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Abstract

The paper analyses the problem of a committee chair using favours
at her disposal to maximize the likelihood that her proposal gains
committee support. The favours increase the probability of a given
member approving the chair’s proposal via a smooth voting function.
The decision-making protocol is any quota voting rule. The paper
characterizes the optimal allocation of any given level of favours and
the optimal expenditure minimizing level of favours. The optimal al-
location divides favours uniformly among a coalition of the committee
members. At a low level of favours, the coalition comprises all com-
mittee members. At a high level, it is the minimum winning coalition.
The optimal expenditure level guarantees the chair certain support of
the minimum winning coalition if favours are abundant and uncertain
support of all committee members if favours are scarce; elitist or egal-
itarian committees are compatible with a strategic chair. The results
are robust to changing the chair’s objectives and to alternative voting
functions.
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1 Introduction

Committees are responsible for numerous economic and political decisions.

Examples abound and include boards of directors, legislative committees,

faculty meeting attendees, monetary policy committees or party conferences.

While not always codified, the typical code of conduct of most committees is

to reach a decision by voting over an agenda set by its chair. The importance

of agenda setting power in shaping the final committee decision has long been

acknowledged in the political economy literature.

The chair of the committee typically controls other resources in her in-

stitution in addition to holding agenda setting power. She may have at

her disposal future promotions, bonuses, teaching reductions, electoral cam-

paign fund allocations or patronage. Moreover, she can use these favours as

a means of influencing the final committee decision to her liking.

In this paper, we analyse the chair’s problem of crafting consensus among

the committee members by allocating the favours at her disposal. Our model

focuses on the moment of an imminent committee vote on the acceptance or

rejection of her proposal. We are agnostic about the nature of the proposal;

it can represent a particular corporate or political strategy, interest rate

level, legislative bill or the hiring of specific job market candidate.

Favours enter our model via their influence on the probability of each of

the committee members casting a vote favourable to the chair’s proposal, a

yes vote. In most of our analysis, we capture the relationship between the

favours and the probability by simple linear voting functions. The decision-

making protocol of the committee is a standard quota voting rule requiring

a certain fraction of approving votes for the chair’s proposal to pass. We

allow for any quota voting rule, including unanimity.

We analyse two nested decision problems faced by the chair. The first

concerns the optimal allocation of a fixed amount of favours to maximize the

probability that her proposal is approved. We call this the favour allocation

problem. The second problem concerns the optimal level of favours to dis-

tribute. Endowed with an overall budget of favours, the chair is the residual

claimant, conditional on the approval of her proposal, of any favours not

allocated among the committee members. Naturally, she attempts to mini-

mize the cost of approval, and we call her doing so the consensus expenditure

problem. The two problems are nested. For any level of favours distributed
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in the second problem, she allocates them optimally using the solution from

the first.

We characterize the solution to the favour allocation problem and show

that it depends crucially on the fixed amount of favours the chair is allocat-

ing, on her budget. When the budget suffices to buy the certain support of

at least a minimum winning coalition of the committee members, she buys

its support and ensures that her proposal is approved.

However, when the chair’s budget is smaller than the size of the mini-

mum winning coalition in the committee less one, she allocates the budget

uniformly among all committee members. Uniform allocation among com-

mittee members receiving positive favours is a general feature of the solution

to the favour allocation problem. It holds even when the chair’s budget is

close to adequate to purchase the support of the minimum winning coali-

tion. However, in this case, the solution focuses on a subset of the committee

members that is still larger than the minimum winning one.

We interpret these results as showing the dual role of the yes votes. The

votes can be both substitutes and complements. Receiving one additional

vote beyond the number sufficient for approval has no additional benefit for

the chair. The votes are substitutes in this case. However, receiving an

additional vote that shifts the committee decision from rejection to accep-

tance is extremely valuable to the chair. The votes are complements in this

case. The size of the budget that the chair controls determines which of

the cases applies. For small budgets, the votes are scarce irrespective of the

budget allocation and are thus complements. For large budgets, the votes

are abundant and are thus substitutes.

Next, we turn attention to the consensus expenditure problem. We

derive several cut-offs characterizing the solution to this problem for any

committee size and any quota voting rule. The first, the minimal consensus

cut-off, presents the lower bound on the overall budget ensuring the solution

involves the chair purchasing the certain support of the minimum winning

coalition of committee members. This implies that her proposal passes and

she obtains any remaining favours.

The remaining cut-offs represent increasingly tighter upper bounds on

the overall budget that transform the solution first to the chair not purchas-

ing the certain support of the committee, then to the chair purchasing the

support of larger than minimum winning coalition and finally to the chair
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purchasing the support of all committee members. We term the last bound

the maximal consensus cut-off. In general, all of the bounds are concen-

trated around the minimum number of votes required for approval, that is,

around the size of the minimum winning coalition.

Our results thus imply that committees with scarce resources are more

likely to be egalitarian, even in the presence of a strategic chair. Conversely,

committees with abundant resources will be elitist in that the chair will

allocate favours to a subset of the members. Somewhat surprisingly, the

amount of resources and the number of committee numbers receiving these

resources are inversely related. Furthermore, for a fixed overall budget and

more demanding quota rule, the model implies more egalitarian commit-

tees, as the scarcity of resources is measured relative to the voting rule, not

relative to committee size.

After solving the two optimization problems, we show that our results,

namely the solution to the consensus expenditure problem above the min-

imal consensus cut-off and the cut-off itself, do not change after altering

the benchmark model in several ways. First, we consider alternative util-

ity functions for the chair, incorporating risk aversion, the upfront costs of

crafting consensus or the outside options she receives when her proposal is

rejected. Second, we show that our results extend to a model with (some)

non-homogeneous nonlinear voting functions.

Our work is related to several strands of the literature. The first strand

is the study of multilateral bargaining with agenda setting power (see Romer

and Rosenthal, 1978, 1979; Baron and Ferejohn, 1989; Banks and Duggan,

2000, 2006; Eraslan, 2002; Cardona and Ponsati, 2007, 2011, among others).

