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Abstract 
 

A large and growing economic literature in empirical industrial organization 
relies on structural models to infer what types of firm behaviour (“conduct”) are 
associated with prices that exceed marginal costs. Most of existing studies impose some 
restrictions on the value of the conduct parameter across observations or time. We 
instead treat firms’ behaviour as a random parameter. Our approach is based on 
composed error model, where the stochastic part is formed by two random variables - 
traditional error term, capturing random shocks, and a random conduct term, which 
measures market power. We propose multistage estimator that allows us to obtain time-
varying firm-specific market power scores. This additional information, usually ignored 
in previous structural econometric studies estimating conduct parameters provides a 
better understanding of firm-level pricing strategies. We illustrate the proposed 
approach with an application to the California Electricity generating market using the 
same data as Puller (2007). 
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1. Introduction 
 

Starting from seminal research works of Iwata (1974), Gallop and Roberts 
(1979), and Appelbaum (1982), measuring the degree of competition in oligopolistic 
markets has become one of key activities in empirical industrial organization. A large 
and growing economic literature in empirical industrial organization relies on structural 
models to infer what types of firm behaviour (“conduct”) are associated with prices that 
exceed marginal costs. 1 A typical structural model based on the conduct parameter 
approach for homogenous product markets starts with specifying a demand function and 
writing down the first-order condition of firm’s profit-maximization problem: 

0=θ⋅+− itittitt q)Q´(P)q(mc)Q(P     (1) 

where P(Qt) is inverse demand, Qt=Σi
Nqit is total industry’s output, qit is the firm’s 

output in period t, mc(qit) is the firm’s marginal cost, and θit is a “conduct” parameter 
that parameterizes the firm´s profit maximization condition. Under perfect competition, 
θit=0 and price equals marginal cost. When θit=N we face a perfect cartel, and when 
0<θit<N various oligopoly regimes apply. In these models the (firm or industry) degree 
of market power is measured by a conduct parameter θ that is jointly estimated with 
other cost and demand parameters.2  

The conduct parameter may vary across time as market conditions change, and 
firms change their own pricing strategies.3 Moreover, the conduct parameter may also 
vary across firms as “there is nothing in the logic of oligopoly theory to force all firms 
to have the same conduct” (Bresnahan, 1989, p. 1030).4 Obviously, allowing the 
conduct parameter to vary both by firms and time-series results in an overparameterized 
model. To avoid this problem the empirical studies in structural econometric literature 
always impose some restrictions on the way the value of conduct parameter varies 
across firms and time. The overparameterization is typically solved by  estimating the 
average of the conduct parameters of the firms in the industry (Appelbaum 1982), 
reducing the time variation into a period of successful cartel cooperation and a period of 
                                                 
1 For an excellent survey of other approaches to estimating market power in industrial organization 
literature, see Perloff et al (2007).  
2 Some studies interpret estimated conduct parameter as a ‘conjectural variation’, i.e. how rivals’ output 
changes in response to an increase in firm i ’s output. Bresnahan (1989) and Reiss and Wolak (2007) 
argue that with an exception of limited number of special cases (e.g. perfect competition, Cournot-Nash, 
and monopoly) there is there is no satisfactory economic interpretation of this parameter as a measure of 
firm behaviour. We therefore interpret this parameter as a simple descriptive measure of firm’s degree of 
market power. 
3 As the problem of repeated oligopoly interaction has received greater attention, the estimation of time-
varying conduct parameters that are truly dynamic has become an issue. Indeed, the Stigler’s (1964) 
theory of collusive oligopoly implies that, in an uncertain environment, both collusive and price-war 
periods will be seen in the data. Green and Porter (1984) predict a procyclical behaviour pattern for mark-
ups because of price reversion during a period of low demand. Hence the conduct parameter changes 
from collusive value to competitive value when there is an unanticipated negative demand shock. On the 
contrary, Rotemberg and Saloner (1986) predict that prices and mark-ups are countercyclical, and hence 
the conduct parameter will decrease when demand is high. Moreover, Abreu et al. (1986) find that in 
complex cartel designs the length of price wars (i.e. changes in conduct parameter) is random because 
there are “triggers” for both beginning a price war and for ending one. It is therefore difficult to impose 
plausible structural conditions and estimate firms’ conduct over time. 
4 In many treatments of oligopoly as a repeated game, firms expect deviations from the collusive 
outcome. Firms expect that if they deviate from the collusive arrangement, other will too. This 
expectation deters them from departing from their share of the collusive output. Because these deviations 
are unobserved in an uncertain environment, each firm might have its own expectation about what would 
happen if it deviates from collusive output. 
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price wars or similar breakdowns in cooperation (Porter 1983a), allowing for different 
conduct parameters between two or more groups of firms (Gallop and Roberts 1979) , 
or assuming firm-specific, but time-invariant, conduct parameters in a panel data 
framework (Puller 2007). 
 

Most of the structural econometric models treat the firm’s conduct as a common 
parameter to be estimated jointly with other cost and demand parameters. We instead 
propose treating firms’ behaviour θit as a random variable. Our approach relies on 
estimating composed error model, where the stochastic part is formed by two random 
variables - traditional error term, capturing random shocks, and a random conduct term, 
which measures market power. The proposed approach can be viewed as belonging to 
the same family as Porter (1983b), Brander and Zhang (1993), and Gallet and Schroeter 
(1995) who estimate a regime-switching model where market power enters in the model 
as a supply shock. As in our model, the identification of market power in these papers 
relies on making simple assumption about a specific component in the error term, which 
is unobservable. However, while previous papers estimated the pricing relationship (1) 
assuming θit=θt to be a discrete random variable that follows a bimodal distribution 
(“price wars” vs. “collusion”), here θit varies both across firms and over time and is 
treated as a continuous random term. What distinguishes our paper is the attempt to 
estimate a double-bounded distribution that imposes both lower and upper theoretical 
bounds (i.e. 0≤θit≤N) to a continuous random conduct term. Moreover, while the 
switching regression models can only be estimated when there are discrete “collusive” 
and “punishment” phases that are either observable or could be inferred from the data, 
our model can be estimated in absence of regime switches.5 The continuous nature of 
our conduct random term thus allows us to capture gradual changes in firm behaviour.6  

 
The model can be estimated in three stages.7 Once all parameters describing the 

structure of the pricing equation (1) are estimated using appropriate econometric 
techniques (first-stage), distributional assumptions on random conduct term are invoked 
to obtain consistent estimates of the parameters describing the structure of the two error 
components (second-stage). Conditional on these parameter estimates, market power 
scores can be then estimated for each firm by decomposing the estimated residual into a 
noise component and a market-power component (third-stage). These firm-specific 
market power scores can be used to complement time-invariant or common conduct 
estimates obtained in the first stage.  

 
Because the firm-specific market power estimates in our model relies on 

distributional assumptions on the two error components, they can be obtained just using 

                                                 
5 The regime switches only occur when a firm´s quantity is never observed by other firm and, hence, 
deviations cannot be directly observed. This is not the case in the electricity generating industry analyzed 
in the empirical section as market participants had access to accurate data on rivals’ real-time generation.  
6 Kole and Lehn (1999) argue that for many firms the decision-making apparatus is slow to changes in the 
market environment within which it operates, due to the costs to reorient decision-makers to a new “game 
plan”. In particular, the existing culture or the limited experience of the firm in newly restructured 
markets may be such that strategies to enhance market power may not be immediately undertaken.  In 
addition, we would also expect gradual changes in firms conduct in a dynamic framework if firms are 
engaging in efficient tacit collusion and are pricing below the static monopoly level, and when there is a 
high persistence in regimes (Ellison, 1994). 
7 As in Porter (1983b), Brander and Zhang (1993), and Gallet and Schroeter (1995), Maximum 
Likelihood techniques can be used to estimate all parameters of the model in a unique stage. However this 
does not allow us to address the endogeneity issues that appear when estimating the pricing equation (1). 
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cross-sectional data sets, unlike in previous papers that used a fixed effect treatment to 
estimate firm average conduct in a panel data framework (see, for instance, Puller, 
2007).Therefore, our approach is especially useful when: i) no panel data sets are 
available;8 ii ) the time dimension of the data set is sort; 9 iii ) the available instruments 
are valid when estimating a common pricing equation to all observations, but not when 
we try to estimate separable pricing equations for each firm; or iv) the assumption of 
time-invariant conduct is not reasonable.  

 
The main contribution of the proposed approach is about the way the asymmetry 

of the composed error term is employed to get firm-specific market power estimates. 
Indeed, while the first-stage of our model is standard, the following stages take 
advantage of the fact that the distribution of conduct term is truncated and likely 
positively or negatively skewed. As we aware, skewness of conduct parameter in 
oligopolistic industry settings is not examined explicitly in most (if any) of the previous 
studies. Skewness and truncation allow us to isolate the random conduct term from 
other random shocks. In addition to the mean value estimated in the first-stage of our 
procedure, this permits estimating the variance and mode of the random conduct term. 
This new knowledge may provide relevant information about the oligopolistic 
equilibrium behind the data generating process.  Indeed, price or conduct rigidity is 
often attributed to reluctance among firms to disturb an existing cooperative 
consensus.10 Hence, variation in conduct can be used as a measure of the degree of 
collusive discipline across firms and/or over time. For instance, a large conduct 
variation might suggest large differences in firms’ conduct or, if a cartel exists, that it is 
not all-inclusive. A large conduct variation might also indicate the existence of 
collusion break downs from time to time, gradual changes in firm behaviour or simply 
that cartel stability is not successful. This instability in turn might suggest the existence 
of monitoring problems among collusive firms. The mode, on the other hand, might 
provide information about the probability of observing higher (lower) market power 
scores than the estimated average conduct value.  

