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Introduction: PDE systems

System of balance laws
Ut + F(U)x = S(U)σx, x ∈ R, t > 0
U(x, 0) = U0(x), x ∈ R,

U : R× [0,∞)→ O ⊂ RN , O open and convex;

σ : R→ R is known smooth function;

F : O → RN ;

S : O → RN .

Objective:

To design efficient high-order well-balanced shock-capturing methods for PDE
equations of this type.
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Introduction: shallow water model

Hyperbolic Shallow Water Model

Ut + F(U)x = S(U)Hx,

con

U =

»
h
q

–
, F(U) =

24 q
q2

h
+

1
2

gh2

35 , S(U) =

»
0
gh

–
.

h: thickness of the layer;

q: discharge;

H: depth function;

g: gravity acceleration.
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Introduction: well-balancing

In general, a numerical scheme is said to be well-balanced if it captures
correctly the smooth stationary solutions of the system, or at least a family of
them.

Numerical schemes which are not well-balanced may produce spurious
oscillations when approaching equilibria or near equilibrium solutions.

These oscillations tend to 0 as the mesh is refined. Nevertheless, the
well-balanced property is important for lower order schemes or even for high
order schemes in some particular applications.

Some references: Roe Lect. Not. Math. 1270, 1986; Bermúdez & Vázquez
Comp. & Fluids, 1994; Greenberg & LeRoux SINUM 1996; Greenberg,
LeRoux, Baraille & Noussair SINUM 1997; LeVeque J.C.P. 1998; Gosse
Comp. Math. Appl. 2000; Gosse Math. Comp. 2002, Audusse, Bouchut,
Bristeau, Klein & Perthame J. Sci. Comp. 2004, Bouchut Birkhäuser 2004. . .

References for this course: CP & Castro M2AN 2004, CP SINUM 2006,
Castro, Gallardo, López & CP SINUM 2008, Muñoz & CP J.Sci.Comp. 2011.
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References for this course: CP & Castro M2AN 2004, CP SINUM 2006,
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Introduction: PDE systems

System of balance laws with nonconservative products
Ut + F(U)x = B(U)Ux + S(U)σx, x ∈ R, t > 0
U(x, 0) = U0(x), x ∈ R,

B : O 7→ RN×N .

All the methods and the results concerning their well-balanced properties are
valid for this more general family of systems. But the numerical approximation
of these systems has some specifical difficultes that will not be discussed here.

Examples: two layer shallow-water models, Saint-Venant-Exner models,
turbidity currents models, two layer Savage-Hutter models, multiphase flow
models, etc...
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A scalar linear balance law: Formulation

Let us consider the linear scalar equation:

ut + ux = u.

The smooth stationary solutions are:

u(x) = Cex,

being C an arbitrary constant.

Problem: design a numerical scheme that preserves all the stationary solutions.

The upwind numerical scheme:

un+1
i = un

i +
∆t
∆x

(un
i−1 − un

i ) + ∆tun
i−1

is not well-balanced.
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A scalar linear balance law: Equations

N. cells L1 error order
4 0.0830 -
8 0.0473 0.8121
16 0.0239 0.9848
32 0.0118 1.0229
64 0.0058 1.0215

128 5 0.0029 1.0048

Table: Error in L1 norm for the upwind scheme with the initial condition w(x, 0) = ex at time
t = 1. CFL=0.9.
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A scalar linear balance law: Reformulation

We rewrite the Cauchy problem:
ut + ux = u,
u(x, 0) = u0(x)

as follows: 8>><>>:
ut + ux = uσx,
σt = 0,
u(x, 0) = u0(x),
σ(x, 0) = x.

In matrix form: 
wt + A(w) · wx = 0,
w(x, 0) = w0(x),

where:

w =

»
u
σ

–
, A(w) =

»
1 −u
0 0

–
, w0(x) =

»
u0(x)

x

–
.
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A scalar linear balance law: eigenvalues and Riemann invariants

We consider the problem:
wt + A(w)wx = 0

w =

»
u
σ

–
, A(w) =

»
1 −u
0 0

–
.

The eigenvalues of the system are λ1 = 0, λ2 = 1. The characteristic fields are:

R1 =

»
u
1

–
, R2(w) =

»
1
0

–
.

The integral curves of the characteristic fields are, respectively:

ue−σ = constant, σ = constant.

The Riemann invariants are, respectively:

ue−σ, σ.
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A scalar linear balance law: integral curves of the characteristic fields
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A scalar linear balance law: Riemann problems

The solution of the Riemann problem:8<:
wt + A(w)wx = 0,

w(x, 0) =


wl if x < 0,
wr if x > 0,

is

w(x, t) =

8<:
wl if x < 0,
w∗ if 0 < x < t,
wr if x > t,

where

w∗ =

»
ule[σ]

σr

–
.
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A scalar linear balance law: Godunov method

Once the exact solutions of the Riemann problem are known, the Godunov
method can be applied.

For simplicity let us consider computing cells Ii = [xi−1/2, xi+1/2] with constant
size ∆x. Let xi denote the center of Ii.

The initial cell averages are:

w0
i =

»
u0

i

σ0
i

–
=

24 1
∆x

Z xi+1/2

xi−1/2

u0(x) dx
35

Godunov method writes as follows:

un+1
i = un

i +
∆t
∆x

“
e∆xun

i−1 − un
i

”
σn+1

i = σn
i .
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A scalar linear balance law: Godunov method

The method is exactly well-balanced in the following sense: if it is applied to an
initial condition given by the point values at the center of the cells of a
stationary solution, i.e.

u0
i = Cexi ,

then:
u1

i = u0
i +

∆t
∆x

“
e∆xu0

i−1 − u0
i

”
Observe that every two pair of adjacent values of the initial conditions Cexi−1 ,
Cexi belong to the same integral curve of the first linearly degenerate field and
thus the exact solution of the Riemann problems is a stationary contact
discontinuity.

Notice that this property is not satisfied by the cell averages of a stationary
solution. If the initial conditions are given by the cell averages of a stationary
solution, this solution is preserved up to second order.

Therefore, although the derivation of the Godunov method is based on
cell-averages, the method is only exactly well-balanced when applied to point
values of a stationary solution. This point will be further discussed in Section 5.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The method is exactly well-balanced in the following sense: if it is applied to an
initial condition given by the point values at the center of the cells of a
stationary solution, i.e.

u0
i = Cexi ,

then:
u1

i = u0
i +

∆t
∆x

“
e∆xCexi−1 − Cexi

”
Observe that every two pair of adjacent values of the initial conditions Cexi−1 ,
Cexi belong to the same integral curve of the first linearly degenerate field and
thus the exact solution of the Riemann problems is a stationary contact
discontinuity.

Notice that this property is not satisfied by the cell averages of a stationary
solution. If the initial conditions are given by the cell averages of a stationary
solution, this solution is preserved up to second order.