Papers in this literature assume, and we depart from, that the agenda setter

faces a committee of members voting deterministically. In the language of

our model, the literature assumes step voting functions. Below some level of

favours, a member votes yes with zero probability and with unit probability

above that level. The standard result in this literature is that agenda setter

purchases the certain support of the minimum winning coalition provided

that her budget is large enough to do so. The small budget case is generally

discarded on the grounds of not being interesting. Our model smoothes the

voting functions, delivers similar results for the large budget case and shows

that nontrivial results, robust supermajorities, obtain for the small budget

case.
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The ability of our model to generate supermajorities that receive positive

favours also associates our work with another strand of the literature, that

of coalition and government formation (Gamson, 1961; Riker, 1962; Austen-

Smith and Banks, 1988; Baron, 1991, 1993; Diermeier and Merlo, 2000;

Bassi, 2013, see Laver, 1998, for a survey). Within this literature, minimum

winning coalitions arise as a key prediction of many formal models, although

such coalitions find mixed empirical support (see Schofield, 1995; Sened,

1996, and references cited therein). Our work both complements and differs

from this literature, similarly to the way it both complements and differs

from the literature on agenda setting.

Finally, our work relates to the literature on vote buying, which shows,

among other interesting findings, that minimum winning coalitions need

not be optimal. Groseclose and Snyder (1996) and Banks (2000) present a

vote buying model with supermajorities as an equilibrium prediction. The

mechanism behind their result is strategic. The first moving vote buyer pur-

chases a supermajority of votes to make vote buying prohibitively expensive

for the second moving vote buyer.1 The key difference between our model

and those presented in these two papers as well as in most of the vote buy-

ing literature (Myerson, 1993; Diermeier and Myerson, 1999; Dekel, Jackson,

and Wolinsky, 2008, 2009; Le Breton and Zaporozhets, 2010; Morgan and

Vardy, 2011, 2012; Seidmann, 2011; Le Breton, Sudholter, and Zaporozhets,

2012) is that, while other models examine a setting in which two vote buy-

ers receive the votes they purchase with certainty, in our model, a single

vote buyer, the committee chair, does not receive votes against the favours

she allocates with certainty. The first difference makes our analysis simpler,

enabling us to abstract from strategic interaction between vote buyers and

focus on the effect of the second difference, uncertainty in voting, on the

chair’s behaviour.

Several contributions to the vote buying literature differ from our model

in only one of these respects. These include Ferejohn (1986), Snyder (1991)

and Dal Bo (2007), with a single vote buyer but no uncertainty in voting,

and Le Breton and Zaporozhets (2007), with uncertainty in voting but two

1 There may be other ways to generate larger than minimum winning coalitions, some
of which are mentioned in Groseclose and Snyder (1996). These include norms of uni-
versalism, the tendency for ideologically connected coalitions to form, uncertainty about
the size of the voting body created by abstention (Koehler, 1975) or the agenda setter’s
aspiration for political stability and greatness (Doron and Sherman, 1995).
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vote buyers. The only paper that combines a single vote buyer and uncer-

tainty in voting is Felgenhauer and Gruner (2008). They study information

aggregation under open and closed voting with three players and majori-

tarian voting rather than the optimal process for building consensus in a

committee with arbitrary size and voting rule, as we do.2

Finally, in a singular contribution, Mandler (2013) asks how electoral

campaigns should be evaluated using a model with a non-degenerate dis-

tribution over voters’ actions and uncertainty regarding the shape of the

distribution itself. He focuses on limit results as the size of the electorate

increases and on campaign evaluation, not on characterization of the optimal

one.

2 Model

The model posits chair of a committee trying to craft consensus regarding

the course of actions the chair has proposed. The committee comprises

n ∈ N>0 members, with the set of the committee members denoted by

N = {1, . . . , n}. The decision-making protocol within the committee is a

standard quota voting rule requiring q ≥ 1 or more approving votes for the

chair’s proposal to pass. The most demanding voting rule we allow for is

unanimity, so that q ≤ n.3

The chair has overall budget B > 0 of favours available to her. Choosing

to redistribute b ≤ B amount of favours among N means dividing b among

the committee members, with each member i ∈ N receiving xi amount of

favours. Upon receiving xi, i ∈ N approves the chair’s proposal (votes

yes) with probability pi(xi) = xi and disapproves of it (votes no) with

the remaining probability. Throughout, we call the functions translating

favours into approving votes, (pi : [0, 1]→ [0, 1])ni=1, voting functions. When

2 Our model and the rest of the vote buying literature also differ from Dal Bo (2007)
and (in part of their analysis) Felgenhauer and Gruner (2008); Morgan and Vardy (2011)
in one further respect. The standard assumption is that payments can be conditional
either on individual behaviour (voting yes or no) or on the aggregate outcome (acceptance
or rejection). They assume that payment to each voter can be conditional on that voter
being pivotal, i.e. on the margin of acceptance. This induces competition among voters
and the vote buyer is able to ensure acceptance at a significantly lower cost. Similar
Bertrand competition among voters arises, as a result of their ability to commit to vote
for certain action, in Ferejohn (1986).

3 We assume that the chair is not a voting member of the committee. This is not in
any way significant for our analysis. If the chair were to vote, we could relabel n and q, if
necessary, and proceed without further alterations.
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the likelihood of confusion is minimal, we work directly with (pi)
n
i=1 instead

of using the voting functions in their full specification.4

We denote by p = (pi)
n
i=1 ∈ Rn the vector of probabilities of the in-

dividual committee members approving the chair’s proposal. Boldface de-

notes vectors in general, such that x = (xi)
n
i=1 represents vector of favours

allocated to N . Dropping pi and pj from p generates the new vector

p{ij} ∈ Rn−2. By p(r, p, s), we denote the vector of probabilities when

r committee members approve with zero probability, s members approve

with unit probability and the remaining n − r − s members approve with

probability equal to p = (b− s)/(n− r − s). That is,

p(r, p, s) = (0, . . . , 0︸ ︷︷ ︸
r

, p, . . . , p︸ ︷︷ ︸
n−r−s

, 1, . . . , 1︸ ︷︷ ︸
s

). (1)

Note that amount of favours required to generate p(r, p, s) is b, r members

are receiving zero favours, s members are receiving unit favours and n−r−s
members are receiving (b− s)/(n− r − s) favours.