 
Because variation in conduct can be interpreted as a measure of collusive 

discipline or instability, we advocate using the coefficient of conduct variation 
(computed from the market power scores estimated in the third stage) as a screening 
procedure to detect potential collusive firms or market power concentration.11 The 
proposed screen can be viewed as a more sophisticated version of the collusive screen 
introduced by Abrantes-Metz et al. (2006) based on price variation. In particular, our 

                                                 
8 In particular, our approach is useful in cross-section applications when there is not prior information 
about the identities of suspected cartel members and hence a benchmark of non-colluding firms is not 
available. 
9 The fixed-effect treatment is only consistent when long panel data sets are available (i.e. as T→∞). In 
addition, the incidental parameter problem appears, i.e. the number of parameters grows with sample size 
(i.e. as N→∞). 
10 Carlson and McAfee (1983) and Carlton (1986) analyzed price dispersion for homogeneous goods in an 
oligopolistic industry structure and found that price dispersion is related to the slope of the marginal cost 
curves and the degree of competition measured either by the number of firms or the industry 
concentration. Note that, from equation (1), price rigidity greater than cost fluctuations in oligopolistic 
settings can be attributed, among other sources, to low conduct dispersion. For subsequent research on 
price rigidity and competition see Connor (2005). 
11 A screen is a statistical procedure designed to detect conspiracies aimed at illegally manipulating a 
market. Because screens do not prove collusion as they might exhibit both false positives and false 
negatives, they just isolate outcomes that are improbable or anomalous in competitive settings. For a 
comprehensive survey of this literature, see Abrantes-Metz and Bajari (2009). 
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screen would identify a potential cartel as group of firms exhibiting low conduct 
variation and high conduct values relative to other firms.12 On the other hand, from a 
dynamic perspective, the market power scores can be used to detect the creation/decline 
of collusion episodes, or to identify abrupt changes in mark-ups which cannot be 
explained by “normal” demand and cost random shocks.  

 
While economic theory imposes both lower and upper theoretical bounds to the 

random conduct term, the skewness of its distribution is an empirical issue. 13 We argue, 
however, that the skewness assumption of the distribution of conduct term is reasonable 
because oligopolistic equilibrium outcomes often yield skewed conduct random terms 
where large (collusive) conduct values are either less or more probable than small 
(competitive) conduct values. For instance, to the dominant firm theory assumes that 
one (few) firm(s) has enough market power to fix prices over marginal cost. This 
market power is, however, attenuated by a fringe of (small) firms that do not behave 
strategically.14 The most important characteristic of this equilibrium is that the modal 
value of the conduct random term (i.e. the most frequent value) is close to zero, and 
higher values of θit are increasingly less likely (frequent). In other markets all firms 
might be involved in perfect cartel scheme. In such a cartel-equilibrium, firms usually 
agree to sell “target” quantities, and the resulting market price is the monopoly price, 
which is associated with the maximum conduct value, e.g. θit =N. Less values of θit are 
possible due, for instance, to cheating behaviour. 15 This means that the modal value of 
the conduct random term in this equilibrium is one, with less values of θit increasingly 
less likely. That is, firm-conduct is negative skewed. In general, similar equilibria that 
yield asymmetric distributions for the firm-conduct parameter with modal values close 
to zero or to the number of colluding firms may also arise.  

 
We illustrate the model with an application to the California electricity 

generating market between April 1998 and December 2000. This industry is an ideal 
setting to apply our model because there were high concerns regarding market power 
levels in California restructured electricity markets during that period, and detailed 
price, cost, and output data are available as a result of the long history of regulation and 
the transparency of the production technology. This data set allows us to compute 
directly hourly marginal cost for each firm. We can therefore avoid complications from 
estimating cost parameters and focus our research on market power, avoiding biases due 
inaccurate estimates of marginal cost.16  Hence, this data set provides a proper 

                                                 
12 A notable caveat to our screen is that conduct variance can be higher under the collusive theory of 
Green and Porter (1984). Though collusion doesn’t result in a higher conduct variance within either a 
collusive regime or a punishment regime, the conduct variance is higher when data spans the two 
regimes. Hence, like any other collusive marker, the proposed marker must be used with caution. 
13 The economic theory suggests that the conduct parameter always takes positive values, so it might 
follow one-sided or double-truncated distributions, such us a truncated normal, half-normal or 
exponential, widely used in the stochastic frontier literature. For a comprehensive survey of this literature, 
see Kumbhakar and Lovell (2000), and Fried et al. (2008). 
14 This partial collusion equilibrium is reasonable in markets with many firms where coordination among 
all firms is extremely difficult to maintain as the number of firms in the collusive scheme is too high or 
other market characteristics make coordination too expensive, e.g. markets with differentiated products. 
15 It is well known that secret price cuts (or secrete sales) by cartel members are almost always a problem 
in cartels. For instance, Ellison (1994) finds that secret price cuts occurred during 25% of the cartel period 
and that the price discounts averaged about 20%. See also Borenstein and Rose (1994). 
16 See Kim and Knittel (2006) using data from the California electricity market. See also Genesove and 
Mullin (1998) and Clay and Troesken (2003) for applications to the sugar and whiskey industries 
respectively. 
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framework to discuss methodological issues and to apply the empirical approach 
proposed in the present paper.  In addition, these data have been used in previous papers 
to calculate the level of market power in California markets. In particular, Borenstein et 
al. (2002) and Joskow and Kahn (2001) estimate hourly marginal cost for the California 
market and compare these estimates to wholesale prices. They found that, in certain 
time periods, prices substantially exceeded marginal cost. Puller (2007) analysed the 
pricing behaviour of California electricity generating firms and found that price-cost 
margins varied substantially over time. 

 
The rest of the paper is structured as follows. In Section 2 we explain the 

empirical model, and its dynamic extensions, and discuss how to incorporate conduct 
determinants and panel data specifications. In Section 3 we discuss the three-stage 
procedure to estimate the model. The empirical illustration of the model using 
California electricity data is described in Section 4. Section 5 concludes. 

 
 
2. Theoretical background and alternative empirical specifications    
 

 The traditional structural econometric model of market power is formed by a 
demand function and a pricing equation. Because we are primarily interested in the 
estimation of industry or firm-specific market power scores, we only discuss here the 
estimation of the pricing equation (1), given a previous estimates of the demand 
parameters.17 Otherwise, demand parameters should be is estimated jointly with cost 
and market power parameters.  

 
In accordance with our empirical application to the wholesale electricity 

industry, in this section we develop a simple model where firms sell homogenous 
products (i.e. Kwh) and choose individual quantities each period so as to maximize their 
profits. Firm i’s profit function in period t can be written as: 

),q(Cq)·ˆ,Q(P itittit α−β=π     (2) 

where β̂  is a vector of  demand parameters already estimated, and α is a vector of cost 
parameters to be estimated. We assume that firms choose different quantities each 
period and their marginal cost varies across firms and over time. 
 
Static specification 
 

We first assume a static model, where firms maximize their profits each period 
without explicit consideration of the competitive environment in other periods. We then 
extend the model to dynamic setting. In a static model the firm’s profit maximization 
problem is 

),q(Cq)·ˆ,Q(Pmax ititt
qit

α−β     (3) 

The static FOC’s are captured by equation (1), that is: 

itititt )ˆ(g),q(mcP θ⋅β+α=       

                                                 
17 This is the strategy followed, for instance, by Brander and Zhang (1993), Nevo (2001) and Jaumandreu 
and Lorences (2002). 
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where ),q(mc it α  stands for marginal cost, and 0≥β−= ittit q)ˆ,Q´(Pg . The stochastic 

specification of the above FOC´s can be obtained by adding the traditional error term, 
capturing measurement and optimization errors: 

ititititt v)ˆ(g),q(mcP +θ⋅β+α=     (4) 

Instead of viewing firm’s behaviour as a structural parameter to be estimated we here 
treat firms’ behaviour as a random variable. While retaining standard assumption that 
the noise term is i.i.d. and symmetric with zero mean, we also assume that θit follows a 
one-sided distribution once we incorporate the theoretical restriction that 0≤θit. The 
distinctive feature of our model is that the stochastic part is formed by two random 
variables - the traditional symmetric error term, vit, and a one-sided random conduct 
term, git·θit, that reflects the market power. The one-sided restriction makes the 
composed error term asymmetric and allows getting separate estimates of θit and vit 
from an estimate of the composed error term.  

 
Dynamic specification 

 
Corts (1999) argued that traditional approaches to estimating the conduct 

parameter from static pricing equations, such us (4), can yield inconsistent estimates of 
the conduct parameter if firms are engaged in an effective tacit collusion. The first order 
condition for a set of tacitly colluding firms is the solution to maximizing their total 
profit subject to an incentive compatibility constraint (ICC), so that no firm has an 
incentive to deviate. Following Puller (2009), the general model to be estimated within 
a dynamic framework can be written as:  

it
t

b

t

t
itititt v

QN/
)ˆ(g),q(mcP +









∂
π∂⋅

ψ+
ψ+θ⋅β+α=

1
 ,  (5) 

where ψt is the Lagrange multiplier on the incentive compatibility constraint, and πb is 
the profit of a firm that unilaterally deviates from the collusive regime.  

 In equation (5) θit is still the same conduct parameter as in static model (4). Its 
estimation is more complex because in (5) firm’s conduct depends both on the value of 
conduct parameter θit, and on whether the incentive compatibility condition binds, i.e. 
ψt>0. This equation captures, as special cases, some static (i.e. ψt=0) and dynamic 
solutions (i.e. ψt>0). If θit=0 firm’s conduct is consistent with Nash-Bertrand behaviour. 
If, in addition, ψt=0, this outcome is consistent with the static one-shot Nash-Bertrand 
competition. If θit=1 and ψt=0, it is perfect collusion. Two imperfect collusions arise. If 
ψt=0, when 0<θit<N. When ψt>0 and θit=N, conduct is consistent with the dynamic and 
efficient tacit collusion. Under efficient tacit collusion, firms jointly adjust prices so that 
no firm has an incentive to deviate from joint profit maximization. Corts (1999) showed 
that when the incentive compatibility condition is not modelled, the conduct parameter 
θit is biased and the bias depends on expected future demand and costs.18 Puller (2009) 
pointed out that if the static model is correctly specified, the error term in (5) is a pure 
stochastic term and therefore should not affect a firm’s pricing behaviour. However, if 
                                                 
18 In particular, Corts (1999) argued that the robustness of the conduct parameter approach depends on the 
discount factor and the persistency of the demand. The conduct parameter approach cannot detect any 
market power if the discount factor is low and the demand is i.i.d. Puller (2007, p.84) argued that 
“California market [can be] viewed as an infinitely repeated game with a discount factor between days 
very close to 1”. Our application to California electricity market as a static model is therefore sufficient 
for estimating market power consistently.  
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the ICC is binding (i.e. ψt>0) and the best-response profits are non-linear, the static 
conduct parameters are biased and inconsistent. To address this issue, he noticed that 
the dynamic term in (5) is common to all firms and, hence, Corts’ critique can be 
avoided by estimating the pricing equation (6), and replacing the term in brackets in (5) 
by a set of time-dummy variables.  