Therefore, although the derivation of the Godunov method is based on
cell-averages, the method is only exactly well-balanced when applied to point
values of a stationary solution. This point will be further discussed in Section 5.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The method is exactly well-balanced in the following sense: if it is applied to an
initial condition given by the point values at the center of the cells of a
stationary solution, i.e.

u0
i = Cexi ,

then:
u1

i = u0
i +

∆t
∆x

“
Cexi−1+∆x − Cexi

”
Observe that every two pair of adjacent values of the initial conditions Cexi−1 ,
Cexi belong to the same integral curve of the first linearly degenerate field and
thus the exact solution of the Riemann problems is a stationary contact
discontinuity.

Notice that this property is not satisfied by the cell averages of a stationary
solution. If the initial conditions are given by the cell averages of a stationary
solution, this solution is preserved up to second order.

Therefore, although the derivation of the Godunov method is based on
cell-averages, the method is only exactly well-balanced when applied to point
values of a stationary solution. This point will be further discussed in Section 5.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The method is exactly well-balanced in the following sense: if it is applied to an
initial condition given by the point values at the center of the cells of a
stationary solution, i.e.

u0
i = Cexi ,

then:
u1

i = u0
i

Observe that every two pair of adjacent values of the initial conditions Cexi−1 ,
Cexi belong to the same integral curve of the first linearly degenerate field and
thus the exact solution of the Riemann problems is a stationary contact
discontinuity.

Notice that this property is not satisfied by the cell averages of a stationary
solution. If the initial conditions are given by the cell averages of a stationary
solution, this solution is preserved up to second order.

Therefore, although the derivation of the Godunov method is based on
cell-averages, the method is only exactly well-balanced when applied to point
values of a stationary solution. This point will be further discussed in Section 5.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The method is exactly well-balanced in the following sense: if it is applied to an
initial condition given by the point values at the center of the cells of a
stationary solution, i.e.

u0
i = Cexi ,

then:
u1

i = u0
i

Observe that every two pair of adjacent values of the initial conditions Cexi−1 ,
Cexi belong to the same integral curve of the first linearly degenerate field and
thus the exact solution of the Riemann problems is a stationary contact
discontinuity.

Notice that this property is not satisfied by the cell averages of a stationary
solution. If the initial conditions are given by the cell averages of a stationary
solution, this solution is preserved up to second order.

Therefore, although the derivation of the Godunov method is based on
cell-averages, the method is only exactly well-balanced when applied to point
values of a stationary solution. This point will be further discussed in Section 5.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The method is exactly well-balanced in the following sense: if it is applied to an
initial condition given by the point values at the center of the cells of a
stationary solution, i.e.

u0
i = Cexi ,

then:
u1

i = u0
i

Observe that every two pair of adjacent values of the initial conditions Cexi−1 ,
Cexi belong to the same integral curve of the first linearly degenerate field and
thus the exact solution of the Riemann problems is a stationary contact
discontinuity.

Notice that this property is not satisfied by the cell averages of a stationary
solution. If the initial conditions are given by the cell averages of a stationary
solution, this solution is preserved up to second order.

Therefore, although the derivation of the Godunov method is based on
cell-averages, the method is only exactly well-balanced when applied to point
values of a stationary solution. This point will be further discussed in Section 5.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The method is exactly well-balanced in the following sense: if it is applied to an
initial condition given by the point values at the center of the cells of a
stationary solution, i.e.

u0
i = Cexi ,

then:
u1

i = u0
i

Observe that every two pair of adjacent values of the initial conditions Cexi−1 ,
Cexi belong to the same integral curve of the first linearly degenerate field and
thus the exact solution of the Riemann problems is a stationary contact
discontinuity.

Notice that this property is not satisfied by the cell averages of a stationary
solution. If the initial conditions are given by the cell averages of a stationary
solution, this solution is preserved up to second order.

Therefore, although the derivation of the Godunov method is based on
cell-averages, the method is only exactly well-balanced when applied to point
values of a stationary solution. This point will be further discussed in Section 5.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The numerical solution can be rewritten as follows:

un+1
i = un

i +
∆t
∆x

“
e∆xun

i−1 − un
i

”
Notice that the last term is a first order approximation of the source term.
The solution of the Riemann problem for the augmented system consists of
three constant states linked by two contact discontinuities. This is not the case
for the Riemann problem corresponding to the original formulation8<:

ut + ux = u,

u(x, 0) =


uL if x < 0;
uR if x > 0.

In this case, there is only one wave traveling at speed λ connecting two states
that are no constant but exponentially growing.
The passage through the augmented problem may be understood as an
approximation of the source terms by a Dirac’s comb: see Gosse Math. Comp.
2002. To advance in time from tn to tn+1, the equation is approached by:

ut + ux =
X

i

un
i+1/2δx=xi+1/2 ,

where
un

i+1/2 = un
i

“
e∆x − 1

”
.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The numerical solution can be rewritten as follows:

un+1
i = un

i +
∆t
∆x

“
e∆xun

i−1 − un
i−1 + un

i−1 − un
i

”
Notice that the last term is a first order approximation of the source term.
The solution of the Riemann problem for the augmented system consists of
three constant states linked by two contact discontinuities. This is not the case
for the Riemann problem corresponding to the original formulation8<:

ut + ux = u,

u(x, 0) =


uL if x < 0;
uR if x > 0.

In this case, there is only one wave traveling at speed λ connecting two states
that are no constant but exponentially growing.
The passage through the augmented problem may be understood as an
approximation of the source terms by a Dirac’s comb: see Gosse Math. Comp.
2002. To advance in time from tn to tn+1, the equation is approached by:

ut + ux =
X

i

un
i+1/2δx=xi+1/2 ,

where
un

i+1/2 = un
i

“
e∆x − 1

”
.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The numerical solution can be rewritten as follows:

un+1
i = un

i +
∆t
∆x

(un
i−1 − un

i ) +
∆t
∆x

un
i−1

“
e∆x − 1

”
Notice that the last term is a first order approximation of the source term.
The solution of the Riemann problem for the augmented system consists of
three constant states linked by two contact discontinuities. This is not the case
for the Riemann problem corresponding to the original formulation8<:

ut + ux = u,

u(x, 0) =


uL if x < 0;
uR if x > 0.

In this case, there is only one wave traveling at speed λ connecting two states
that are no constant but exponentially growing.
The passage through the augmented problem may be understood as an
approximation of the source terms by a Dirac’s comb: see Gosse Math. Comp.
2002. To advance in time from tn to tn+1, the equation is approached by:

ut + ux =
X

i

un
i+1/2δx=xi+1/2 ,

where
un

i+1/2 = un
i

“
e∆x − 1

”
.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The numerical solution can be rewritten as follows:

un+1
i = un

i +
∆t
∆x

(un
i−1 − un

i ) +
∆t
∆x

un
i−1

“
e∆x − 1

”
Notice that the last term is a first order approximation of the source term.
The solution of the Riemann problem for the augmented system consists of
three constant states linked by two contact discontinuities. This is not the case
for the Riemann problem corresponding to the original formulation8<:

ut + ux = u,

u(x, 0) =


uL if x < 0;
uR if x > 0.