Because the individual entries in p represent probabilities, when allo-

cating favours, the chair is not only limited by the total amount of favours

she has decided to redistribute, b, but also by the individual entries of p

remaining in the [0, 1] interval. For fixed b, we denote the set of possible

probability allocations by

X(b) = {p ∈ Rn|
n∑
i=1

pi ≤ b ∧ 0 ≤ pi ≤ 1 ∀ i ∈ N}. (2)

Given p ∈ X(b), the probability of the chair’s proposal being approved

is

Pq|n[p] =

n∑
s=q

P∗s|n[p] (3)

where P∗s|n[p] is the probability that exactly s out of n committee members

approve the chair’s proposal when the individual probabilities of approval

are equal to p.

We analyse the pair of nested optimization problems the chair faces when

4 The full specification is required for the discussion of alternative voting functions in
section 5. Note that pi(xi) = xi can represent information asymmetry between the chair
and i ∈ N . Assuming i is choosing between xi and θi ∼ U [0, 1] outside option, i votes yes
if and only if xi ≥ θi, which occurs with probability P[θi ≤ xi] = xi.
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crafting consensus among the committee members. The first optimization

problem concerns, for a fixed b, the optimal allocation of favours among

the committee members to maximize the probability of the chair’s proposal

begin approved. We call this optimization problem the favour allocation

(FA) problem and define it formally as

max
p∈Rn

Pq|n[p]

s.t.

n∑
i=1

pi ≤ b

s.t. 0 ≤ pi ≤ 1 ∀ i ∈ N.

(FA)

It is easy to see that any solution to FA must satisfy the Kuhn and Tucker

(1951) conditions, with the associated Lagrangian being

L(p, λ,m+,m−) = Pq|n[p]− λ

[
n∑
i=1

pi − b

]
−m+ ∗ (p− 1) + m− ∗ p (4)

where λ is the Lagrange multiplier associated with the constraint repre-

sented by b, m+ = (m+
i )ni=1 is the vector of multipliers associated with the

constraint on the probabilities being less than unity, 1 is the unit vector in

Rn, m− = (m−i )ni=1 is the vector of multipliers associated with the constraint

on the probabilities being non-negative and ∗ is standard inner product of

two vectors in Rn.

For a given b, we denote by Rq|n[b] value of the maximized objective

function in FA. That is, if p∗ solves FA for b, then Rq|n[b] = Pq|n[p∗]. A

simple argument shows that FA has a solution and Pq|n[p′∗] = Pq|n[p′′∗] if

both p′∗ and p′′∗ solve FA, and hence Rq|n[b] is well defined as a function of

b.

The second optimization problem the chair faces concerns the least ex-

pensive means of crafting consensus among the committee members. The

incentive to minimize the cost of consensus arises due to her being able to

retain the share of the overall budget not redistributed among the com-

mittee members, conditional on her proposal being approved. We call this

optimization problem the consensus expenditure (CE) problem and define it
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formally by

max
b

(B − b)Rq|n[b]

s.t. 0 ≤ b ≤ B.
(CE)

The two optimization problems are nested, as CE assumes an optimal allo-

cation of favours for any level of favours redistributed, it nests the solution

to FA.5

3 Optimal favour allocation

Proposition 1 (Optimal favour allocation). Let p∗ with the associated λ∗,

m+,∗ and m−,∗ be a solution to FA. Then

1. λ∗ > 0 if and only if b < q

2. if λ∗ = 0, Rq|n[b] = 1 and p∗ solves FA if p∗ = p(r∗, p∗, s∗) where

s∗ ≥ q

3. if λ∗ > 0, Rq|n[b] < 1,
∑n

i=1 p
∗
i = b and p∗ solves FA if and only if

p∗ = p(r∗, p∗, s∗) for (not necessarily unique) r∗ and s∗ satisfying

(a) s∗ = 0

(b) r∗ ≤ n− q

(c) r∗ = n− q if and only if b ≥ b̂q ∈
[
q + 2 + 1

q −
(

1 + 1
q

)q+1
, q

)
(d) r∗ = 0 if b < q − 1

(e) r∗ and s∗ in parts 3.(a) and 3.(d) are unique, r∗ in part 3.(c) is

unique if b > b̂q

Proof. See Appendix A1.

Proposition 1 characterizes the solution to the FA problem. Part two

applies to cases in which the chair controls favours sufficient to purchase the

certain support of the minimum winning coalition, that is, when b ≥ q. In

5 The objective function in CE embodies the assumption of the chair’s favour payments
being contingent on the acceptance of her proposal. In the terminology of the vote buying
literature (Dekel et al., 2008), this makes the favours equivalent to campaign promises.
We analyse the other possibility addressed in this literature, upfront payments contingent
on votes, in section 5. Naturally, in our model, the upfront payments will not guarantee
that the chair will receive the votes that she has bought.
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this case, she allocates unit favours to at least q of the committee members,

thus ensuring the acceptance of her proposal.

In the opposite case where b < q, part three applies and shows that

any solution to FA has to have a structure of p(r∗, p∗, s∗). That is, r∗ of

the committee members receive zero favours, s∗ of the committee members

receive unit favours and all remaining members receive the same amount of

favours p∗ = n−s∗
n−r∗−s∗ .

6

The remainder of part three characterizes r∗ and s∗. Setting aside the

3.(c) part for now, there are no committee members receiving unit favours,

s∗ = 0, at least the minimum winning number of committee members re-

ceives positive favours, r∗ ≤ n − q, and when b < q − 1, all committee

members receive positive favours. Taken together, these results imply that

the solution to FA has the following simple structure p∗ =
(
b
n

)n
i=1

when

b < q − 1.

Part 3.(c) partially characterizes the remaining interval b ∈ [q − 1, q).

It shows that there exists b̂q such that for b > b̂q, the solution focuses on

the minimum winning coalition, r∗ = n − q. For b ≤ b̂q, all we know based

on proposition 1 is that any solution to FA satisfies p(r∗, p∗, 0) with some

r∗ < n − q. A subset of committee members larger than the minimum

winning coalition receives positive favours, and a potentially empty subset

of committee members receives zero favours. Additionally, there might be

multiple solutions. Pq|n[p(r, p, s)] is continuous in b for any r, and we know

that as b increases from q− 1 to b̂q, r
∗ increases from 0 to n− q. Therefore,

there must be a b for which more than one value of r∗ solves FA.7

The change in the solution from focusing on all committee to focusing

on the minimum winning subset of committee members is independent of

committee size. It occurs within an interval of unit length. The intuition

behind this result is the fact that votes can be both complements and sub-

stitutes. They are complements when their number is smaller than q−1 and

6 This observation greatly simplifies the subsequent analysis, as it implies that the
uncertainty remaining in the number of votes the chair receives has a Binomial distribution
with n−r∗−s∗ trials, not a Poisson Binomial distribution. The Poisson Binomial random
variable represents the number of successes in n independent Bernoulli trials with success
probabilities of p1, . . . , pn. The Binomial distribution is the special case when all of the
probabilities are equal.