 
As firm’s dynamic behaviour is affected by current demand, expected future 

demand, and expected future costs (Borenstein and Shephard, 1996), and these factors 
affect the ICC, consistent estimates can be also obtained by replacing the dynamic term 
in (5) by a function of expected demand and cost shocks, and estimating the following 
extended pricing equation:  

itititttitt v)ˆ(g),w,x(f),q(mcP +θ⋅β+π+α= ,   (6) 

where xt and wt represent respectively industry expected demand and cost shocks, 
measured relative to current demand and costs. In practice, future market output and 
costs can be used to proxy expected values. 
 
 Kim (2006) proposed a similar solution to address Corts’ critique. He suggested 
modelling the conduct parameter as a core time-invariant conduct parameter, θi

C, and a 
linear function of dynamic behaviour´s determinants, i.e. demand and cost shocks. That 
is: 

( )tt
C
iit wx 21 π+π+θ=θ     (7) 

In equation (7), the first term, the core conduct parameter, measures the firm-
specific average level of collusion over time while the second linear term captures the 
deviation from the average level. Kim (2006) mentioned two advantages of the above 
specification. First, by specifying a time-varying conduct parameter we can test the 
relationship between the firm’s conduct and both demand shocks and cost shocks.19 
Second, we can shed light on the source of bias that distinguishes the core conduct 
parameter θi*  and the static conduct parameter θ when the ICC is not binding.  
 
Conduct determinants 

 
We now discuss how the model can be extended to include determinants of the 

(one-sided) conduct random term. This allows us to analyze, for instance, the cyclical 
behaviour of firm conduct, evaluate bias in static market-power measures (see above), 
identify clusters of firms with different strategic behaviour, or capture differences 
between peak and off-peak hours or between week and weekend days (see Kim and 
Knittel, 2006).  

 
A general specification including a vector of conduct determinants, zit, can be 

written as: 

)z( ititit θ=θ       (8) 

where zit might include, in addition to other determinants of firms’ behaviour, expected 
future demand and expected future costs as suggested by theory. In this general 

                                                 
19 For instance, if xt has a negative sign, this implies countercyclical firm conduct and mark-up as in 
Rotemberg and Saloner (1986). If xt is positively associated with θ, this implies procyclical firm conduct 
and mark-ups as in Green and Porter (1984). 
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specification the conduct determinants affect both the shape (i.e. the distribution 
characteristics) and magnitude of the one-sided random term, and their coefficients must 
be estimated using maximum likelihood (ML) techniques. In an important special case, 
if θit satisfies the so-called scaling property the model can be also estimated using a 
method-of-moments (MM) estimator.20 In this case θit can be written as a scaling 
function h(zit,ϕ) times a random variable uit that does not depend on zit, that is 21 

ititit u)·,z(h ϕ→θ      (9) 

 This property implies that changes in zit affect the scale but not the shape of uit. 
This specification has a similar economic interpretation as in Kim (2006). If firm’s 
behaviour is influenced by expected future demand and expected future costs, this is 
captured by the scaling function h(zit,ϕ).22 If we assume an exponential scaling function, 
i.e. h(zit,ϕ)=exp(zit′ϕ), the pricing equation (6) can be written as: 

ititititt vu)·ˆ,(g~),(FP +βϕ+πα=     (10) 

where ),w,x(f),q(mc),(F ttitit π+α=πα , and )'exp()ˆ()ˆ,(~ ϕββϕ ititit zgg ⋅= . Except for 

the new vector of parameters, ϕ, the model to be estimated is the same as (6), and a MM 
estimator can be used.23  
 
Panel data specification 
 

So far we have assumed that the θit are independent (conditional on the zit) over 
time.24 Although independence is likely an unrealistic assumption, it is generally not 
clear how to relax it, i.e. how to allow for correlation over time in a one-sided random 
conduct term. However, if scaling property is satisfied we may consider the following 
alternative model:   

iitit u)·,z(h ϕ=θ      (11) 

                                                 
20 See Wang and Schmidt (2002) and Álvarez et al. (2006). 
21 The scaling property in (9) corresponds to a multiplicative decomposition of θit. An alternative that has 
sometimes been proposed in the literature on frontier production functions (Huang and Liu, 1994; Battese 
and Coelli, 1995) is an additive decomposition of the form θit(zit,ϕ) = h(zit,ϕ) + τit. However, this can 
never actually be a decomposition into independent parts, because θit(zit,ϕ) ≥ 0 requires τit ≤ h(zit,ϕ). 
22 Although it is an empirical question whether or not the scaling property should hold, it has some 
features that we find attractive. For instance, the interpretation of φ does not depend on the distribution of 
uit, and simple scaling functions yield simple expressions for the effect of the zit on the dynamic conduct 
parameter θit. For example, if we use an exponential scaling function, so that θit=exp(zit′ϕ)·uit, then the 
coefficients ϕ are just the derivatives of ln(θit) with respect to the zit, and have standard interpretations as 
marginal effects. 
23 It is worth mentioning that previous papers allowing for conduct determinants (see, e.g., Gallet and 
Schroeter, 1995) have estimated the pricing equation (10) using a MM estimator, but assuming that 
θit(zit,ϕ)  is an additive function of time-varying and firm-specific conduct determinants. Therefore, these 
papers assumed implicitly that θit satisfied the abovementioned scaling property. To relax this 
assumption, a ML estimator should have been used. 
24 Estimates from (9) will be consistent even if the conduct term θit 

is not independent over time, so long 
as the model is otherwise correctly specified.  However, the estimated variances (or standard errors) of 
the estimated parameters, calculated under the assumption of independence, will not be correct if 
independence does not hold.  It is possible to calculate asymptotically valid “corrected” estimated 
variances that allow for non-independence of unspecified form. These points are known in the 
econometric literature. For example, see Hayashi (2000) and Álvarez, Amsler, Orea and Schmidt (2006). 
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where ui is a time-invariant individual effect. Several caveats should be made here. 
First, this specification is a restricted version of (9), with the restriction of uit=ui. This 
implies that θit only changes throughout the time-varying function h(zit,ϕ). If we use 
(11) into (6), the model to be estimated is the same as (10), and, in addition to MM and 
ML, a “fixed-effect” estimator can be used to estimate ui.

25 Second, the specification in 
(11) can be viewed as a multiplicative version of the additive conduct decomposition of 
θit suggested by Kim (2006). In fact, the term ui can be viewed as the so-called (time-
invariant) core conduct parameter θi

C and h(zit,ϕ) as the dynamic term in (7) that is 
modelled as a function of demand and cost shocks respectively. Third, a distinctive 
feature of (11) is the interaction between the time-varying function h(zit,ϕ) and the 
individual effect ui. Models of this form have been proposed in the literature of 
production frontier functions, but all of this literature considered a “random-effects” 
treatment and proposed specific (truncated normal) distributions for the ui, with 
estimation by maximum likelihood.26  Because some regressors are endogenous and 
might be correlated with random effects (i.e. ui), a “fixed-effects” treatment or a 
generalized method of moments (GMM) method should be employed.  

 
 

3. Estimation strategy 
 

 We now turn to explaining how to estimate the pricing relationships presented in 
the previous section. Two estimation methods are possible: a method-of-moments 
(MM) approach and maximum likelihood (ML). The MM approach involves three 
stages. In the first stage, all parameters describing the structure of the pricing equation 
(i.e. cost, demand and dynamic parameters) are estimated using appropriate econometric 
techniques. In particular, because some regressors are endogenous, a generalized 
method of moments (GMM) method should be employed to get consistent estimates in 
this stage. The GMM estimator has the additional advantage over ML in that it does not 
require a specific distributional assumption for the errors, which makes the approach 
robust to nonnormality and heteroskedasticity of unknown term (Verbeek, 2000, p. 
143). This stage is thus independent of distributional assumptions on either error 
component. In the second stage of the estimation procedure, distributional assumptions 
are invoked to obtain consistent estimates of the parameter(s) describing the structure of 
the two error components, conditional on the first-stage estimated parameters. In the 
third stage, market power scores are estimated for each firm by decomposing the 
estimated residual into an error-term component and a market-power component.  

 The ML approach uses maximum likelihood techniques to obtain second-stage 
estimates of the parameter(s) describing the structure of the two error components, 
conditional on the first-stage estimated parameters. It can be also used to estimate 
simultaneously both types of parameters, if the endogenous regressors in the pricing 
equation are previously instrumented. In this case, the ML approach combines the two 
first stages of the method of moments approach into one.  

