Marginal cost fnG) 26.31697 3.14576 18.73386  33.7443 1156
Margin (P -mc;) 10.71341  26.32763  -24.97757 158.61059 1156
CAPBIND, 0.05623 0.23046 0 1 1156
Capacity k) 2466.25606 1060.90136 670 3879 1156
Output @) 809.48832 873.68 0 3720 1156
Market demandp,) 30316.5536 4547.09194 20057 44009 1156
April 16, 1999 — November 30, 2000

Mean St.dev. Min Max Obs
Price @) 83.06045  98.15182 9.5 1099.989 2975
Marginal cost ng,) 45.87634 23.71389 22.30387 214.4733 2975
Margin (P -mci) 37.18411  88.66886  -33.35807 1053.29913 2975
CAPBIND, 0.06689 0.24987 0 1 2975
Capacity k) 2960.23563 768.09479 1020 3879 2975
Output €} 1370.32782 833.23359 0 3317 2975
Market demandpy) 31370.1698 4106.27907 22076 44160 2975
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Table 5a. Pricing equation estimates (July 1, 1998 - Apsi) 1999§%

Dependent variabléP-mc)
No. of strategic firms: 4
Observations: 1156
Method: Two-step GMNP

Explanatory variable® 1 2 3 4 5 6 7
CAPBIND, -3.936 12.595 13.612 13.157 -0.809 9.302 13.130
(-1.12) (3.18) (3.36) (3.47) (-0.20) (2.21) (3.26)
Xit 8.606 6.067 5717 5.583 8.125 6.573 5.894
(31.18) (19.66) (18.37) (19.89) (19.94) (15.95) 119
Instruments®
CAPBIND,, CAPBINDO, ki CAPBINDO, k;, CAPBIND,, ki, CAPBINDL;, CAPBIND,, CAPBINDL;,
Xit it FQ FQ 1/FQ ki, 1/FQ
Statistics:
Hansen test (d.f.) 21.732 (1) 64.96 (1) 5.399 (1)
Skewness test (d.f.) 3168.9 (1) 3179.0 (1) 32041 28202 (1) 3187.1 (1) 3175.7 (1)
Jarque-Bera Test (d.f.) 26567.6 (2)  25360.4 (2) 93B40(2)  27699.7(2)  28217.6(2)  25993.6 (2)
Estimated average conduct val(fe: 1.53 1.08 1.02 0.99 1.44 1.17 1.05

Notes:

@ T-ratios in parenthesis, computed from standamat®robust to heteroskedasticity.
® FQ is day-ahead forecast of total (perfectly inetdsfemand and, = P.of, / Qfinge; -

© B =Vf3, wheref3 =0.178comes from Puller's paper.

@ puller's estimates of these parameters fPe: mc), = 2152 + 5457 x,
(2265 (1689)
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Table 5b. Pricing equation estimates (April 16, 1999 — Naber 30, 2000

Dependent variabléP-mc)
No. of strategic firms: 5
Observations: 2975
Method: Two-step GMNP

Explanatory variable® 1 2 3 4 5 6 7
CAPBIND, -9.512 28.022 27.558 26.384 19.441 27.225 27.221
(-2.36) (4.38) (4.27) (4.25) (3.24) (4.31) (4.26)
Xit 8.204 5.685 5.553 5.276 6.261 5.738 5.679
(41.71) (41.17) (40.43) (41.46) (40.21) (39.03) 95)
Instruments®
CAPBIND,, CAPBIND, ki CAPBIND, ki, CAPBIND, ki, CAPBIND, CAPBIND;, CAPBIND,
Xit kzit FQu FQ 1/FQ ki, 1/FQ
Statistics:
Hansen test (d.f.) 30.886 (1) 98.322 (1) 1D4 (
Skewness test (d.f.) 15421.7 (1) 15621.5 (1) 15885.1 (1) 14795.6 (1) 39856 (1) 15487.0 (1)

Jarque-Bera Test (d.f.)