7 Our conjecture is that r∗, with increasing b, visits any integer in {0, . . . , n− q} in a
monotonic fashion. We have (numerically) confirmed the conjecture for n ≤ 13 and any
q ≤ n. We do not require the conjectured result in what follows, providing us with weak
incentives to develop its proof.
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substitutes when their number is larger than q. Additionally, irrespective

of how many of the committee members receive positive favours from the

chair’s budget b, the most likely number of yes votes she receives approxi-

mates the integer part of b. Combining these two observations, increasing b

from q − 1 to q transforms the votes from complements to substitutes. As

a result, the chair is, optimally, attempting to acquire the largest possible

number of votes when b < q − 1 and only the minimum number necessary

when b ≥ q, independent of how large the committee is.

To our knowledge, the observation that votes can be complements is

novel. The literature related to agenda setting power and minimum winning

coalitions discussed in the introduction typically has an agenda setter dis-

posing of a budget sufficient to purchase the votes of at least the minimum

winning coalition. Under deterministic voting, assuming a small budget

makes the agenda setter’s problem trivial; her proposal is never accepted.

Our voting functions smooth out the deterministic voting and allow us to

uncover arguably interesting results in a region not previously considered

worthy of investigation.

4 Optimal consensus expenditure

We now analyse solution to the chair’s problem of crafting consensus in the

least expensive manner. We present three results characterizing the solution

to the CE problem, b∗. The first, proposition 2, derives upper bound on the

overall budget B such that b∗ < q and pair of closely related bounds. The

second result, theorem 1, presents the opposite result, that is, the lower

bound on B ensuring that b∗ = q. Notice that the solution to CE can never

satisfy b∗ > q. For any b above q, the chair’s proposal is accepted with

certainty, and hence the only effect of increasing b is giving away favours

she values. The last result, theorem 2, is similar to theorem 1 but applies

to large committees.

Proposition 2 (Optimal consensus expenditure with small B). Let b∗ be a

solution to CE. Then

1. if B < q + 1, b∗ < q

2. if B < q − 1
q , b∗ implies r∗ < n− q in the associated FA
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3. if B < q − 1, b∗ implies r∗ = 0 in the associated FA

Proof. See Appendix A1.

Theorem 1 (Optimal consensus expenditure with large B). Let b∗ be a

solution to CE. Then, b∗ = q if

1. B ≥ n+ 1

2. B ≥ (q + 1)(2− q
n)

3. B ≥ q + (1− q
n) 2F1(1, 1 + n, 1 + q, qn)

4. B ≥ n and q ≤ n− 1

where the first three bounds are in descending order. b∗ is unique.

Proof. See Appendix A1.

Proposition 2 presents series of upper bounds on the overall budget. The

first bound, q + 1, is the largest overall budget, implying that the solution

to the CE problem involves the chair not purchasing the certain support of

the committee members. Doing so would be either too costly or impossible

given the overall budget at her disposal. We call this the uncertain consensus

cut-off. The second bound, q − 1
q , is the largest overall budget such that

solution to CE in the associated FA has the chair allocating strictly positive

favours to more than the minimum winning subset of committee members.

For this reason, we call it the non-minimal consensus cut-off. Notice that

for large committees and q expressed as a fraction of n, the non-minimal

consensus cut-off approaches q. Finally, the third bound, q−1, is the largest

overall budget, implying that the solution to CE is such that the associated

FA involves the chair allocating strictly positive favours to all committee

members. Correspondingly, we call it the maximal consensus cut-off.

Theorem 2 present series of lower bounds on the overall budget. Each

of these bounds implies that the solution to CE involves the chair purchas-

ing the certain support of the committee by allocating unit favours to the

minimum winning coalition. For this reason, we call it the minimal con-

sensus cut-off. The three minimal consensus cut-offs in theorem 2 increase

both in their strength and complexity. The first, n+ 1, is extremely simple

but relatively weak. It requires that the overall budget be more than suffi-

cient to purchase the certain support of the entire committee. The second,
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(q + 1)(2 − q
n), depends on the voting rule in addition to committee size.

The third, expressed in terms of a hypergeometric function, is the strongest

of the three but does not lend itself to straightforward evaluation.8

Taking the results in proposition 2 and theorem 1 in their entirety, we

have shown that given a small overall budget, the chair allocates part of

it uniformly among the committee members and is able to retain the rest,

conditional on her proposal passing. Conversely, given a large overall bud-

get, she purchases the certain support of the minimum winning coalition of

committee members.

We stress that all of the bounds are sufficient but not necessary, except

for special values of q. In fact, the uncertain and minimal consensus cut-offs

would be equal if they were necessary. The gap between the cut-offs reflects

our approach to proving theorem 1. We ensure, and the minimal consensus

cut-off guarantees, that the chair’s expected utility is strictly increasing in

b, for any number of the committee members receiving zero favours r ∈
{0, . . . , n − q}. With respect to the gap between the cut-offs, there is none

if q = n and it is generally small for large or small q. For a majority voting

rule such that q = n
2 , the strongest bound in theorem 1 is proportional

to n
2 +

√
π n

2
√
2

, and hence the gap between the cut-offs approximately equals
√
π n

2
√
2

.9

The final component of theorem 1 partially closes the gap between the

cut-offs. Taking q = n−1 and B = n as an example of a case when it applies

not covered by the remaining parts, the chair’s expected utility is decreasing

in b close to q when allocating favours to the whole committee. To ensure

that b∗ = q, we had to confirm that when this happens, it is indeed better

for her to allocate positive favours to n−1 of the committee members. Such

a comparison of expected utilities is technically complex, preventing us from

using it to derive further results.