 While the first-stage is standard in the New Empirical Industrial Organization 
(NEIO) literature, the second and third stages take advantage of the fact that the conduct 
                                                 
25 Han, Orea and Schmidt (2005) shown, however, that a “fixed-effects” estimation of this type of models 
is not trivial due to the incidental parameters problem. 
26 Orea and Kumbhakar (2005) have estimated a model with a specification of one-sided random term 
(the efficiency of production) equivalent to (11). Their model is in turn a slight generalization of those 
introduced by Kumbhakar (1990) and Battese and Coelli (1992) where zit=t. 
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term is likely positively or negatively skewed, depending on the oligopolistic 
equilibrium that is behind the data generating process. Models with both symmetric and 
asymmetric random terms of the form in Section 2 have been proposed and estimated in 
the stochastic frontier analysis literature.27 

 
First stage 
 

Let us rewrite the pricing equation (6) as:  

itititt )ˆ(g),(FP ε+θ⋅β+πα=     (12) 

where α is the vector of cost parameters,28 π are parameters of the dynamic term to be 
estimated, β̂  are demand parameters already estimated,θ =E(θit), and  

{ }θ−θ⋅β+=ε itititit )ˆ(gv      (13) 

The possible endogeneity of some regressors will lead to least squares being 
biased and inconsistent. This source of inconsistency can be dealt with by using GMM. 
Though first-step GMM parameter estimates are consistent, they are not efficient by 
construction because the vit’s are not identically distributed. Indeed, assuming that θit 
and vit, are distributed independently of each other, the second moment of the composed 
error term can be written as: 

2222
θσ⋅β+σ=ε )ˆ(g)(E itvit      (14) 

where E(vit
2)=σv

2, and V(θit)=σθ
2. Equation (14) shows that the error in the regression 

indicated by (12) is heteroskedastic. Therefore an efficient GMM estimator is needed. 
Suppose that we can find a vector of m instruments Mit that satisfy the following 
moment condition: 

[ ] ( )[ ] [ ] 0=θπα=θ⋅β−πα−=ε ),,(mE)ˆ(g),(Fy·ME·ME ititititititit   (15) 

The efficient two-step GMM estimator is then the parameter vector that solves: 

( ) [ ] [ ]),,(mW'),,(mminargˆ,ˆ,ˆ ittiitti θπαΣΣθπαΣΣ=θπα −1    (16) 

where W is an optimal weighting matrix obtained from a consistent preliminary GMM 
estimator.29  

Clearly, we can estimate the above model for each firm when a panel data set is 
available, as it is the case in our empirical application. Similar to Puller (2007), this 
would allow us to estimate the average conduct for each firm in this stage, and temporal 
deviations from these individual averages in following stages (not carried out in Puller’s 
paper).30 However, we simply estimate a common pricing equation for all firms and 
compare it to that estimated by Puller (2007) assuming as well a common conduct term 

                                                 
27 See, in particular, Simar, Lovell and Vanden Eeckaut (1994), and the references in Kumbhakar and 
Lovell (2000). 
28 In the empirical illustration below we include a dummy variable for binding capacity constraints that 
helps explaining the differential of prices over marginal costs. This variable is interpreted here as a 
determinant of marginal cost. 
29 This optimal weighting matrix can take into account both heteroskedasticity and autocorrelation of the 
error term. 
30 This implies in turn that other moments of the conduct random term are also firm-specific. 
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for all firms. We then compute day-to-day deviations from this industry average to 
show the advantages of our procedure.  

 
Second stage 

 
The pricing equation (12) estimated in the first stage is equivalent to standard 

specification of a structural market power econometric model, where an industry-
average market power level is estimated (jointly with other demand and cost parameters 
in most applications). As we mentioned earlier in the introduction section, our paper 
aims to exploit the asymmetry of the composed error term (i.e. the skewness of the 
conduct random variable) to get firm-specific market power estimates in the second and 
third stages. These stages therefore are the core of this paper.   

 
 In the second stage of the estimation procedure, distributional assumptions are 
invoked to obtain consistent estimates of the parameter(s) describing the structure of θit 
and vit (i.e. σv and σθ), conditional on the first-stage estimated parameters.31 This stage 
is critical as it allows us to distinguish collusion discipline/instability, measured by σθ, 
from demand and cost volatility, measured by σv. This stage of the procedure can be 
implemented using either the MM or ML estimator. The MM estimates of the two 
parameters describing the structure of θit and vit are derived using the second and third 
moments of the error term. The third moment of εit can be written as: 

 ( )[ ]333 θ−θ⋅β=ε ititit E)ˆ(g)(E      (17) 

 Equation (17) shows that the third moment of εit is simply the third moment of 
the random conduct term, adjusted by )ˆ(3 βitg . The variance of the traditional error term 

does not appear in (17) because it is symmetrically distributed. That is, while the second 
moment (14) provides information about both σv and σθ, the third moment (17) only 
provides information about the asymmetric random conduct term. Now, if we assume a 
specific distribution for θit, we can infer σθ from the third moment of εit, and then σv 
from its second moment.  

 
We can also estimate σv and σθ

 by maximum likelihood. Given that we have 
assumed a particular distribution for the conduct term, the ML estimators are obtained 
by maximizing the likelihood function associated to the error term 

itititititit )ˆ(gv~v~ θβ+=θ+=ε  that can be obtained from an estimate of the first-stage 

pricing equation (12).  
 
 In practice, the MM approach has two potential problems. First, it is possible 
that, given our distribution assumptions, εit has the “wrong” skewness implying a 
negative σθ. The second problem arises when εit has the “right” skewness, but the 
implied σθ is sufficiently large to cause σv<0. 32 Overall, these “unexpected” outcomes 

                                                 
31 Our approach can also be extended in order to allow for a heteroskedastic error term. 
32 Olson et al. (1980) showed that resorting to a ML procedure instead of a MM procedure does not 
resolve the first problem as the ML estimate of σθ tends to be equal to zero when εit has the “wrong” 
skewness. Based on the results of a Monte Carlo experiment, they concluded that the choice of estimator 
(ML versus MM) depends on the relative values of the variance of both random terms and the sample 
size. When the sample size is small and the variance of the one-sided error component, compared to the 
variance of the noise term, is not large the MM outperforms ML in a mean-squared error sense. 
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suggest that either the distributions chosen to model the underlying oligopolistic 
equilibrium, or the deterministic part of the pricing equation (12) are misspecified, and, 
hence, they need to be revised.  
 

To carry out the second (and third) stage we need to choose a distribution for the 
asymmetric term. The selected distribution for the one-sided conduct term reflects the 
researcher’s beliefs about the underlying oligopolistic equilibrium that generates the 
data. Hence, different distribution for the conduct random term can be estimated to test 
for different types of oligopolistic equilibrium. The pool of distribution functions is, 
however, limited as we need to choose a simple distribution for the asymmetric term to 
be able to estimate the empirical model. The tractability principle prevents us from 
using more sophisticated distributions that, for instance, would allow us to model 
industries formed by two groups of firms with two different types of behaviour, i.e. an 
industry with two modes of the conduct term. 

 
The distribution functions for the conduct random term can be classified into 

three classes: 1) the lower-bound distributions that impose the theoretical restriction that 
0≤θit, but do not impose any upper bound; 2) the upper-bound distributions that impose 
the theoretical restriction that θit≤N, but do not impose any lower bound; and 3) the 
double-bounded distributions that impose both theoretical lower and upper bounds, i.e. 
0≤θit≤N.  

 
Examples of the so-called lower-bound (or one-sided) distributions are the 

exponential distribution, gamma-distribution, the half-normal distribution, and the 
truncated normal distribution, which are well-known in the production frontier 
literature.33 The half-normal distribution is obtained from the truncation below zero of a 
random variable which follows a normal distribution with zero mean and variance σu

2. 
In this case, the density function of θit ≥0 is given by  






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it
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If θit ≥0 follows an exponential distribution, the density function is: 


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it
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it exp)(f

1
     (19) 

Both half-normal and exponential are single-parameter distributions. The 
truncated normal distribution is a generalization of the one-parameter half-normal 
distribution.34 If we assume that θit follows a truncated normal distribution, i.e. θit 

~N+(µ,σu
2), the density function is: 

( )
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where Φ(·) is the standard normal cumulative distribution function. In Table 1 we list 
the first three population (central) moments of θit for the truncated normal distribution 

                                                 
33 For a comprehensive discussion of these one-sided distributions, see Kumbhakar and Lovell (2000). 
34 It is one of the most employed distributions in the production frontier literature. 
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which are essential for the MM estimation (see Jawitz, 2004). The moments for the half 
normal distribution can be obtained by setting µ=0. 35 
 

As mentioned earlier, in the second stage of the estimation procedure we invoke 
distributional assumptions to obtain consistent estimates of the parameter(s) describing 
the structure of the two error components, conditional on the first-stage estimated 
parameters, which includes the estimate of the average value of conduct parameter θ. 
The first moment in Table 1 can thus be viewed as a nonlinear constraint between µ and 
σu. Using the first-stage residuals, the two equations formed by the nonlinear constraint 
and the (sample counterpart of the) third moment of the composed error term 

u
ˆ ση+µ=θ 0        (21) 
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provide estimates of µ and σu, which yield an estimate of )()( uu σµΦ⋅σµφ=η −1
0 , 

and using the second moment of the composed error term, these estimates together yield 
an estimate of σv. 
 

As regards the maximum likelihood estimation, the density function for a normal 
(vit) plus a truncated-normal error term (uit) can be written as: 
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where uv~ +=ε , ( ) 2122 /

vu σ+σ≡σ , vu σσ≡λ , and we have dropped the subscripts for 

convenience. The ML estimates in our model can be obtained by replacing µ and σu in 
(23) with )ˆ(git β⋅µ and )ˆ(gitu β⋅σ . 

As illustrated in Figure 1, each of these distributions assumes the existence of 
one mode, with high values of the conduct parameter becoming increasingly less likely. 
However, from a theory perspective, the most important characteristic of these 
distributions is that all of them have a positive skewness. This suggests that the one-
sided distribution has low probabilities for large (collusive) conduct values and high 
probabilities for small (competitive) conduct values. Finally, the values not supported 
by the theory can still be obtained here because these distributions do not impose the 
theoretical restriction that θit≤N. These values might appear when the model is not well 
specified or when the estimated error terms are occasionally high (e.g. due to large 
measurement errors).  

 
The upper-bound distributions of θit are negative skewed. From the theory 

perspective, this suggests that collusive conduct values are more probable than 
competitive values, i.e. that only a small fraction of the firms is behaving competitively, 
while a large fraction is colluding. Similar to the lower-bound distributions, values not 

                                                 
35 We do not present the moments for the exponential distribution because there is some evidence in the 
frontier literature that neither rankings of firms by their efficiency (here conduct) scores or the 
composition of the top and bottom scores deciles are particular sensitive to the single distribution (half-
normal vs. exponential) assigned to the one-sided error term (see Kumbhakar and Lovell, 2000, p. 90). 
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supported by the theory can still be obtained because these distributions do not impose 
the theoretical restriction that θit≥0.36  

 
The third class is formed by double-bounded distributions that impose both 

lower and upper theoretical bounds, i.e. 0≤θit≤N. Imposing both theoretical restrictions 
simultaneously and allowing for simple asymmetric distributions is a complex problem. 
No applicable double-bounded distribution for the one-sided term has been published 
yet.  