In this case, there is only one wave traveling at speed λ connecting two states
that are no constant but exponentially growing.
The passage through the augmented problem may be understood as an
approximation of the source terms by a Dirac’s comb: see Gosse Math. Comp.
2002. To advance in time from tn to tn+1, the equation is approached by:

ut + ux =
X

i

un
i+1/2δx=xi+1/2 ,

where
un

i+1/2 = un
i

“
e∆x − 1

”
.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

A scalar linear balance law: Godunov method

The numerical solution can be rewritten as follows:

un+1
i = un

i +
∆t
∆x

(un
i−1 − un

i ) +
∆t
∆x

un
i−1

“
e∆x − 1

”
Notice that the last term is a first order approximation of the source term.
The solution of the Riemann problem for the augmented system consists of
three constant states linked by two contact discontinuities. This is not the case
for the Riemann problem corresponding to the original formulation8<:

ut + ux = u,

u(x, 0) =


uL if x < 0;
uR if x > 0.

In this case, there is only one wave traveling at speed λ connecting two states
that are no constant but exponentially growing.
The passage through the augmented problem may be understood as an
approximation of the source terms by a Dirac’s comb: see Gosse Math. Comp.
2002. To advance in time from tn to tn+1, the equation is approached by:

ut + ux =
X

i

un
i+1/2δx=xi+1/2 ,

where
un

i+1/2 = un
i

“
e∆x − 1

”
.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

Weak solutions: reformulation of the system

Let us first rewrite the general problem:

Ut + F(U)x = S(U)σx, x ∈ R, t > 0.

by adding the artificial unknown σ and the associated equation:

σt = 0.

The Cauchy problem can be written as follows:
Wt +A(W)Wx = 0, x ∈ R, t > 0,
W(x, 0) = W0(x), x ∈ R,

where:

W =

»
U
σ

–
, W0(x) =

»
U0(x)
σ(x)

–
, A(W) =

„
J(U) −S(U)

0 0

«
,

being J(U) =
∂F
∂U

.
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Weak solutions: reformulation of the system

In nonconservative form the shallow water system reads as follows:

Wt +A(W)Wx = 0,

W =

24 h
q
H

35 , A(W) =

24 0 1 0
gh− q2/h2 2q/h −g

0 0 0

35
where q is the mass-flux, h the thickness of the water layer, H the depth
function, and g, the gravity.
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Weak solutions: motivation

Let us describe the general strategy to derive high-order numerical methods for
general hyperbolic systems of the form

Wt +A(W)Wx = 0.

The computational domain is split into cells. By simplicity, we consider
uniform meshes:

Ii = [xi−1/2, xi+1/2], xi+1/2 − xi−1/2 = ∆x, ∀i.

We denote by Wi(t) the approximation of the cell averages of the exact solution
provided by the semi-discrete numerical scheme:

Wi(t) ∼= W̄i(t) =
1

∆x

Z xi+1/2

xi−1/2

W(x, t) dx.

At every instant t, the numerical scheme produces a piecewise constant
approximation of W(·, t).

To design the numerical methods, we shall first obtain the system of equations
satisfied for the cell averages of the sought weak solution W̄i(t), and then an
approximate system will be derived to obtain their approximations.
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Weak solutions: families of paths

A smooth solution of the system satisfies the equality:

d
dt

 
1

∆x

Z xi+1/2

xi−1/2

W(x, t) dx

!
= − 1

∆x

Z xi+1/2

xi−1/2

A(W(x, t))Wx(x, t) dx.

The solution W may develop discontinuities even for smooth initial conditions.
In this case, the integral of the last equality has to be defined: Dirac masses
should appear at the discontinuities but the mathematics of the problem are not
enough to determine their weights.

The theory introduced by Dal Maso, LeFloch & Murat J. Math. Pures Appl.
1995 allows one to define this integrand as a measure. To do this, a family of
Lipschitz continuous paths Φ : [0, 1]× Ω× Ω→ Ω has to be prescribed, which
must satisfy certain natural regularity conditions, in particular

Φ(0; WL,WR) = WL, Φ(1; WL,WR) = WR,

Φ(s; W,W) = W.
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Weak solutions: definition

According to this definition, given a bounded variation function V : [a, b]→ R,
we define:

−
Z b

a
A(V(x))Vx(x) dx =

Z b

a
A(V(x))Vx(x) dx

+
X

l

Z 1

0
A(Φ(s; V−l ,V

+
l ))

∂Φ

∂s
(s; V−l ,V

+
l ) ds, (1)

where V−l and V+
l represent, respectively, the limits of V to the left and right of

its lth discontinuity.

A weak solution satisfies the equality:

d
dt

 
1

∆x

Z xi+1/2

xi−1/2

W(x, t) dx

!
= − 1

∆x
−
Z xi+1/2

xi−1/2

A(W(x, t))Wx(x, t) dx.

The definition of weak solution depend on the family of paths.
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Weak solutions: jump conditions

A piecewise smooth function W is a weak solution if, and only if:

It is a classical solution in its smoothness regions.

Across a discontinuity the following jump condition is satisfied:

ξ(W+ −W−) =

Z 1

0
A(Φ(s; W−,W+))

∂Φ

∂s
(s; W−,W+) ds,

where ξ is the speed of propagation and W± the limits to the left and to the right.

For conservative problems, the definition of weak solutions coincides with the
usual one regardless of the choice of paths.

Even if the mathematics of the problem gives some hints concerning the family
of paths to be chosen (Muñoz & CP M2AN 2007), in some cases an ’external’
amount of information is required to choose the correct paths: for instance, the
viscous profiles of a regularized system.
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Weak solutions: system of balance laws

For system of balance laws, the jump conditions write as follows:8<: ξ(U+ − U−) = F(U+)− F(U−) +

Z 1

0
S(ΦU(s; W−,W+))∂sΦσ(s; W−,W+) ds;

ξ(σ+ − σ−) = 0.

where the following notation has been used for the family of paths:

Φ(s; W−,W+) =

»
ΦU(s; W−,W+)
Φσ(s; W−,W+)

–
.