The final result we present uses a large n argument to close the gap

between the cut-offs. It shows that when the overall budget B is larger than

the quota voting rule q, it will not be optimal for the chair to set b < q.

8 A Gaussian or ordinary hypergeometric function 2F1 is a special function that in-
cludes many other (special) functions as special cases. See the preliminary section to the
proofs in appendix A1 or Olver, Lozier, Boisvert, and Clark (2010) for details.

9 1
2 2F1(1, 1 + n, 1 + n

2
, 1

2
) equals z(n) = 1

2
+
√
π Γ(1+ n

2 )
Γ( 1+n

2 )
where Γ is the Euler gamma

function with limn→∞ z(n)/
√
n =

√
π

2
√

2
.
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When increasing n, we fix all the variables as fractions of n.

Theorem 2 (Optimal consensus expenditure in large committees). Fix b′ =
b
n , q′ = q

n and B′ = B
n such that b′ < q′ < B′. Then, for any ε = q′− b′ > 0,

there exists n ε, such that b′ cannot be a solution to CE for any n ≥ n ε.

Proof. See Appendix A1.

5 Extensions and discussion

We present a series of alternatives to our benchmark model and investigate

how these changes affect the results presented thus far. The first group of

extensions relates to the chair’s objective function, while the second concerns

the voting functions. We omit formal proofs, as these are straightforward.

Chair

First, the objective function in CE assumes that the chair is risk neutral.

The rejection of her proposal results in zero payoff and zero utility. Assuming

that she is risk averse and maximizes the concave utility function, u would

change the objective function in CE to

u(B − b)Rq|n[b] + u(0)(1− Rq|n[b]). (5)

Theorem 1 still applies. Any degree of risk aversion only reinforces the opti-

mality of b∗ = q, as it involves the certain acceptance of the chair’s proposal.

However, proposition 1 no longer applies.10 Consider a logarithmic u as an

example. The chair would never set b∗ < q for B > q, as doing so would

result in the possibility of zero payoff with infinite disutility.11

Next, assume that rejection of the chair’s proposal does not result in zero

payoff as she receives some outside option o. This changes her objective to

(B − b)Rq|n[b] + o (1− Rq|n[b]) = (B − o− b)Rq|n[b] + o (6)

10 That is, parts one and two of proposition 1 no longer apply. Part three still holds, not
only here but for any alternative objective function considered in this subsection. What is
important for part three of the proposition is that the solution to FA remains unchanged.

11 Changing the chair’s objective function leaves the FA problem unchanged, as she still
attempts to allocate favours in an optimal way.
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and with o being constant, proposition 1 and theorem 1 continue to hold

after simple relabelling. In this light, B should not be interpreted in absolute

terms but in terms of its size relative to the chair’s outside option o.

Finally, assume that the chair has to pay the committee members up-

front, not conditional on the acceptance of her proposal as in the bench-

mark model. In the spirit of the vote buying literature, we discuss campaign

promises when referring to the benchmark model. With upfront payments,

the chair’s objective function changes to

B Rq|n[b]− b (7)

generating two effects.12 The first effects shifts the solution to CE towards

b∗ = q. If b∗ = q solves CE under campaign promises, it also has to solve

it, modulo the second effect, under upfront payments. b∗ implies certain

acceptance, making the distinction between conditional and unconditional

payments irrelevant and for any b < q, the objective function under upfront

payments is lower than under campaign promises. Theorem 1 still applies,

while proposition 1 no longer holds. It is easy to construct examples when

b∗ < q under campaign promises changes to b∗ = q under upfront payments.

The second effect shifts the solution to CE towards b∗ = 0. If the chair’s

overall budget is small such that B Rq|n[b]−b < 0 for any b ≤ B, her optimal

strategy will be to set b∗ = 0. If this occurs, theorem 1 no longer holds while

proposition 1 still applies.

Note that upfront payments imply a larger or smaller level of favours

distributed, relative to campaign promises, conditional on the size of the

overall budget. For a small overall budget, the level will be lower and vice

versa. The lower level of favours redistributed under upfront payments is

reminiscent of the same result in Dekel et al. (2008). In their model, the

difference between campaign promises and upfront payments can be likened

12 Assuming that the chair only pays for the votes she actually receives makes the
analysis considerably more involved. In the CE problem, the chair now maximizes, by
choosing p ∈ Rn subject to the ex-post budget constraint p ∗ 1 ≤ B and pi ∈ [0, 1] for
∀i ∈ N , either (B − p ∗ p)Pq|n[p] or BPq|n[p]− p ∗ p depending on whether she pays for
the votes only when her proposal passes or not. The complication arises because Pq|n[p]
and −p ∗ p must be maximized jointly so that we lose the nested nature of the FA and
CE problems. The only observation we make that does not require extended additional
analysis is that, for B < q − 1, any solution to the CE problem must involve a uniform
allocation of favours among committee members. This is because, for any b′ < B, pi = b′

n

for ∀i ∈ N maximizes both Pq|n[p] and −p ∗p, the former by proposition 1 and the latter
by simple argument.
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to the difference between English and all-pay auctions. The same intuition

applies in our model. On the other hand, the larger level of favours re-

distributed under upfront payments is specific to our model. The upfront

payments can be considered an investment, and the chair attempts to en-

sure that her investment yields positive profits by increasing the investment

itself.

Voting functions

The voting functions are undoubtedly central to our analysis. Their homo-

geneity and linearity allowed us to carry the analysis very far. However, their

exact shape is not crucial for many of our results. First, note that changing

the slope of the voting functions does not alter any of the results presented

thus far. Changing the benchmark voting functions to (pi(xi) = txi)
n
i=1 for

some strictly positive t and adjusting the budget in FA to b
t and the overall

budget in CE to B
t represents a simple change of units. The benchmark

voting functions measure favours in probability units. The altered voting

functions, with an appropriate choice of t, can measure favours in monetary

or any other units.

Next, consider changing the benchmark voting functions (pi(xi) = xi)
n
i=1

to (p′i)
n
i=1 such that

p′i(xi) ≤ pi(xi) for xi ∈ [0, 1] and i ∈ N

#{i ∈ N | p′i(1) = 1} ≥ q.
(8)

(p′i)
n
i=1 can be arbitrary, possibly failing monotonicity, differentiability or

even continuity. Naturally, the solution to FA will depend on the exact

shape of the voting functions, and hence proposition 1, and proposition 2

that heavily depends on it, no longer holds. However, theorem 1 still applies.