 
A first (and promising) attempt to develop double-bounded distributions is 

Almanidis et al. (2010). In particular, these authors propose a model where the 
distribution of the one-sided (inefficiency) term is doubly truncated normal, that is, a 
normal distribution truncated at a point (say B) on the right tail as well as at zero. They 
also introduce the so-called truncated half normal model, which is a particular case of 
the doubly truncated normal, and the truncated exponential model. In Table 2, we 
reproduce the density functions of these double-bounded distributions, which are 
essential for the ML estimation. 

 
Once we impose that the upper bound is equal to the number of firms (i.e. B=N) 

these models can be used to estimate the distribution of the conduct term. The doubly 
truncated normal model is very flexible as it nests other one-sided distributions such as 
truncated normal or half normal. One desirable feature of this model is that the doubly 
truncated normal distribution may be either positively or negatively skewed. In 
particular, as illustrated in Figure 2, it may exhibit (positive) negative skewness if the 
truncation on the right is closer (further than) to the mode than that on the left. And 
therefore it allows modelling oligopolistic equilibriums with a large fraction of firms 
behaving competitively, and vice versa.  

 
While both the truncated model and the truncated exponential model are globally 

identified (i.e. can be estimated using traditional ML techniques), it is not clear that the 
doubly truncated normal is globally identifiable. Almanidis et al. (2010) show that these 
identification problems arise when both the mean of the pre-truncated normal 
distribution (µ) and the upper-bound (B) are estimated simultaneously, and the 
combination of these two parameters yield a (post-truncated) symmetric distribution. 
This problem might be quite important in the stochastic frontier framework where both 
parameters are permited to vary with freedom. However, the identification problems in 
the market power framework are less severe as the upper-bound is fixed by the theory 
and it does not need to be estimated in practice.  

 
Although the doubly truncated normal is not globally identifiable, Almanidis et 

al. (2010) show that particular versions of this model are identified and can be 
estimated. A couple of them are of special interest in our framework: i) the truncated 
half normal with B=N which is positive skewed; and ii) the double-truncated normal 
with B=µ=N, which is negative skewed.  As these particular double truncated models 
allow us to “adjust” the traditional one-sided distributions mentioned above making 
them to satisfy both lower and upper theoretical bounds, they are our preferred models.  

                                                 
36 These distributions have not been used in earlier literature because negative values do not make sense 
for estimating stochastic frontiers. However, the truncation over one can be converted into a (more 
traditional) truncation below zero if we just define θit=(N-θit*), where θit*≥0. 
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Third stage 
 

The third stage is to obtain the estimates of market power for each firm.  We 
have estimates of itititititit

~)ˆ(g~ θ+ε=θ⋅β+ε=ε , which obviously contains information 

on θit. The problem is to extract the information that it
~ε contains on θit. Jondrow et al. 

(1982) face the same problem in the frontier production function literature and propose 
using the conditional distribution of the one-sided random term (hereitθ~ ) given the 

composed error term (hereit~ε ). In Table 3 we provide under several distributional 

assumptions for the analytic form for )~|~(E itit εθ , which is the best predictor of the 

conduct term (see Kumbhakar and Lovell, 2000, and Almanidis et al., 2010).37 Once we 
have a point estimator foritθ~ , a conduct score θit can be obtained using the identity 

).ˆ(/~ βθθ ititit g≡ 38 Two comments are in order. First, althoughitθ̂  is the minimum mean 

squared error estimate of θit , and it is unbiased in the unconditional sense 
[ 0=θ−θ )ˆ(E itit ], it is a shrinkage of θit toward its mean (Wang and Schmidt, 2009). 

An implication of shrinkage is that on average we will overestimate θit when it is small 
and underestimate θit when it is large. This result, however, simply reflects the familiar 
principle that an optimal (conditional expectation) forecast is less variable than the thing 
being forecast. Second, in practice, this estimator uses the estimated σv as a measure of 
historical demand and cost random shocks, and adjusts the overall error term from 
“normal” random shocks in order to get an estimate of θit. Therefore, the estimated 
market power scores can be interpreted as mark-ups that cannot be explained by 
“normal” demand and cost random shocks. 

 
 
4. Empirical illustration 
 

In this section we illustrate the proposed approach with an application to the 
California electricity generating market.  This market was opened to competition in 
1998 allowing firms to compete to supply electricity to the network. The wholesale 
prices stayed at “normal” levels from 1998 to May 2000, and skyrocketed during 
summer and fall 2000, resulting in breakdown of liberalized electricity market by the 
end of 2000. While California electricity crisis is a complex problem, driven by a 
number of factors, such as poor wholesale market design, absence of long-term 
contracting, unexpected increase in generation input costs, hike in end-use electricity 

                                                 
37 Both the mean and the mode of the conditional distribution can be used as a point estimator for the 
conduct term

itθ~ . However, the mean is, by far, the most employed in the frontier literature. 
38 While we can get unbiased estimates of all parameters of the pricing equation (12) if vit is 
heteroskedastic and it is ignored, an unwarranted assumption of homoskedasticity in vit causes a wrong 
application of the conditional expectation that may bias the firm-specific conduct estimates. That is, 
estimating market power with a composed error model requires capturing not only the appropriate 
distribution for the conduct random term but also most of the variables which enters in the supply 
relationship because uncaptured differences among firms and over time might wrongly interpreted as 
differences or changes in conduct due to both phenomena shift the supply relationship. The procedure 
outlined above, however, can be generalized in order to accommodate for a heteroskedastic vit. This can 
be achieved by modelling the variance of vit as a function of firm-specific size-related variables or, when 
a panel data is available, by estimating a different σv

2 for each firm.  
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demand due to unusually hot weather, a number of studies pointed to the evidence of 
significant market power in this restructured market. Borenstein (2002) and Wolak 
(2005) are two excellent surveys of the California electricity market restructuring 
disaster. 
 
 Our empirical application analyzes the competitive behavior of five strategic 
large firms from Puller’s (2007) study of monopoly power in California restructured 
electricity markets using the same sample period (from April 1998 to November 2000). 
Following Puller (2007),39 we define five large firms that owned fossil-fueled 
generators (AES, DST, Duke, Reliant and Southern) as ‘strategic’ firms, i.e. pricing 
according to equation (1). The competitive fringe assumed to supply at marginal cost 
includes generation from nuclear, hydroelectric, and small independent producers, and 
imports from outside California. These suppliers either are relatively small or do not 
face strong incentives to influence the price.40 Because electricity storage is 
prohibitively costly, both strategic and non-strategic firms had to produce a quantity 
equal to demand at all times.41 And the residual demand for electricity was relatively 
inelastic, which allowed individual firms to raise prices unilaterally.  
 
 As the main contribution of the proposed procedure is the estimation of firm-
specific market power scores (i.e. our second and third stages), we first carry out a 
standard econometric exercise and estimate consistently by GMM the parameters of the 
pricing equation (1). In particular, and in order to be sure that our first stage is sound, 
we try to reproduce Puller’s (2007) results, using the same dataset, , the same 
specification for the pricing equation (1), and the same set of dependent and explanatory 
variables. Our results are similar to those obtained by Puller, but they do not fully 
coincide because of small measurement error in construction of marginal costs42, 
slightly different set of instruments,43 and balancing the dataset.44 As we mentioned 

                                                 
39 See also Borenstein, Bushnell and Wolak (2002) and Kim and Knittel (2006). 
40 The independent and nuclear units were paid under regulatory side agreements, so their revenues were 
independent of the price in the energy market. The owners of hydroelectric assets were the same utilities 
that were also buyers of power and had very dulled incentives to influence the price. Finally, firms 
importing power into California were likely to behave competitively because most were utilities with the 
primary responsibility of serving their native demand and then simply exporting any excess generation. 
41 Modelling of market power in wholesale electricity markets becomes more complex if firms forward-
contract some of their output. As Puller (2007, p.85) notes, in the presence of unobserved contract 
positions the estimate of conduct parameters would be biased. This was generally not an issue in 
California wholesale electricity market during sample period. As Borenstein (2002, p. 199) points out, 
“Although the investor owned utilities had by 2000 received permission to buy a limited amount of power 
under long-term contracts, they were […] still procuring about 90 percent of their “net short” position 
[…] in the Power Exchange’s day-ahead or the system operator’s real-time market. Puller (2007, p. 85) 
argues that “there is a widespread belief that in 2000 Duke forward-contracted some of its production.” If 
data on contract positions were available, one could correct this bias by adjusting infra-marginal sales by 
the amount that was forward-contracted. Unfortunately, as in earlier studies on market power in 
California wholesale electricity market the contract positions are not observable in our dataset.    
42 This is because we did not observe the spot prices for natural gas for California hubs in 1998 and 1999, 
using prices from Henry Hub instead. The difference between natural gas prices between these hubs 
before 2000 (for which we have the data available) was relatively small (see Woo et al, 2006, p. 2062, 
Fig. 2).     
43 Though our instruments were somewhat different, the Hansen tests seem to indicate that we cannot 
reject them.  
44 Puller (2007) estimated the models by ignoring days when the price began to hit the price cap in 
summer 2000. We cannot drop those days from our sample because we do not know when the price hit 
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earlier, our analysis here is so far restricted to the estimation of the pricing equation (1), 
conditional on previous estimates of the demand parameters. The elasticity demand 
needed for the second and third stages of our procedure is taken from Puller’s (2007) 
estimates as we use the same definition of strategic/non-strategic firms.   
 