If the following natural condition is imposed to the family of paths:

Φσ

„
s;
»

UL

σ̄

–
,

»
UR

σ̄

–«
= σ̄, ∀s ∈ [0, 1],

then:
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Weak solutions: the example revisited

In the case of the linear scalar balance law, was a family of paths chosen for
solving the Riemann problems?
Yes, implicitly. . .
The path connecting to states wl and wr is composed by the exponential curve
linking wi to the intermediate state w∗ appearing at the Riemann solution and
the segment connecting w∗ to wr.
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Weak solutions: the example revisited

Nevertheless, it is possible to choose a different family of paths obtaining thus
different solutions for the Riemann problem.
For instance we can choose the paths:

Φ(s; wl,wr) =

(
[ul, σl + 2(σr − σl)]

T if 0 ≤ s ≤ 1/2,
[ul + 2(s− 1/2)(ur − ul), σr]

T if 1/2 ≤ s ≤ 1,

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

sigma

u



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

Weak solutions: the example revisited

Nevertheless, it is possible to choose a different family of paths obtaining thus
different solutions for the Riemann problem.
For instance we can choose the paths:

Φ(s; wl,wr) =

(
[ul, σl + 2(σr − σl)]

T if 0 ≤ s ≤ 1/2,
[ul + 2(s− 1/2)(ur − ul), σr]

T if 1/2 ≤ s ≤ 1,

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

sigma

u



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

Weak solutions: the example revisited

Nevertheless, it is possible to choose a different family of paths obtaining thus
different solutions for the Riemann problem.
For instance we can choose the paths:

Φ(s; wl,wr) =

(
[ul, σl + 2(σr − σl)]

T if 0 ≤ s ≤ 1/2,
[ul + 2(s− 1/2)(ur − ul), σr]

T if 1/2 ≤ s ≤ 1,

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

sigma

u



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

Weak solutions: the example revisited

The solution of the Riemann problem is:

w(x, t) =

8<:
wl if x < 0,
w∗ if 0 < x < t,
wr if x > t,

where now

w∗ =

»
(1 + [σ])ul

σr

–
.

The corresponding Godunov method is the upwind scheme

un+1
i = un

i +
∆x
∆t

(un
i − un

i−1) + ∆t un
i−1.

that solves the stationary solutions only with first order accuracy.

To advance in time from tn to tn+1, the equation is approached by:

ut + ux =
X

i

un
i δx=xi+1/2 .
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Weak solutions: system of balance laws

The natural extension to general systems of balance laws of the family of paths
leading to a Godunov method with better well-balanced properties is the
following:

Given two states WL = [UL, σL]T and WR = [UR, σR]T the associated Riemann
problem is solved by imposing that the Riemann invariants corresponding to the
null eigenvalue are preserved though the wave standing at x = 0 (the so-called
zero wave).

Let us denote by:

W−0 =

»
U−0
σL

–
, W+

0 =

»
U+

0
σR

–
,

the limits to the left and to the right of x = 0 of the solution of the Riemann
problem.

Then the path Ψ(·; WL,WR) is a parameterization of the curve composed by:
The straight segment connecting WL and W−0 .
The arc of the integral curve γ ∈ Γ linking W−0 and W+

0 .
The straight segment connecting W+

0 and WR.
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Weak solutions: system of balance laws

Nevertheless:

The computaiton of the exact solutions of the Riemann problems is required, what
may be difficult or costly.

If one of the eigenvalues of J(U) changes its sign, i.e. in the presence of sonic
points, the solution of the Riemann problem is not unique: resonant problems.

For scalar balance laws and for some particular systems, a unique solution of the
Riemann problem (and thus a unique path) can be selected in resonant situations by
an adequate regularization of the Dirac mass: LeFloch & Tzavaras SIAM J. Math.
Anal. 1999.
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High order methods: strategy

A weak solution satisfies the equality:

d
dt

 
1

∆x

Z xi+1/2

xi−1/2

W(x, t) dx

!
= − 1

∆x
−
Z xi+1/2

xi−1/2

A(W(x, t))Wx(x, t) dx.

The idea is to approximate this system to obtain the approximations Wi(t).
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High order methods: reconstruction of states

We consider a high-order reconstruction operator providing an
approximation function Pt

i at every cell Ii at every instant t, as well as two
reconstructed operator at the inter-cells:

lim
x→x+i−1/2

Pt
i(x) = W+

i−1/2(t), lim
x→x−i+1/2

Pt
i(x) = W−i+1/2(t).

Examples of reconstruction operators: ENO (Harten,Engquist, Osher &
Chakravarthy JCP 1987), WENO (Liu, Osher & Chan JCP 1994, Jiang & Shu
JCP 1996), Piecewise Hyperbolic Method PHM (Marquina SISC 1994), etc.
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High order methods: general expression

We consider semi-discrete numerical scheme of the form (CP SINUM 06):

W′i (t) = − 1
∆x

„
D+

i−1/2 + D−i+1/2 +

Z xi+1/2

xi−1/2

A(Pt
i(x))

d
dx

Pt
i(x) dx

«
,

where
D±i+1/2 = D±(W−i+1/2(t),W+

i+1/2(t)).

D±(WL,WR) are two functions satisfying:

D−(WL,WR)+D+(WL,WR) =

Z 1

0
A(Φ(s; WL,WR)

∂Φ

∂s
(s; WL,WR) ds, ∀WL,WR,

D±(W,W) = 0, ∀W.

The information given by the exact or approximated Riemann solvers are used
to define the functions D±.
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High order methods: system of balance laws

For systems of balance laws, the consistency conditions together with some
natural assumption for D±, imply the existence of a consistent numerical flux
G : O ×O 7→ O

G(U,U) = F(U)

and two functions S± : Ω× Ω 7→ O satisfying

S−(WL,WR)+S+(WL,WR) =

Z 1

0
S(ΦU(s; WL,WR))

∂Φσ
∂s

(s; WL,WR) ds, ∀WL,WR,

S±
„»

UL

σ̄

–
,

»
UR

σ̄

–«
= 0,

such that

D+(WL,WR) =

»
F(UR)− G(UL,UR)− S+(WL,WR)

0

–
D−(WL,WR) =

»
G(UL,UR)− F(UL)− S−(WL,WR)

0

–
.
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High order methods: system of balance laws

The numerical scheme can be then rewritten as follows:

U′i (t) =
1

∆x

„
Gi−1/2−Gi+1/2+S+

i−1/2+S−i+1/2+

Z xi+1/2

xi−1/2

S(Pt
U,i(x))

d
dx

pt
σ,i(x) dx

«
,

where

Gi+1/2 = G(U−i+1/2,U
+
i+1/2), S±i+1/2 = S±(W−i+1/2,W

+
i+1/2),

Pt
i =

»
Pt

U,i

pt
σ,i

–
.

Notice that, if S ≡ 0, the numerical scheme reduces to a conservative method:

U′i (t) =
1

∆x

„
Gi−1/2 − Gi+1/2

«
.

While in the conservative case the order of the method is given by the accuracy
of the reconstruction at the intercells, in the presence of source terms it also
depends on the accuracy of the reconstructions at the interior of the cells.
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High order methods: examples

Fluctuation functions based on exact Riemann solvers

Following the principle of Godunov method, a first strategy to define the
fluctuation functions consists on finding the exact solution of the Riemann
problem associated to (WL,WR) (according to the chosen family of paths) and
averaging the solutions.