With b∗ = q all that matters is that p′i(1) = 1 for the minimum winning

coalition of the committee members and (p′i)
n
i=1 do not increase the chair’s

expected utility relative to the benchmark model for any b < q. Condition

(8) ensures precisely that.

Notice that these two ways of shaping the voting functions without alter-

ing the results of theorem 1 allow the model to incorporate a large number

of environments with asymmetric information between the chair and the

committee members. Assume that each i ∈ N , when voting, compares the
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favours he has been offered xi to disutility from the chairman’s proposal θi,

which is his private information, and votes yes if and only if θi ≤ xi.13 The

chair only knows the distribution of θi ∼ D; hence from her perspective,

i votes for her proposal with probability pi(xi) = PD[θi ≤ xi] = FD(xi),

assuming that D has a well defined cumulative distribution function FD.

Naturally, there is no guarantee that FD(xi) will fit (8). However many

distributions can be made to do so if defined on finite support [u, v] and

FD(v)′ = fD(v) > 0. Let us illustrate the procedure with an example.

Take θi distributed according to the Beta distribution on [0, 1] with its two

parameters α = β = 1
2 , that is, θi ∼ B 1

2
, 1
2
[0, 1]. Then FB(xi) =

2 sin−1√xi
π ,

which alone does not fit (8). However, we can shift the entire support of θi

to [s, 1 + s]. Naturally, FB(1 + s) = 1 due to the finite support of B and

the (satisfied) requirement FB(v)′ = fB(v) > 0 ensures that there will exist

s such that FB(xi) ≤ xi
s for any xi ∈ [0, s].14 Numerous other statistical

distributions can be used in a similar manner, including truncated versions

of those supported on the real line.

The altered voting functions (p′i)
n
i=1 still have to satisfy p′i(0) = 0. That

is, both the benchmark and altered specifications of the voting functions

requires zero probability of acceptance in return for zero favours. Assuming

that the chair faces such a disapproving committee might not be the best

way to model certain situations. Assume instead that i votes for the chair’s

proposal with non-zero probability, even when allocated zero favours. That

is, change each of the voting functions to

pi(xi) =

{
ε for xi ≤ ε
xi for xi ≥ ε

(9)

for small ε and ∀ i ∈ N . We call these voting functions with minimal support.

The impact of the minimal support functions is most pronounced for

the favour allocations where zero favours are awarded to a non-empty sub-

13 In the benchmark model, the game we have in mind is the chair committing to pay x
conditional on the acceptance of her proposal. Alternatively, the chair can announce x and
only pay for the votes actually received, thereby changing her objective to that discussed
in the previous subsection. In any case, we have to assume the stage undominated voting
of Baron and Kalai (1993) to make the comparison between xi and θi the one determining
the voting decision.

14 For FD(v)′ = fD(v) = 0, the linear function xi
s

can never ‘squeeze’ in between unity
and the cumulative distribution function FD for values of xi close to the upper bound of
the support of D.
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set of committee members. In the FA problem, this generally moves the

solution in the direction of the minimum winning coalition. Nevertheless,

we can readily generate examples where allocating favours to all committee

members remains optimal.

For the CE problem, the chair’s objective function generally increases

for b ≤ q. However, the impact is rather small. For small values of b,

the chair generally finds it optimal to allocate favours to supermajorities,

and for large b, the effect is of the second order. To see this, assume that

b = q − κ for a sufficiently small κ such that the solution to FA involves

the allocation of positive favours to q of the committee members. Call a

committee member with zero or near unit favours z and u, respectively.

The minimal support only matters when u rejects and z accepts the chair’s

proposal. This occurs with probability κ
q ε, which for small values of κ and ε

is of second order. Nevertheless, the minimal support voting functions can

induce b∗ < q, where the benchmark voting functions would have b∗ = q.

Intuitively, the chair attempts to save the cost of crafting consensus by

relying on minimal support.

These basic insights suggest that our results hold beyond the singular

case of ε = 0. We have not investigated the minimal support further and

do not claim that any of the results above remain unchanged, as the impact

will obviously depend on the magnitude of ε. In fact, for ε = 1, the chair

sets (uniquely) b∗ = 0 in CE and her problem becomes trivial.

Finally, we comment on the relationship between the shape, concavity

or convexity of the voting functions and the complement substitute quality

of votes.15 First, consider a convex voting function and initial situation

of two committee members, i and j, receiving the same amount of favours

xi = xj and voting yes with the same probability pi = pj . Increasing xi and

decreasing xj by the same amount increases pi to a greater extent than it

decreases pj . This creates a clear incentive to set xi � xj . However, when

the probability of the chair’s proposal passing, Pq|n, is small, votes are still

complements, creating incentives to set xi ≈ xj , with the optimal favour

allocation determined by which of the two effects dominates. Conversely,

15 As an example, consider binary voting over alternatives yielding utility xi and y in
a quantal response model such as the Quantal Response Equilibrium of McKelvey and
Palfrey (1995). Then, the probability that i votes for xi is pi(xi) = expλxi

expλxi+expλy
, where

λ ≥ 0 measures the precision in i’s best response. pi is increasing as a function of xi,
convex for xi ≤ y and concave otherwise.
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when Pq|n is large, votes are substitutes and the convexity of the voting

function reinforces the tendency to set xi � xj .

The opposite holds for a concave voting function. Increasing xi and

decreasing xj by the same amount increases pi to a lesser extent than it

decreases pj , creating incentives to set xi ≈ xj . When Pq|n is large, the

substitutability of votes and the concavity of the voting function cancel out.

When Pq|n is small, the complementarity of votes and the concavity of the

voting function reinforce each other, creating the tendency to set xi ≈ xj .16

The standard deterministic voting functions used in the agenda setting

literature discussed in the introduction, equal to zero for xi below some

threshold and increasing to unity above the threshold, can be considered a

limiting case of a convex voting function. The interval where xi is small

is relevant for any agenda setter. Combined with a typically large budget

at the agenda setter’s disposal and hence votes being substitutes, it is not

surprising that the literature has minimum winning coalitions as one of its

key predictions.