 After estimating the parameters of the pricing equation, we carry out the second 
and third stages assuming particular distributions for the conduct random term. In 
particular, we use both the traditional (one-sided) half-normal distribution that imposes 
the conduct term be positive, and the truncated half normal distribution, from Almanidis 
et al. (2010), that also imposes the conduct term be less than the number of strategic 
firms.45  
 
Pricing equation and data 
 

Following Puller (2007, eq. 3) the pricing equation to be estimated in the first 
stage of our procedure is:  

itS
t,fringe

itt
itit Q

qP
CAPBIND)mcP( ε+⋅γ+⋅α=−  ,   (24) 

where α and γ are parameters to be estimated, Pt is market price, mcit is firm’s marginal 
costs, qit is firm’s output, CAPBINDit is a dummy variable that is equal to 1 if capacity 
constraints are binding and equal to 0 otherwise, and QS

fringe,t is supply by the 
competitive fringe, i.e. total demand minus total strategic demand. Note that in this 
equation γ  is the expected value of the conduct random term θit divided by the elasticity 
of fringe demand already estimated, that is: βθ=βθ=γ ˆ/)(Eˆ/ it . Once the parameter γ 

is estimated consistently, we use Puller’s (2007) demand elasticity estimates to compute 
the expected value of the conduct random term. 
 

We use hourly firm-level data on output and marginal cost. Following Puller 
(2007), we focus on an hour of sustained peak demand from 5 to 6 p.m. (hour 18) each 
day, when inter-temporal adjustment constraints on the rate at which power plants can 
increase or decrease output are unlikely to bind. Similar to earlier studies on market 
power in California electricity markets mentioned above, we have calculated the hourly 
marginal cost of fossil-fuel electricity plants as the sum of marginal fuel, emission 
permit, and variable operating and maintenance costs.46 We assume the marginal cost 
function to be constant up to the capacity of the generator. A firm’s marginal cost of 
producing one more megawatt hour of electricity is defined as the marginal cost of the 
most expensive unit that it is operating and that has excess capacity.  

                                                                                                                                               
the cap. However, we do not expect significant changes in our results in the first-stage, where an average 
conduct value is estimated for the whole period, because this only affected 7.8% of his observations in 
2000. It should be noted, on the other hand, that high conduct values can be obtained in the third-stage of 
our procedure in those days as the first-order condition underlying the supply relation does not hold with 
equality. This problem is less severe when double-bounded distributions are used as they restrict the 
conduct values to be smaller than the number of strategic firms. 
45 In next versions of the paper we will try to estimate other distribution functions as well as to carry out 
model selection tests to choose the specification that fits better the data. However, given the small 
conduct values obtained by Puller (2007), the distributions currently selected here seem to be quite 
probable. 
46 For more details, see technical appendix in Puller (2007). Also see footnote 38.  
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Our measure of output is the total production by each firm’s generating units as 

reported in the Continuous Emissions Monitoring System (CEMS), that contains data 
on the hourly operation status and power output of fossil-fuelled generation units in 
California. We use the California Power Exchange (PX) day-ahead electricity price, 
because 80%–90% of all transactions occurred in the PX. Prices vary by location when 
transmission constraints between the north and south bind. Most firms own power 
plants in a single transmission zone, so we use a PX zonal price. Table 4 reports the 
summary statistics for all these variables. 

 
 Price-cost margins are shown in Figure 3. This figure is almost the same as 
Figure 1 in Puller’s (2007) paper, and shows that margins vary considerably over my 
sample period. They are also higher during the third and fourth quarters of each year, 
when total demand for electricity is high. We next analyze the extent to which higher 
margins resulted from less competitive pricing behavior rather than less elastic demand. 
 
Pricing equation estimates 
 
 Let us comment in detail the econometric strategy for estimating (24) and 
obtaining the first-stage parameter estimates. Puller (2007) pointed out that actual 
output is likely an endogenous variable as the error term εit in (24) includes marginal 
cost shocks that are observed by the utility. Due to the correlation between actual output 
and the unobserved error, we need proper instruments for Pt·qit/Q

S
fringe,t (hereafter xit), 

which are correlated with actual output. Table 5 reports useful information on the 
specification, estimation and fit of the pricing equation using different set of instruments 
for the two periods analyzed in Puller (2007).  
 

In regression 1 we treat xit as an exogenous variable. The negative sign of 
CAPBINDit and the implicit large value for the average conduct (1.53) are likely caused 
by the endogeneity of xit (Puller´s 2007 estimate is about one). In regression 2 we 
instrument the variable xit with firm´s capacity, kit, which we assume orthogonal to the 
error term because it can be viewed as a quasi-fixed variable, independent of current 
levels of operation. Using kit as an instrument we get a dramatic improvement in both 
parameter estimates, especially the coefficient of CAPBINDit that now is positive and 
closer to Puller’s estimate. In regression 3 we add capacity square as an additional 
instrument. This allows us to carry out a Hansen’s (1982) J test. The Hansen’s J test 
statistic value suggests that some endogeneity is still present or that just adding kit and 
k2

it is not sufficient to control for the endogeneity of xit given the poor temporal 
information contained in firm´s capacity.  

 
Puller (2007) instrumented utility output with the day-ahead forecast of total 

demand, FQt. Unlike kit, this instrument does not vary among utilities, but changes over 
time. In Regression 4 we replace k2

it by FQt. The increase in the value of the Hansen 
test indicates that adding day-ahead forecast of total demand as an additional instrument 
works even worse than using k2

it. This is confirmed by regression 5 where just FQt is 
used as instrument of xit, obtaining similar results as in Regression 1 with no 
instruments (in particular, a negative sign of CAPBINDit).  

 
It should be noted, however, that the day-ahead forecast error is also notably 

correlated with the supply of competitive fringe, which is in the denominator of xit. For 
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this reason, instead of using day-ahead forecast of total demand, in Regression 6 we use 
its reciprocal, 1/FQt as instrument of xit, obtaining an improvement in the parameter 
estimate of CAPBINDit. Finally, in Regression 7 we add kit as an additional instrument 
for xit to the previous model, obtaining a further improvement in the equation fit. Using 
the Hansen’s (1982) J test we cannot reject the null hypothesis that the model is well 
specified and that the set of instruments are valid. This is our preferred estimate.  

 
Regarding the second period from April 1999 to November 2000, the sequence 

of results is quite similar to that obtained for the first period. Again, the Regression 7 is 
our preferred model as the Hansen test suggests that the model is well specified and the 
instruments are valid. As in Puller (2007), the coefficient of xit is similar in both periods, 
whereas the coefficient of CAPBINDit is much larger in the second period than in the 
first one, likely as a result of a higher demand in the second period. Using the estimates 
of demand elasticities from Puller (2007) the implicit average conduct values in both 
periods are 1.05 and 1.09 respectively, quite close to those obtained by Puller (2007).47  
 

In general, we can conclude that our GMM parameters estimates of the pricing 
equation (24) are analogous to those obtained in Puller’s paper, and we are therefore in 
a good situation to carry out the second and third stages of our procedure. In addition, at 
the bottom of both Tables 5a and 5b we also report non-normality test. In all 
specifications, we can reject that the composed error term is normally distributed. This 
seems to suggest that we can go ahead with the second and third stages as they take 
advantage of the skewness of the composed random term.  

 
Firm-specific market power scores 

 
 Once all parameters of the pricing equation (24) are estimated, we can get 
estimates of the parameters describing the structure of the two error components 
included in the composed random term εit (second-stage). Conditional on these 
parameter estimates, market power scores can be then estimated for each firm by 
decomposing the estimated residual into a random error component and a market-power 
component (third-stage). 
 

Given the small conduct values obtained in the first stage, we just provide an 
application using the truncated half normal distribution. As explained in section 2, this 
distribution satisfies both lower and upper theoretical bounds, i.e. 0≤ θit≤N, and is 
positive skewed. In particular, this distribution implies that θit comes from pre-truncated 
normal distribution, N(0,σu

2), that is truncated below zero and above the number of 
strategic firms, N . Table 6 compares the parameter estimates of the truncated half-
normal of the two parameters describing the structure of θit and vit (i.e. σv and σu), 
conditional on the first-stage estimated parameters. For comparison grounds, we also 
present the traditional half-normal distribution that only imposes the conduct term be 
positive, and hence it might yield market power scores higher than the number of 
strategic firms in the third stage. This allows us to measure the convenience of using 
double-bounded distributions in practice. 48 While the truncated half normal model is 

                                                 
47 Puller (2007) obtained an identical conduct parameter θ=0.97 for both periods that is statistically 
indistinguishable from unity.  
48 We have tried to estimate doubly-truncated normal distributions with µ>0, but we have found 
convergence problems. This result is frequent in the production frontier literature. Indeed, Ritter and 
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estimated using ML techniques, the traditional half-normal model is estimated using 
both ML and MM approaches in order to evaluate the relative performance of both 
types of estimators. 49  

 
In general, the truncated half-normal and the one-sided half normal models yield 

similar values for both the random error term variance, σv, and the the pre-truncated 
conduct variance, σu. Moreover, both ML parameter estimates are even the same in the 
case of the second subperiod. In all cases, the conduct variance is much lower than the 
variance of the traditional error term. This outcome indicates that both demand and cost 
random shocks, which are captured by the traditional error term, explains most of the 
overall variance of the composed error term, σε. Although both truncated and one-sided 
half-normal models yield similar variance estimates, market power scores higher than N 
are expected in the one-sided half normal model because the upper bound θit≤N is not 
imposed. We also find that, whatever the model, the variation of the random conduct 
term is smaller in the second subperiod than in the first one. 
 

Based on the previous estimates, the third stage allows us to get firm-specific 
market power scores. Table 7 provides the arithmetic average scores of each firm 
obtained using both ML truncated-half normal and half-normal distributions that does 
not impose the theoretical restriction θit≤N. This table displays an interesting finding: 
the market power scores for the half-normal distributions are, on average, much higher 
than the upper-bound indicated by the theory, N. This usually occurs when, like in the 
present application, the estimated first-stage errors terms are large. In this scenario, the 
traditional conditional expectation operator used in the third-stage tends to exagerate the 
one-sided error term. As this might be the case in many marker power applications, the 
above result suggests that the one-sided specifications, traditional in the stochastic 
frontier literature, should not be used in the present application, and theory-consistent 
double-bounded distributions need to be estimated.  