The corresponding fluctuation functions are:

D−G (WL,WR) = −
Z 0

−∞
(V(s; WL,WR)−WL) ds;

D+
G (WL,WR) = −

Z ∞
0

(V(s; WL,WR)−WR) ds;

where V(x/t; WL,WR) represents the self-similar solution of the Riemann
problem associated to WL and WR.
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High order methods: examples

Under some assumptions on the family of paths, the fluctuation functions can be
written on the simplified form:

D−G (WL,WR) =

Z 1

0
A(Φ(s; WL,W−0 )

∂Φ

∂s
(s; WL,W−0 ) ds,

D+
G (WL,WR) =

Z 1

0
A(Φ(s; W+

0 ,WR)
∂Φ

∂s
(s; W+

0 ,WR) ds,

where W±0 = V(0±; WL,WR) are the limits to the right and to left of x = 0 of
the solution of the Riemann problem (Muñoz & CP M2AN 2007).

For system of balance laws, the fluctuation functions reduce to:

D−G (WL,WR) =

»
F(U−0 )− F(UL)

0

–
,

D+
G (WL,WR) =

»
F(UR)− F(U+

0 )
0

–
,

where W−0 = [U−0 , σL], W+
0 = [U+

0 , σR].
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For system of balance laws, the fluctuation functions reduce to:

D−G (WL,WR) =

»
F(U−0 )− F(UL)

0

–
,

D+
G (WL,WR) =

»
F(UR)− F(U+

0 )
0

–
,

where W−0 = [U−0 , σL], W+
0 = [U+

0 , σR].



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

High order methods: examples

The corresponding high-order schemes can be written as follows:

U′i (t) =
1

∆x

„
F(U+

0,i−1/2)− F(U−0,i+1/2) +

Z xi+1/2

xi−1/2

S(Pt
U,i(x))

d
dx

pt
σ,i(x) dx

«
,

where W±0,i+1/2 = [U±0,i+1/2, σ
±
i+1/2]

T denote the limits to the right and to the left
of x = 0 of the solution of the Riemann problem corresponding to the
reconstructed states (W−i+1/2,W

−
i+1/2).



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

High order methods: examples

An example of fluctuation functions based on approximate Riemann solvers:
Roe method

First, a Roe linearization has to be chosen for the nonconservative system and
the chosen family of paths (Toumi JCP 1992), i.e. a function
AΦ : Ω× Ω 7→ RN×N such that AΦ(WL,WR) has N real different eigenvalues
and it satisfies:

AΦ(W,W) = A(W), ∀W;

AΦ(WL,WR)·(WR−WL) =

Z 1

0
A(Φ(s; WL,WR))

∂Φ

∂s
(s; WL,WR) ds, ∀WL,WR.

The corresponding fluctuation functions are:

D±R (WL,WR) = A±Φ(WL,WR) · (WR −WL).

where A+
Φ(WL,WR) (resp. A−Φ(WL,WR) ) is the diagonalizable matrix with the

same eigenvector basis of AΦ(WL,WR) and whose eigenvalues are the positive
(resp. negative) part of those of AΦ(WL,WR).
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High order methods: examples

For systems of balance laws, a Roe matrix is given by:

AΦ(WL,WR) =

»
J(UL,UR) eS(WL,WR)

0 0

–
where

J(UL,UR) is a Roe matrix for the homogeneous problem, i.e.

J(UL,UR) · (UR − UL) = F(UR)− F(UL),eS(WL,WR) satisfies:

eS(WL,WR) =
1

σR − σL

Z 1

0
S(ΦU(s; WL,WR))

∂Φσ

∂s
(s; WL,WR) ds,

provided it has real different eigenvalues.
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High order methods: examples

The corresponding semi-discrete high order scheme can be then written as
follows:

U′i (t) =
1

∆x

„
Gi−1/2−Gi+1/2+S+

i−1/2+S−i+1/2+

Z xi+1/2

xi−1/2

S(Pt
U,i(x))

d
dx

pt
σ,i(x) dx

«
,

where

Gi+1/2 =
1
2
`
F(U−i+1/2) + F(U+

i+1/2)
´
− 1

2

˛̨
Ji+1/2

˛̨
(U+

i+1/2 − U−i+1/2),

S±i+1/2 = P±i+1/2 · eSi+1/2(σi+1 − σi),

Ji+1/2 = J(U−i+1/2,U
+
i+1/2),eSi+1/2 = eS(W−i+1/2,W
+
i+1/2)

P±i+1/2 =
1
2

“
Id ±

˛̨
Ji+1/2

˛̨
(Jn

i+1/2)
−1
”
.
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High order methods: remarks

An accurate enough quadrature formula is used to compute the integrals
appearing in the expression of the methods.

A standard higher order method is used to discretize the system in time, as the
TVD Runge-Kutta schemes (Gottlieb & Shu Math.Comp. 1998).

An entopy-fix technique must be used for Roe methods.

The derivation of the numerical scheme in the more general formulation makes
easier:

To obtain schemes with good stability properties: the presence of source terms
and/or nonconservative products do not add any restriction on the CFL condition.
To obtain well-balanced methods.
To extend some well-known families of conservative schemes to non-conservative
problems: FORCE, GFORCE, MUSTA, ADER, DG. . . (in collaboration with E.F.
Toro, M. Dumbser, A. Hidalgo), central schemes on staggered grids (in
collaboration with G. Puppo, G. Russo), Entropy-preserving schemes (in
collaboration with S. Mishra, U.Fjordholm), HLLC (in collaboration with
E.Fernández Nieto, G. Narbona, E. Fernández Nieto), etc.

The extension to 2D problems is straightforward: see Castro, Fernández-Nieto,
Ferreiro & CP Comput. Methods Appl. Mech. Engrg. 2009, Castro,
Fernández-Nieto, Ferreiro, Garcı́a & CP J. Sci. Comput. 2009.
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High order methods: remarks

For general nonconservative systems the choice and calculation of an adequate
family of paths may be a very difficult problem.

Even if it is possible, the numerical solutions may converge to functions whose
discontinuities do not satisfy exactly the jump conditions to the family of paths:
Castro, LeFloch, Muñoz & CP JCP 2008, Muñoz & CP SEMA J. 2009.

This difficulty is strongly related to the one appearing when a nonconservative
scheme is used to discretize a system of conservation laws. Hou, LeFloch,
Math. Comp. 1994, Karni, Abgrall JCP 2010. This is due to the numerical
viscosity and not to the fact of being path-conservative.

These difficulties are not present for system of balance laws if σ is smooth
enough: a Lax-Wendroff theorem can be shown in this paricular case, i.e. if the
numerical solutions provided by a path-conservative numerical scheme
converges, its limit is a weak solution of the system, regardless of the choice of
paths (Muñoz & CP J. Sci. Comp. 2011).