6 Conclusion

Crafting consensus within a committee of economic or political agents is a

non-trivial task. Idiosyncracies of the individual committee members make

the acceptance of any proposal before the committee an uncertain event. Its

chair, seeking support for any proposal she put in front of the committee,

might use the favours at her disposal to overcome these idiosyncracies and

increase the likelihood of her proposal gaining committee support.

We have investigated the optimal means of using the favours, both in

terms of their allocation and the amount to use. The best way to allocate

the favours is to redistribute them evenly among a coalition of committee

members. If the amount of the favours at the chair’s disposal is small, the

coalition comprises all committee members. If the amount of the favours is

large, the coalition comprises the minimum winning coalition. This result

16 For the Quantal Response Equilibrium mentioned in footnote 15, we have constructed
an example with n = 3 and q = 2 to illustrate how concavity creates incentives for xi ≈ xj
and convexity for xi � xj . As y increases from 0 to 1, the voting functions change in a
smooth manner from concave to convex, assuming b = 1. Correspondingly, the optimal
favour allocation focuses first on all 3 players and then switches to focusing on 2, minimum
winning, players.
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is driven by votes of the individual committee members being complements

when favours are scarce and substitutes when favours are abundant.

The optimal amount of favours to use when the chair can claim any un-

spent favours is to purchase the certain support of the minimum winning

coalition of committee members, provided the favours at the chair’s disposal

are sufficient. In the opposite case, the chair optimally retains some favours

for herself and typically divides the remainder among all committee mem-

bers. Having a strategic chair leads to egalitarian committees when favours

are scarce and elitist committees when favours are abundant.
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A1 Proofs

A1.1 Preliminaries

We present a series of auxiliary results that facilitate the proofs below.

First, consider a random variable Xj representing success or failure in a

single Bernoulli trial with a probability of success p ∈ [0, 1]. The number

of successes in n independent identical Bernoulli trials follows a Binomial

distribution B(n, p) with the probability mass function f(k, n, p), giving a

probability of exactly k ∈ {0, . . . , n} successes.

Lemma A1. For p ∈ (0, 1), f(k+ 1, n, p) ≥ f(k, n, p) if and only if k+ 1 ≤
(n+ 1)p.

Proof. From f(k, n, p) =
(
n
k

)
pk(1− p)n−k we have for p ∈ (0, 1)

f(k + 1, n, p)

f(k, n, p)
=

(n− k)p

(k + 1)(1− p)
. (A1)

The lemma follows using simple algebra. �

We denote the probability of exactly k or more successes by F (k, n, p) =∑n
s=k f(s, n, p). Below, we will need to differentiate F (k, n, p) with respect

to p. To this end, it is helpful to express F (k, n, p) in terms of a regularized

incomplete beta function (see Olver et al., 2010, for details)

F (k, n, p) = Ip(k, n− (k − 1)) (A2)

where

Ix(a, b) =
B(x, a, b)

B(a, b)

B(x, a, b) =

∫ x

0
ta−1(1− t)b−1dt

B(a, b) =
(a− 1)!(b− 1)!

(a+ b− 1)!

(A3)

are a regularized incomplete beta function, an incomplete beta function

and a complete beta function, respectively. The derivative of F (k, n, p) for

p ∈ (0, 1) and k ∈ {1, . . . , n} is thus equal to

∂F (k, n, p)

∂p
=
k

p
f(k, n, p). (A4)
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Note that f(k, n, p) > 0 when p ∈ (0, 1) for any k ∈ {0, . . . , n} and any

n ∈ N>0.

Working with F (k, n, p) is in general problematic. However it can be

bounded for large n. The following is direct application of theorem 1 in

Hoeffding (1963) to the random variables Xj representing the success or

failure in the Bernoulli trials.

Theorem A1 (Hoeffding (1963)). Let random variable Xj ∈ {0, 1} repre-

sent success (Xj = 1) or failure (Xj = 0) with P[Xj = 1] = p ∈ (0, 1) for

∀j ∈ {1, . . . , n}. Then

P

 n∑
j=1

Xj ≥ n(p+ t)

 ≤ exp [−2nt2] (A5)

for 0 < t ≤ 1− p and ∀n ∈ N>0.

The final result represents the bound on the upper tail of the Binomial

distribution expressed as a fraction of its probability mass function.

Theorem A2 (Diaconis and Zabell (1991)). For any integer k satisfying

k > np where n ∈ N>0 and p ∈ (0, 1)

F (k, n, p)

f(k, n, p)
≤ k(1− p)

k − np
. (A6)

We use bound on the upper tail as an exact expression in terms of a

hypergeometric function (for details see Olver et al., 2010, section 8.17)

F (k, n, p)

f(k, n, p)
= (1− p) 2F1(1, 1 + n, 1 + k, p) (A7)

is difficult to work with. The hypergeometric function itself is defined as

2F1(a, b, c, z) =

∞∑
s=0

a)sb)s
c)s

zs

s!
(A8)

where a)n is Pochhammer’s symbol defined as a(a+1) . . . (a+n−1) if n > 1

and 1 for n = 0.
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A1.2 Proof of proposition 1

First, note that the FA problem has a solution, as it involves the maximiza-

tion of the continuous objective function Pq|n over a compact region X(b).

Pq|n is differentiable with respect to every element of p; hence any solution

to FA necessarily satisfies the standard Kuhn and Tucker (1951) conditions.

No further constraint qualification is required, as the constraints of FA are

cut-out by affine functions (Pardalos, 2009). The Lagrangian for FA is

L(p, λ,m+,m−) = Pq|n[p]− λ

[
n∑
i=1

pi − b

]
−m+ ∗ (p− 1) + m− ∗ p (A9)

where λ, m+ = (m+
i )ni=1 and m− = (m−i )ni=1 are Lagrange multipliers and

1 is the unit vector in Rn. Throughout, we denote the solution to FA by p∗,

λ∗, m+,∗ and m−,∗. The typical element of p∗ is p∗i and similarly for m+,∗

and m−,∗.