 
As regards the double-bounded distributions several interesting points are worth 

mentioning. First, like in Puller (2007), the estimated market power values are closer to 
Cournot (θit =1) than to static collusion (θit =N). Unlike Puller, we do not find an 
increase in market power if we compare the average values in the first period (1.21) 
with those obtained in the second (0.95). Second, we find notable differences among 
utilities in terms of market power. This suggests that assuming a common conduct 
parameter for all firms is not appropriate. Puller (2007) found also a similar outcome 
using a fixed-effect treatment for the conduct parameters. Here, this result is obtained 
without involving panel data estimators. Moreover, as shown in Figure 4, our market 
power estimates are quite similar to that estimated by Puller. This result is quite 
important because it means that we can get comparable results using two different 
modeling strategies, and hence both approaches can in principle be used to estimate 
firm-specific market power scores.  

 

                                                                                                                                               
Simar (1997) shown that, the parameters describing a one-sided random term are hard to estimate, except 
for simple distributions such as exponential or half-normal. In addition, Almanidis et al. (2010) pointed 
out that identification problems may arise when estimating a 0<µ<N.   
49 It should be noted that ML estimates were obtained without imposing that the average conduct implied 
by the estimated two-stage model should be equal to the first-stage estimate of the average conduct. This 
restriction is imposed by construction when a MM estimator is used.  
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Our procedure has the advantage over Puller’s approach that it can be applied 
when no panel data sets are available, when the time dimension of the data set is sort 
and, or when separable pricing equations cannot be estimated consistently because the 
available instruments are not valid.50 Interesting enough, Puller (2007) pointed out that 
Dynegy’s (i.e. DST) conduct parameter is biased upward. Our approach based on the 
estimated distribution of the random conduct term allow us to avoid this bias, as our 
point estimates for this firm are sound and satisfy the theoretical restrictions. 

 
Figures 5 and 6 depict the histograms of the market power scores by firm for the 

two periods analyzed in the paper. The histograms in Figure 5 indicate that firms’ 
pricing strategies are similar, i.e. all density curves are tightly peaked and concentrated 
about their modal value, indicating that those values are quite persistent over time.  
Regarding the second period, the histograms in Figure 6 suggest an important change in 
firms’ pricing strategies though the average conduct value estimated for the whole 
industry in the first-stage of our procedure does not change from the first subperiod to 
the next. Now, all density curves, except that for DST, are flatter indicating the 
existence of both relative competitive and collusive strategies over time.   

 
In the introduction section we propose using a screen based on the coefficient of 

variation of the firm-specific market power scores to identify collusive firms. In Table 8 
we show the computed coefficients of variation for each firm using the estimated 
market power scores obtained using the double-bounded model. Our screen tries to 
identify potential collusive firms that exhibit low conduct variation and high conduct 
values relative to other firms. In general, we find low coefficients of variation in the 
first subperiod, suggesting that the estimated level of competition/collusion is quite 
stable. From Table 8, we also find that DST has the highest (average) conduct value in 
the first subperiod, but also the highest coefficient of variation. This result, hence, casts 
doubts about the superior market power of this firm. Reliant has more market power 
based on the coefficient of variation. 51 In general, we find a notable increase in all 
coefficients of variation from one period to the next, suggesting a reduction in collusion 
discipline or market stability. This higher instability might be caused by the entrance of 
Southern. The increase is especially remarkable in the case of Duke and Relaint with 
coefficients that are twice those in the first subperiod, indicating an important change in 
the pricing strategies of these firms.  

 
Table 9 tries to analyze the coordination among firms over time. In general, we 

can conclude from this table that the temporal patterns of the market power scores often 
differ notably among firms, though some firms are steadily more (less) competitive. For 
instance, AES and DST seem to behave independently as their correlation in the first 
subperiod is quite low (0.28). The correlation between AES and DST in the second 
period is much higher, indicating an important change in the pricing strategies of these 
firms. All coefficients of correlation for Duke are quite low in the second period, and 
much lower than in the first period. This might suggest that, in the second period, Duke 

                                                 
50 Indeed, following Puller (2007), we have estimated a pricing equation for each firm using the same set 
of instruments as in Table 4 and 5. The estimated conduct parameters (not shown) were quite similar to 
those obtained by Puller (2007). However, in all cases, except one, we rejected the null hypothesis that 
the model was well specified. 
51 Obviously, another explanation is possible if its large market power variance is caused by punishment 
episodes implemented by this firm to restore market power in the next future. 



 23 

becomes a “maverick” firm with a pricing strategy that is notably different from the 
pricing strategies of other firms.  

 
In a panel data setting the most important advantage of our methodology is that 

we can analyze changes in market conduct over time. Indeed, because our approach 
does not model the temporal path of these scores, they might change from one day to 
the next. This evidence can be used to complement time-invariant (firm-specific) 
conduct estimates obtained in the first stage. In Figures 7 and 8 we show the temporal 
evolution of the average market power scores of the four/five strategic firms during the 
two periods analyzed in the present paper.52 In particular, our results suggest that market 
power scores do vary on average over time. For instance, we can see that, after a few 
months, market power was quite persistent over time in the first period, except at the 
begining of the period were higher market power scores were found. Another 
remarkable finding is that market scores are much more instable in the second period. 
This instability in turn rises a lot since June 2000, which coincide with the skyrocketing 
prices in 2000. Note also that, on average, market power scores increased in this period 
of instability. 
 

Our market power estimates also allow us to analyze whether each firm reacts 
differently to changes in cost and demand conditions. In Figures 9 and 10 we show the 
market power score of each firm.  These figures display interesting findings. First, the 
temporal patterns of the market power scores do not differ a lot among firms, especially 
in the first subperiod. Second, the ranking of market power scores is quite stable. Some 
firms are steadily more (less) competitive along the whole period. Compare, for 
instance, Duke and DST.  

 
And, third, the estimated market power scores can also be used to identify 

patterns of behavior inconsistent with competitive settings. Harrington (2006) pointed 
out, for instance, that unless the market is characterized by some cyclical factors such as 
seasonal demand or supply movements, it would be unlikely for competition to result in 
significant price declines and then a steadily rising price over the span of a few periods. 
Interesting enough, this pattern is found at the begining of the first subperiod (see 
Figure 7) where after a conduct declining, market power scores steadily rose and stayed 
stable for several weeks.  
 
 
5. Summary and future agenda 
 

Measuring the degree of competition in oligopolistic markets is a key activity in 
empirical industrial organization. Earlier studies focused on estimating conduct 
parameters imposed some restrictions on the way the value of conduct parameter varies 
across firms and time. However, firms likely do no share the same conduct parameter 
and this parameter varies over time as market conditions change, and firms change their 
own pricing strategies, which is generally the case in recent restructured electricity 
markets. As allowing for the conduct parameter to vary freely both by firm and 
observation results in an overparameterized model, we suggest treating firms’ behaviour 
as a random parameter. In doing so, we estimate a “composed error” model where the 

                                                 
52 Our market power scores vary along the week. To smooth the market and firm temporal series we have 
used 7-day moving averages of the observations.  
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stochastic part is formed by two random variables, i.e. the traditional error term, 
capturing random shocks, and a random conduct term, which measures market power.  

 
The model can be estimated in three stages using either cross-sectional or panel 

data sets. While the first stage of our model is standard, the following stages allow us to 
first distinguish collusion discipline/instability from demand and cost volatility, and 
second to get firm-specific market power scores, conditional on the first-stage parameter 
estimates. These stages take advantage of the fact that the conduct term is likely 
positively or negatively skewed. As we aware, skewness of conduct parameter in 
oligopolistic industry settings are not examined explicitly in most (if any) of the 
previous empirical papers. The main contribution of the paper is that once all 
parameters describing the structure of the traditional pricing equation are estimated, 
additional information can be inferred from the next stages of our procedure. This 
information, usually ignored in previous papers estimating conduct parameters, provides 
a better understanding of pricing strategies at the firm level. In particular, the estimated 
conduct variation can be used as a measure of the degree of collusive discipline across 
firms and/or over time, and the market power scores can be used to detect the 
creation/decline of collusion episodes, or to identify abrupt changes in mark-ups which 
cannot be explained by “normal” demand and cost random shocks. 

 
 We illustrate the proposed approach with an application to the California 
wholesale electricity market using the same data (sample period, specification for the 
pricing equation, and set of dependent and independent variables) as Puller (2007). 
After estimating the parameters of the pricing equation, we have carried out the second 
and third stages using both the traditional half-normal distribution and the so-called 
truncated half normal distribution, recently developed by Almanidis et al. (2010) in the 
stochastic frontier literature but adapted here to measure market power.  
 

Our first-stage results are quite similar to those obtained by Puller (2007). The 
estimated market power values are closer to Cournot (θit =1) than to static collusion 
(θit=N). However, we find notable differences among utilities in terms of market power. 
Our results suggest that market power varies over time. Although some firms are 
steadily more (less) competitive along the whole period, the temporal patterns of the 
market power scores also differ among firms. Moreover, our firm-specific market power 
scores are quite similar to that estimated by Puller (2007) using fixed-effect approach. 
This important result demostrate that both approaches can in principle be used to 
estimate firm-specific market power scores. Our procedure has the advantage over 
Puller’s approach that it can be applied with cross-sectional or sort data sets; or when 
individual pricing equations cannot be consistenty estimated with the available 
instruments. In addition, our results suggest that our approach based on the estimated 
distribution of the random conduct term yield more reasonable market power scores 
than a fixed-effect approach. 