Nevertheless, the choice of paths is strongly related to the well-balanced
properties of the scheme.
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Well-balancing: stationary solutions

A system can only have nontrivial steady state solutions if it has at least one
linearly degenerate field: if W(x) is a smooth non-trivial stationary solution

A(W(x)) ·W′(x) = 0 ∀ x ∈ R,

then 0 is an eigenvalue of A(W(x)) for every x such that W′(x) 6= 0, and W′(x)
is an associated eigenvector.

Therefore, x→ W(x) can be interpreted a parameterization of an arc of an
integral curve of a characteristic field whose corresponding eigenvalue vanishes
alone the curve. As a consequence, the characteristic field has to be linearly
degenerate.

Let us introduce the set Γ of all the integral curves γ of a linearly degenerate
field of A(W) such that the corresponding eigenvalue vanishes on γ.
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Well-balancing: stationary solutions

In the particular case of a system of balance laws, the set Γ is composed by the
integral curves of the ODE system:

d
dσ

F(U) = S(U).

In the particular case of the shallow water system, Γ is composed by the curves:

q = constant, h +
q2

2gh2 − H = constant.

In the particular case q = 0 these curves are straight lines in the h, q,H space:

q = 0, h− H = constant.
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Well-balanced schemes: definitions

Given a curve γ ∈ Γ:
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Well-balanced schemes: definitions

Given a curve γ ∈ Γ:

Well-balanced schemes: definitions

A semi-discrete scheme is said to be exactly well-balanced for γ if it solves exactly
any smooth stationary solution W such that

W(x) ∈ γ ∀ x

in the following sense: the sequence of cell-averages

Wi =
1

∆x

Z
Ii

W(x) dx

is a stationary solution of the ODE system given by the scheme.
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Well-balanced schemes: definitions

Given a curve γ ∈ Γ:

Well-balanced fluctuation functions

The fluctuations functions D± are said to be exactly well-balanced for γ if

D±(WL,WR) = 0.

for any pair of states (WL,WR) belonging to γ.
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Well-balanced schemes: definitions

Given a curve γ ∈ Γ:

Well-balanced scheme: definitions

A reconstruction operator is said to be well-balanced for γ if, given a vector {Wi}
defined by

Wi =
1

∆x

Z
Ii

W(x) dx,

where W(x) is a smooth function taking values on γ, the approximation functions
corresponding to this vector satisfy:

Pi(x) ∈ γ, ∀x ∈ [xi−1/2, xi+1/2].
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Well-balanced schemes: a general result

Theorem

Given a semi-discrete scheme

W′i (t) = − 1
∆x

„
D+

i−1/2 + D−i+1/2 +

Z xi+1/2

xi−1/2

A(Pt
i(x))

d
dx

Pt
i(x) dx

«
.

if both the reconstruction operator and the fluctuations functions are well-balanced
for γ, the numerical scheme is also well-balanced for γ.



Introduction A scalar linear balance law. Nonconservative hyperbolic systems High-order methods Well-balancing Generalized Hydrostatic Reconstruction

Well-balanced fluctuation functions

Given a curve γ ∈ Γ, let us suppose that the family of paths satisfies the
following property:
(Pγ ) if two states WL and WR belong to γ, then the path

s ∈ [0, 1]→ Φ(s; WL,WR)

is a parametrization of the arc of γ linking the states.

If (Pγ) is satisfied, it can be easily shown that, given two states WL, WR

belonging to γ of a linearly degenerate field, the contact discontinuity:

W(x, t) =

(
WL if x < 0
WR if x > 0

is a weak solution of the system, i.e. the jump conditions are satisfied.

Notice that the family of paths Ψ described above whose construction is based
on the Riemann invariants of the null eigenvalue satisfies (Pγ) for every γ ∈ Γ.
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Well-balanced fluctuation functions: Godunov method

If the family of paths satisfies the property (Pγ) the fluctuation functions of the
Godunov method are well-balanced.

Remember that, for system of balance laws, these fluctuation functions can be
written as follows:

D−G (WL,WR) =

»
F(U−0 )− F(UL)

0

–
,

D+
G (WL,WR) =

»
F(UR)− F(U+

0 )
0

–
.

If WL and WR belong to γ, then the solution of the Riemann problem is the
stationary contact discontinuity and thus:

U−0 = UL, U+
0 = UR.

In particular, the Godunov method based on the family of paths Ψ is
well-balanced for every γ ∈ Γ.

Remark: Notice that the fluctuation functions are applied to the reconstructed
states at the inter-cells. Therefore, for high order methods the relevant
well-balanced property of the fluctuation functions is related to point values and
not to cell averages.
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Well-balanced fluctuation functions: Roe method

If the family of paths satisfies (Pγ) the fluctuation functions of the Roe method
are well-balanced.

Remember that the fluctuation functions are the following:

D±R (WL,WR) = A±Φ(WL,WR) · (WR −WL).

If WL and WR belong to γ, one has:

AΦ(WL,WR) · (WR −WL) =

Z 1

0
A(Φ(s; WL,WR))

∂Φ

∂s
(s; WL,WR) ds = 0.

Notice that, because of (Pγ), the integrand vanishes at every point.

Therefore, 0 is an eigenvalue of AΦ(WL,WR) and (WR −WL) an associated
eigenvector. As a consequence

A±Φ(WL,WR)(WR −WL) = 0,

and the fluctuation functions vanish.

A Roe method based on the family of paths Ψ is well-balanced for every γ ∈ Γ,
but such a method would be rather paradoxical: the approximate Riemann
solver is based on a family of paths whose computation requires the exact
Riemann solver. . .
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Well-balanced fluctuation functions: Roe method

In Section 6 an alternative approach to construct families of paths different from
Ψ satisfying the property (Pγ).

In many cases, it is enough if the family of paths satisfying (Pγ) for the curves
γ ∈ Γ corresponding to the stationary solutions to be preserved. For instance, if
the curves to be preserved are straight lines in Ω, it is enough if the family of
straight segments

Φ(s; WL,WR) = WL + s(WR −WL)

is chosen.

Moreover, the first order Roe method based on the family of straight segments
solves up to second order any smooth stationary solution: CP & Castro M2AN
2004.

In particular, for the shallow water system, the first order Roe method based on
the family of straight segments solves exactly water at rest solutions and up to
second order any smooth stationary solution.

The upwind numerical scheme introduced in Bermúdez & Vázquez, Comp. &
Fluids, 1994 can be interpreted as a Roe method based on the family of
segments.
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Well-balanced fluctuation functions: Roe method

Coming back to the linear scalar balance law, the Roe scheme based on the
family of straight segments can be written as follows:

un+1
i = un

i +
∆t
∆x

(un
i − un

i−1) + ∆t
un

i−1 + un
i

2
.