Estimated average conduct valffe: 1.57

286585.5 (2) 2836214 (2)  274742.2 (2)

1.09 1.07 1.01

3089374 (2 289252.7 (2)

1.20

1.10

287834.7 (2)

1.09

Notes:

@ T-ratios in parenthesis, computed from standamat®robust to heteroskedasticity.
® FQ is day-ahead forecast of total (perfectly inejsfiemand ang, = P.q, / Qj... -

© B =Vf, where} =0.192comes from Puller's paper.
@ puller's estimates of these parameters §R= mc), = 4120+ 5.041 x,

(619 (2211
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Table 6. Second-stage parameter estimates

First Period Second Period
First-stage average condugt E(6,) 1.05 1.09
ML truncated-half normal
g, 10.59 9.8976
(40.92) (51.16)
g, 1.563 1.1917
(21.08) (60.17)
Implicit average conduct: 1.21 0.95
Half-normal (ML approach)
g, 6.730 9.8976
(32.417) (51.16)
g, 2.176 1.1917
(28.58) (60.17)
Implicit average conduct: 1.73 0.95
Half-normal (MM appr oach)
o, 10.171 Negative
o, 1.314 1.044
Implicit average conduct: 1.05 0.83

Notes: T-ratios in parenthesis. Since the MM apgiiozalculates rather than estimates the structaranpeters of
both random terms, the calculated values do noeowith standard errors attached.



Table 7. Average market power scores per firm

July 1, 1998 - April 15, 1999 April 16, 1999 — Mmber 30, 2000
Firm Observations Half-Normal Truncated Half- Norma Observations Hdbrmal Truncated Half Normal
AES 289 11.60 1.10 595 40.94 0.91
DST 289 8.85 1.45 595 39.01 1.19
Duke 286 13.57 1.07 594 32.83 0.73
Reliant 273 12.22 1.20 593 41.61 0.87
Southern - - - 595 36.21 0.98

Notes: For the first (second) period the market groshould be less than 4 (5). The market powerescannot be estimated in a few
observations due to they report zero output.

Table 8. Variation of market power scores per firm

July 1, 1998 - April 15, 1999 April 16, 1999 — Mmber 30, 2000
Firm Average Standard deviation  Coefficient of &tidn Average Standard deviation  Coefficient ofiataon
AES 1.10 0.34 0.31 0.91 0.43 0.47
DST 1.45 0.64 0.44 1.19 0.80 0.67
Duke 1.07 0.34 0.31 0.73 0.53 0.73
Reliant 1.20 0.33 0.28 0.87 0.44 0.50
Southern - - - 0.98 0.40 0.41
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Table 9. Coefficient of correlations among firm-specific ket power scores

July 1, 1998 - April 15, 1999

April 16, 1999 — November 30, 2000

AES DST Duke Reliant Southern AES DST Duke Reliant| Souther
AES 1 AES 1
DST 0.28 1 DST 0.71 1
Duke 0.36 0.64 1 Duke 0.30 0.44 1
Reliant 0.69 0.54 0.57 1 Reliant 0.78 0.76 0.38 1
Southern B B B ! 1 Southern|  0.53 0.66 0.36 0.66 1
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Figure 1. Traditional lower-bounded distributions
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Figure 2. Double-boundediistributions
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Figure 3. Price-cost margins in hour 18 (July 3, 1998 — Noven80, 2000)
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Figure 4. Comparison with Puller's (2007) firm-specific mark®wer estimates
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Figure5. Firm-specific market power scores. Histograms.
(July 3, 1998 — April 15, 1999)
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Figure 6. Firm-specific market power scores. Histograms.
(April 16, 1999 — November 30, 2000)
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Figure 7. Industry average market power score
(July 3, 1998 — April 15, 1999)

w0 [\ W

@ |
8
So
[
9]
]
S
g
5]
=

:‘i B U’\/‘,_,\/\/\

1(30 2(50 3(30 4(30
Trend
Figure 8. Industry average market power score
(April 16, 1999 — November 30, 2000)
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Figure 9. Firm-specific market power scores
(July 3, 1998 — April 15, 1999)
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Figure 10. Firm-specific market power scores
(April 16, 1999 — November 30, 2000)

Market Power Scores

T
1000

Trend
industry aes
dst duke
reliant southern

46



APPENDIX
(June 1, 2000 — November 30, 2000)

Figure Al. Firm-specific market power scores. Histograms.
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