 
A simple empirical application in the present paper illustrates how the proposed 

methodology works. In the future we will try to analyze the robustness of our results to 
different specifications for both the pricing equation (first-stage) and the following 
stages of our procedure. In particular, as suggested by the preliminary results, we will 
try to estimate other distribution functions as well as to carry out model selection tests 
to choose the specification that fits better the data. For the first-stage, we will estimate 
simultaneously both demand and pricing parameters, using more accurate sample 
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selection and allowing for cyclical behaviour of firm conduct and differences in 
strategic behaviour among firms and between peak and off-peak hours or between week 
and weekend days. We also expect to extend the pricing equation into a dynamic 
framework as discussed in the first section.  
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Table 1. Central moments of θit for the truncated normal distribution 
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Table 2. Double-bounded density functions (0≤u≤B) 
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Table 3. Conditional means for selected distributions 
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Table 4. Summary statistics (hour 18) 

 
July 1, 1998 - April 15, 1999       
 Mean St.dev. Min Max Obs 
Price (Pt) 37.03038 26.24066 4.93 180.4462 1156 
Marginal cost (mcit) 26.31697 3.14576 18.73386 33.7443 1156 
Margin (P t -mc it) 10.71341 26.32763 -24.97757 158.61059 1156 
CAPBINDit 0.05623 0.23046 0 1 1156 
Capacity (kit) 2466.25606 1060.90136 670 3879 1156 
Output (qit) 809.48832 873.68 0 3720 1156 
Market demand(Qt) 30316.5536 4547.09194 20057 44009 1156 

 
April 16, 1999 – November 30, 2000       
 Mean St.dev. Min Max Obs 
Price (Pt) 83.06045 98.15182 9.5 1099.989 2975 
Marginal cost (mcit) 45.87634 23.71389 22.30387 214.4733 2975 
Margin (P t -mc it) 37.18411 88.66886 -33.35807 1053.29913 2975 
CAPBINDit 0.06689 0.24987 0 1 2975 
Capacity (kit) 2960.23563 768.09479 1020 3879 2975 
Output (qit) 1370.32782 833.23359 0 3317 2975 
Market demand(Qt) 31370.1698 4106.27907 22076 44160 2975 
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Table 5a. Pricing equation estimates (July 1, 1998 - April 15, 1999) (d) 

 
Dependent variable: (P-mc)it 
No. of strategic firms: 4 
Observations: 1156 
Method: Two-step GMM (a) 
 

Explanatory variables (b) 1 2 3 4 5 6 7 

CAPBINDit -3.936 12.595 13.612 13.157 -0.809 9.302 13.130 
 (-1.12) (3.18) (3.36) (3.47) (-0.20) (2.21) (3.26) 
xit 8.606 6.067 5.717 5.583 8.125 6.573 5.894 
 (31.18) (19.66) (18.37) (19.89) (19.94) (15.95) (19.11) 

Instruments: (b) 
 
 

 
CAPBINDit, 

xit 

 
CAPBINDit, kit 

 
CAPBINDit, kit, 

k2
it 

 
CAPBINDit, kit, 

FQt 

 
CAPBINDit, 

FQt 

 
CAPBINDit, 

1/FQt 

 
CAPBINDit, 

kit, 1/FQt 

Statistics: 
Hansen test (d.f.) 

   
21.732 (1) 

 
64.96 (1) 

   
5.399 (1) 

Skewness test (d.f.)  3168.9 (1) 3179.0 (1) 3204.1 (1) 2820.2 (1) 3187.1 (1) 3175.7 (1) 
Jarque-Bera Test (d.f.)  26567.6 (2) 25360.4 (2) 24930.9 (2) 27699.7 (2) 28217.6 (2) 25993.6 (2) 
        
Estimated average conduct value: (c )  1.53 1.08 1.02 0.99 1.44 1.17 1.05 

Notes:  
(a) T-ratios in parenthesis, computed from standard errors robust to heteroskedasticity.  
(b) FQt is day-ahead forecast of total (perfectly inelastic) demand and S

t,fringeittit Q/qPx = . 
(c) βγ=θ ·̂ˆˆ , where 1780.ˆ =β comes from Puller’s paper.  
(d) Puller’s estimates of these parameters are: ( ) itit xmcP

)89.16(
457.5

)65.22(
52.21 +=−  
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Table 5b. Pricing equation estimates (April 16, 1999 – November 30, 2000) (d) 

 
Dependent variable: (P-mc)it 
No. of strategic firms: 5 
Observations: 2975 
Method: Two-step GMM (a) 
 

Explanatory variables (b) 1 2 3 4 5 6 7 

CAPBINDit -9.512 28.022 27.558 26.384 19.441 27.225 27.221 
 (-2.36) (4.38) (4.27) (4.25) (3.24) (4.31) (4.26) 
xit 8.204 5.685 5.553 5.276 6.261 5.738 5.679 
 (41.71) (41.17) (40.43) (41.46) (40.21) (39.03) (40.95) 
Instruments: (b) 
 
 

 
CAPBINDit, 

xit 

 
CAPBINDit, kit 

 
CAPBINDit, kit, 

k2
it 

 
CAPBINDit, kit, 

FQt 

 
CAPBINDit, 

FQt 

 
CAPBINDit, 

1/FQt 

 
CAPBINDit, 

kit, 1/FQt 

Statistics: 
Hansen test (d.f.)   30.886 (1) 98.322 (1)   1.24 (1) 
Skewness test (d.f.)  15421.7 (1) 15621.5 (1) 15885.1 (1) 14795.6 (1) 15398.6 (1) 15487.0 (1) 
Jarque-Bera Test (d.f.)  286585.5 (2) 283621.4 (2) 274742.2 (2) 308937.4 (2) 289252.7 (2) 287834.7 (2) 
        

Estimated average conduct value: (c ) 1.57 1.09 1.07 1.01 1.20 1.10 1.09 
Notes:  
(a) T-ratios in parenthesis, computed from standard errors robust to heteroskedasticity.  
(b) FQt is day-ahead forecast of total (perfectly inelastic) demand and S

t,fringeittit Q/qPx = . 
(c) βγ=θ ·̂ˆˆ , where 1920.ˆ =β comes from Puller’s paper.  
(d) Puller’s estimates of these parameters are:  ( ) itit xmcP

)11.22(
041.5

)19.6(
20.41 +=−  



Table 6. Second-stage parameter estimates 
 

 First Period Second Period 

First-stage average conduct: )(ˆ
itE θθ =  1.05 1.09 

   
ML truncated-half normal   
         vσ  10.59 9.8976 
 (40.92) (51.16) 
        uσ  1.563 1.1917 
 (21.08) (60.17) 
Implicit average conduct: 1.21 0.95 
   
Half-normal (ML approach)   
   
        vσ  6.730 9.8976 
 (32.417) (51.16) 
        uσ  2.176 1.1917 
 (28.58) (60.17) 
Implicit average conduct: 1.73 0.95 
   
Half-normal (MM approach)   
   
        vσ  10.171 Negative 

        uσ  1.314 1.044 

Implicit average conduct: 1.05  0.83 
Notes: T-ratios in parenthesis. Since the MM approach calculates rather than estimates the structure parameters of 
both random terms, the calculated values do not come with standard errors attached. 
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Table 7. Average market power scores per firm 
 
 July 1, 1998 - April 15, 1999 April 16, 1999 – November 30, 2000 
Firm Observations Half-Normal Truncated Half- Normal Observations Half-Normal Truncated Half Normal 
AES 289 11.60 1.10 595 40.94 0.91 
DST 289 8.85 1.45 595 39.01 1.19 
Duke 286 13.57 1.07 594 32.83 0.73 
Reliant 273 12.22 1.20 593 41.61 0.87 
Southern - - - 595 36.21 0.98 
Notes: For the first (second) period the market power should be less than 4 (5). The market power score cannot be estimated in a few 
observations due to they report zero output. 
 
 
 

Table 8. Variation of market power scores per firm 
 
 July 1, 1998 - April 15, 1999 April 16, 1999 – November 30, 2000 
Firm Average Standard deviation Coefficient of variation Average Standard deviation Coefficient of variation 
AES 1.10 0.34 0.31 0.91 0.43 0.47 
DST 1.45 0.64 0.44 1.19 0.80 0.67 
Duke 1.07 0.34 0.31 0.73 0.53 0.73 
Reliant 1.20 0.33 0.28 0.87 0.44 0.50 
Southern - -   - 0.98 0.40 0.41 
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Table 9. Coefficient of correlations among firm-specific market power scores 

 
 July 1, 1998 - April 15, 1999  April 16, 1999 – November 30, 2000 

  AES DST Duke Reliant Southern   AES DST Duke Reliant Southern 
AES 1     AES 1     
DST 0.28 1    DST 0.71 1    
Duke 0.36 0.64 1   Duke 0.30 0.44 1   
Reliant 0.69 0.54 0.57 1  Reliant 0.78 0.76 0.38 1  
Southern - - - - 1 Southern 0.53 0.66 0.36 0.66 1 
   
 
 
 
 
 
 



Figure 1. Traditional lower-bounded distributions 
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Figure 2. Double-bounded distributions 
 

 

Truncated half-
normal  
(µ=0, B=N) 
 

Doubly truncated 
normal 
(0<µ<N/2, B=N) 
 

θθθθ 

0 N 

Probability (a) 
 

 
 
 
 

 

Truncated half-
normal  
(µ=N, B=N) 
 

Doubly truncated 
normal 
(N/2<µ<N, B=N) 
 

θθθθ 

0 N 

Probability (b) 
 

 



 41 

 
Figure 3. Price-cost margins in hour 18 (July 3, 1998 – November 30, 2000) 
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Figure 4. Comparison with Puller’s (2007) firm-specific market power estimates  
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Figure 5. Firm-specific market power scores. Histograms.  
(July 3, 1998 – April 15, 1999) 
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Figure 6. Firm-specific market power scores. Histograms.  
(April 16, 1999 – November 30, 2000) 
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Figure 7. Industry average market power score 
(July 3, 1998 – April 15, 1999) 
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Figure 8. Industry average market power score 

(April 16, 1999 – November 30, 2000) 
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Figure 9.  Firm-specific market power scores 
(July 3, 1998 – April 15, 1999) 
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Figure 10. Firm-specific market power scores 
 (April 16, 1999 – November 30, 2000) 
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APPENDIX 
(June 1, 2000 – November 30, 2000) 

 
Figure A1. Firm-specific market power scores. Histograms.  
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