It solves the stationary solutions with second order accuracy:

n. cells L1 error order
15 1.4677 -
30 3.4590e-1 2.08
60 8.4829e-2 2.03

120 2.1053e-2 2.01
240 5.2472e-3 2.01

Table: Error in L1 norm for the Roe scheme with the initial condition w(x, 0) = ex at time
t = 1. CFL=0.9.

Exercise: Does this Roe method coincide with the Godunov method based on
the family of straight segments?
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the family of straight segments?
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Well-balanced schemes: reconstruction operators

In general, a standard reconstruction operator cannot be expected to be
well-balanced for an integral curve γ.

For particular cases in which the geometry of γ is simple enough is easy to
adapt the reconstruction operators to become well-balanced (this is the case for
water at rest solutions of the shallow water system).

First order numerical methods can be interpreted as the particular case
corresponding to the piecewise constant reconstruction operator:

Pt
i(x) = Wi, ∀x ∈ [xi−1/2, xi+1/2].

This reconstruction operator is not well-balanced in general: the averages of a
function taking values in a curve γ are not in general in γ (unless γ is a straight
line). Therefore, first order schemes, as it has been seen with the scalar balance
laws, are not well-balanced in general for cell-averages.

Given a standard reconstruction operator in RN of order s

Qi(x; Wi−l, . . . ,Wi+r),

a well-balanced reconstruction operator for every stationary solution can be
constructed as follows:
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Well-balanced reconstruction operator: a general strategy

1 Look for the stationary solution W∗i (x) such that:

Wi =
1

∆x

Z
Ii

W∗i (x) dx.

2 For j = i− l, . . . , i + r define Vj by:

Vj = Wj −
1

∆x

Z xj+1/2

xj−1/2

W∗i (x) dx.

3 Apply the reconstruction operator to obtain:

Qi = Qi(x; Vi−l, . . . ,Vi+r).

4 Define the approximation functions by:

Pi(x) = W∗i (x) + Qi(x).

In particular:

W+
i−1/2 = W∗i (xi−1/2) + Qi(xi−1/2),

W−i+1/2 = W∗i (xi+1/2) + Qi(xi+1/2).
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Well-balanced reconstruction operator: the scalar linear balance law

In general, the fist step can be difficult. For the scalar linear balance law it is
easy: it reduces to look for C such that:

ui =
1

∆x

Z xi+1/2

xi−1/2

Cex dx.

Following this idea we have implemented a second order extension of the
Godunov scheme based on the MUSCL reconstruction that solves exactly any
stationary solution: Castro, Gallardo, López & CP SINUM 2008 .

n. part. L1 error
15 1.2888e-15
30 1.5069e-15
60 8.4222e-15

120 6.5241e-15

Table: Error in L1 norm for well-balanced MUSCL scheme with initial condition
w(x, 0) = ex at time t=2. CFL=0.9, c=λ=1.
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easy: it reduces to look for C such that:
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Cex dx.

Following this idea we have implemented a second order extension of the
Godunov scheme based on the MUSCL reconstruction that solves exactly any
stationary solution: Castro, Gallardo, López & CP SINUM 2008 .

n. part. L1 error
15 1.2888e-15
30 1.5069e-15
60 8.4222e-15

120 6.5241e-15

Table: Error in L1 norm for well-balanced MUSCL scheme with initial condition
w(x, 0) = ex at time t=2. CFL=0.9, c=λ=1.
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Well-balanced reconstruction operator: shallow water system

It is easy to design reconstruction operators which are well-balanced for water
at rest solutions: once the cell averages hn

i , qn
i , Hi are known, apply a standard

reconstruction operator to the variables qn
i , Hi, and

ηn
i = hn

i − Hi,

to obtain the approximation functions pq,i, pH,i, pη,i at the cells. Then define:

ph,i = pη,i + pH,i.

It is also possible to apply the general methodology to obtain a reconstruction
operator which is well-balanced for every stationary solution: López, PhD.
Thesis 201.

The more difficult stage is the first one: given a cell approximation Wn
i , a

stationary solution has to be calculated whose average is equal to Wn
i .

A nonlinear system has to be solved at every intercell. Newton method is
applied.

These nonlinear systems also appear in the well-balanced numerical schemes
introduced in Noelle,Xing & Shu JCP 2007, Russo & Khe Proc. HYP 2009 for
the shallow-water model.
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GHR: motivation

It has been seen that, in order to have well-balanced properties, the chosen
family of paths has to satisfy the property (Pγ) for as much as curves γ ∈ Γ as
possible.

The family of paths Ψ has this property, but as it has been mentioned its
computation can be costly and/or difficult in practice.

In this final part of the course, a different strategy to obtain families of paths
satisfying (Pγ) for a subset Γ0 ⊂ Γ is introduced. This strategy, introduced in
Castro, Pardo & CP M3AS 2007 is a generalization of the Hydrostatic
Reconstruction technique introduced in Audusse, Bouchut, Bristeau, Klein &
Perthame J. Sci. Comp. 2004.
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GHR: family of paths

Let us suppose that we want to design a numerical scheme for a system of
balance laws which is well-balanced for a subset Γ0 of Γ.

Let us suppose that it is possible to associate to every state W a curve CW in Ω
in such a way that:

If W belongs to a curve γ ∈ Γ0, then CW = γ.
Given two states WL = [UL, σL]T , WR = [UR, σR]T , is is possible to choose in a
continuous way two intermediate states W−0 = [U−0 , σ0]T , W+

0 = [U+
0 , σ0]T such

that:

(P1) W−
0 ∈ CL and W+

0 ∈ CR.

(P2) If σ0 = σL then W−
0 = WL.

(P3) If σ0 = σR then W+
0 = WR.

(P4) If σL = σR = σ then σ0 = σ.

(P5) If both the states WL and WR belong to a curve γ ∈ Γ0, then W−
0 = W+

0 .
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balance laws which is well-balanced for a subset Γ0 of Γ.

Let us suppose that it is possible to associate to every state W a curve CW in Ω
in such a way that:

If W belongs to a curve γ ∈ Γ0, then CW = γ.
Given two states WL = [UL, σL]T , WR = [UR, σR]T , is is possible to choose in a
continuous way two intermediate states W−0 = [U−0 , σ0]T , W+
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that:
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GHR: family of paths

Let us define the family of paths defined as follows: the path linking two states
WL and WR is composed by

The arc of CWL linking WL and W−0 .

The straight segment linking W−0 and W+
0 .

The arc of CWR linking W+
0 and WR.

It can be easily verified that this family of paths satisfies (Pγ) for every γ ∈ Γ0.
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GHR: fluctuation functions

We consider any standard numerical flux G(UL,UR) consistent with F and
define the fluctuation functions as follows:

D+(WL,WR) =

2664 F(U+
0 )− G(U−0 ,U

+
0 )−

Z 1

0
S(PU,R(s))

∂

∂s
pσ,R(s) ds

0

3775

D−(WL,WR) =

2664 −
Z 1

0
S(PU,L(s))

∂

∂s
pσ,L(s) ds + G(U−0 ,U

+
0 )− F(U−0 )

0

3775
where

s 7→ PL(s) =

»
PU,L(s)
pσ,L(s)

–
, s 7→ PR(s) =

»
PU,R(s)
pσ,R(s)

–
are respectively two parameterizations of the arc of CWL linking WL and W−0 and
the arc of CWR linking W+

0 and WR.

It can be easily checked that these fluctuations functions are consitent with the
chosen family of paths and well-balanced for any curve γ ∈ Γ0.
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GHR: example

We want to obtain numerical schemes that are well-balanced for water-at-rest
solutions, i.e. for the family Γ0 of curves:

q = 0, h− H = constant.

We associate to every state W∗ = [h∗, q∗,H∗]T the curve CW∗ defined by:

q =
q∗

h∗
h, h− H = h∗ − H∗,

or,
u = u∗, h− H = h∗ − H∗,

if the variable u = q/h is used.
Given two states WL = [hL, qL,HL]T , WR = [hR, qR,HR]T , we define

H0 = min(HL,HR),

U−0 =

»
h−0
q−0

–
=

»
hL − HL − H0

qL
hL

h−0

–
,

U+
0 =

»
h+

0
q+

0

–
=

»
hR − HR − H0

qR
hR

h+
0

–
,

W±0 =

»
U±0
H0

–
.
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GHR: example

The properties (P1)-(P5) are satisfied for water at rest equilibria.

The correspondig fluctuation functions are:

D+(WL,WR) =

264 F(U+
0 )− G(U−0 ,U

+
0 ) +

g
2

(h+
0 )2 − g

2
h2

R

0

375

D−(WL,WR) =

264
g
2

h2
L −

g
2

(h−0 )2 + G(U−0 ,U
+
0 )− F(U−0 )

0

375
.

The Hydrostatic Reconstruction Technique is recovered.
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GHR: some remarks

In practice, in order to preserve the positivity, the reconstructed states are
defined as follows:

U−0 =

»
h−0
q−0

–
=

»
(hL − HL − H0)+

qL
hL

h−0

–
,

U+
0 =

»
h+

0
q+

0

–
=

»
(hR − HR − H0)+

qR
hR

h+
0

–
.

This modification can be also interpreted in terms of the family of paths: when a
cuve CW touches the axis h = 0, it is replaced by this axis from the intersection
point.
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GHR: well-balanced methods

In order to obtain a numerical scheme which is exactly well-balanced for every
stationary solution, we can associate to every state W the integral curve CW of
the linearly degenerate field corresponding to the null eigenvalue passing by W.
If, given two states WL and WR it is possible to find two states W±0 satisfying
(P1)-(P5), it would be possible to derive a well-balanced numerical scheme.

In that case, it can be shown that the fluctuation functions reduce to

D−(WL,WR) =

»
F(U−0 )− G(U−0 ,U

+
0 ),

0

–
,

D+(WL,WR) =

»
G(U−0 ,U

+
0 )− F(U+

0 ),
0

–
.
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GHR: Applications to the shallow water systems

Such a choice of intermediate states can be performed for the shallow water
system: see Castro, Pardo & CP M3AS 2007.

Given two states WL = [hL, qL,HL]T and WR = [hR, qR,HR]T , first an adequate
intermediate value of the depth has to be chosen. In particular, the value

H0 = min(HL,HR)

is always chosen whenever it’s possible.

Two reconstructed states are considered at the intercell W−0 = [h−0 , q
−
0 ,H0]

T

and W+
0 = [h+

0 , q
+
0 ,H0]

T such that:

q−0 = qL, g(h−0 − H0) +
(q+

0 )2

2(h−0 )2
= g(hL − HL) +

q2
L

2h2
L
,

and

q+
0 = qR, g(h+

0 − H0) +
(q+

0 )2

2(h+
0 )2

= g(hR − HR) +
q2

R

2h2
R
.
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GHR: Applications to the shallow water systems
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GHR: Applications to the shallow water systems

We compare two numerical methods for the shallow water system:
A third order Roe method based on the PHM reconstruction operator.
A well-balanced third order method based on the generalized hydrostatic
reconstruction, the Roe flux for the homogeneous problem, and the well-balanced
modification of the PHM reconstruction operator

We consider first a transcritical (transonic) stationary solution corresponding
corresponding to:

q = 2.5, g(h− H) +
(q)2

2h2 = 17.56957396120237, g = 9.812.

for the depth function:

H(x) =


−0.25(1 + cos(5π(x + 0.5))) if 1.3 ≤ x ≤ 1.7,
0 otherwise.

The critical (sonic) point is located at x = 1.5.
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GHR: Applications to the shallow water systems
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Figure: Transcritical stationary solution.

n. cells error h error q
50 9.99e-17 5.32e-17
100 1.04e-16 1.27e-15
200 1.03e-15 7.95e-15
400 3.36e-15 2.91e-14

n. cells error h error q order h order q
100 5.17e-4 3.02e-3 - -
200 7.28e-5 4.46e-4 2.82 2.75
400 1.03e-5 6.56e-5 2.82 2.76
800 1.43e-6 9.30e-5 2.84 2.81

Table: Left: third-order well-balanced numerical scheme; right: third order-Roe scheme.
CFL=0,9.
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GHR: Applications to the shallow water systems

A small perturbation of the order of ∆x is applied to h in the interval [1.1, 1.2].
The evolution of the perturbation is simulated with the two numerical schemes.
The differences between the numerical solution and the stationary solution are
depicted in the Figures.
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Figure: Evolution of the perturbation in a mesh with 150 cells at the instant t = 0.15.
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GHR: Applications to the shallow water systems

We consider finally a stationary solution with a stationary shock (a hydraulic
jump). The depth function is:

H(x) =


−0.2 + 0.05(x− 10)2 if 8 ≤ x ≤ 12,
0 otherwise

(2)

the initial conditions

q(x, 0) = 0, h(x, 0) = 0.33 + H(x);

and the boundary conditions h = 0.33 at the left extreme of the interval, and
q = 0.18 at the right one.
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GHR: Applications to the shallow water systems
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Figure: Free surface and discharge corresponding to the numerical stationary solution.
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GHR: Applications to the shallow water systems

The first order numerical schemes provided by the original Hydrostatic
Reconstruction Technique are positive and entropy-preserving if the chosen
numerical flux has these properties, but these properties can be lost for the high
order extensions presented here.

The first order well-balanced for the shallow water obtained by the GHR is not
in general positive nor entropy-preserving even if the chosen numerical flux has
these properties.

In Bouchut & Morales, SINUM 2010 a first order numerical scheme which is
positive, entropy preserving and well-balanced for subcritical stationary
solutions has been presented.
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