Part one of the proposition is immediate. Favours satisfying b < q, irre-

spective of how they are allocated, do not suffice for the certain acceptance

of the chair’s proposal; Pq|n[p] < 1 for any p ∈ X(b). Increasing the amount

of favours from b to some b + ε < q allows the chair to increase the proba-

bility of her proposal passing. Hence λ∗ > 0. Conversely, if b ≥ q, the chair

can allocate pi = 1 to q committee members and increasing b has no effect

on the maximized objective function in FA. Hence, λ∗ = 0.

Part two of the proposition now follows. λ∗ = 0 is equivalent to b ≥ q,

which implies that any solution to FA allocates unit favours to at least q

committee members. One such solution is p(r∗, p∗, s∗) with s∗ ≥ q, so that

Rq|n[b] = Pq|n[p(r∗, p∗, s∗)] = 1.

Part three of the proposition is the crux of the proof. λ∗ > 0 is equivalent

to b < q, and hence trivially Rq|n[b] < 1 and simple argument shows that the

constraint presented by b has to be binding in any solution to FA, so that∑n
i=1 p

∗
i = b. The following lemma helps in proving the remaining claims.17

Lemma A2. Assume b < q. p∗ solves FA if and only if any two elements of

p∗ with 0 < p∗i < 1 and 0 < p∗j < 1 (if such elements exist) satisfy p∗i = p∗j .

17 The if part of lemma A2 and the if parts of parts 3.(a) and 3.(d) of proposition 1
we will prove with the aid of lemma A2 follow from Hoeffding (1956). We have decided
to provide the full proof here, as the results are difficult to extract from Hoeffding’s
proof. Additionally, our proof relies on constrained optimization techniques standard in
the economic literature.
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Proof. Using (A9), the first order necessary condition for the optimality of

p∗ for any p∗i satisfying 0 < p∗i < 1 is

∂L(p∗, λ∗,m+,∗,m−,∗)

∂pi
=
∂Pq|n[p∗]

∂pi
− λ∗ = 0. (A10)

Recall that p{ij} is obtained from p by dropping pi and pj , and P∗s|n[p]

denotes the probability of exactly s out of n committee members accepting

when allocated favours p. Now

Pq|n[p] =Pq|n−2[p{ij}](1− pi)(1− pj)+

Pq−1|n−2[p{ij}](pi(1− pj) + (1− pi)pj)+

Pq−2|n−2[p{ij}]pipj
=Pq|n−2[p{ij}] + (pi + pj)P∗q−1|n−2[p

{ij}]+

pipj

[
P∗q−2|n−2[p

{ij}]− P∗q−1|n−2[p
{ij}]

]
.

(A11)

P∗q|n in the above expression is well defined if n ≥ 1 and n ≥ q ≥ 0. For

n ≥ 1 and q > n or q < 0, we use, by convention, P∗q|n = 0. Similarly, for

n = q = 0, we use P∗q|n = 1 and for n = 0 and q 6= 0 we use P∗q|n = 0. We do

not need to consider n < 0, as the lemma clearly holds for n = 1.

If there exist 0 < p∗i < 1 and 0 < p∗j < 1 for i 6= j, then from (A10)

(
p∗i − p∗j

) [
P∗q−2|n−2[p

{ij},∗]− P∗q−1|n−2[p
{ij},∗]

]
= 0 (A12)

showing that if p∗i = p∗j then p∗ solves FA.

To show the converse, assume, towards the contradiction, that p∗ with

0 < p∗i < 1 and 0 < p∗j < 1 solves FA and p∗i 6= p∗j . Then, from (A12),

P∗q−2|n−2[p
{ij},∗] = P∗q−1|n−2[p

{ij},∗]. This is impossible with n = 2; hence

for the remainder of the proof of lemma A2, assume that n ≥ 3.

First, note that P∗q−2|n−2[p
{ij},∗] = P∗q−1|n−2[p

{ij},∗] > 0. If not then we

would have P∗s|n−2[p
{ij},∗] = 0 for all s ≥ q−2 and consequently Pq|n[p∗] = 0,

contradicting the optimality of p∗ in FA as Pq|n[p(0, p, 0)] > Pq|n[p∗] =

0. Now P∗q−2|n−2[p
{ij},∗] = P∗q−1|n−2[p

{ij},∗] > 0 implies that there exists

at least one element of p{ij},∗, p∗k satisfying 0 < p∗k < 1. If all of the

entries of p{ij},∗ were equal either to zero or unity, then we would have
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P∗q−2|n−2[p
{ij},∗] 6= P∗q−1|n−2[p

{ij},∗]. Rewriting

P∗q−2|n−2[p
{ij},∗]−P∗q−1|n−2[p

{ij},∗] =

= p∗k

[
P∗q−3|n−3[p

{ijk},∗]− P∗q−2|n−3[p
{ijk},∗]

]
+

(1− p∗k)
[
P∗q−2|n−3[p

{ijk},∗]− P∗q−1|n−3[p
{ijk},∗]

]
.

(A13)

With 0 < p∗k < 1, P∗q−2|n−2[p
{ij},∗] − P∗q−1|n−2[p

{ij},∗] = 0 holds in either of

the three cases.

Case 1 has P∗q−s|n−3[p
{ijk},∗] = 0 for s ∈ {1, 2, 3}, which is impossible by

the argument similar to that we used to show P∗q−2|n−2[p
{ij},∗] > 0. Case

2 has P∗q−s|n−3[p
{ijk},∗] − P∗q−s+1|n−3[p

{ijk},∗] = 0 for s ∈ {2, 3}, which is

impossible as P∗q|n[p] is, as a function of q, first strictly increasing and then

strictly decreasing, except possibly for two equal maxima (Darroch, 1964).

The result in Darroch (1964) relies on all of the entries of p being strictly

between zero and unity, but it extends to our setting as well. Denote the

number of zero entries in p by z, the number of unit entries in p by u and

by p{zu} the original p after dropping all the zero and unit elements. Then

P∗q|n[p] = P∗q−u|n−z−u[p{zu}]. Notice n − z − u > 0, otherwise we cannot be

in case 2.

Case 3, the only one possible, has P∗q−3|n−3[p
{ijk},∗] < P∗q−2|n−3[p

{ijk},∗]

and P∗q−2|n−3[p
{ijk},∗] > P∗q−1|n−3[p

{ijk},∗]. Now, as p∗i 6= p∗j , either p∗i 6= p∗k
or p∗j 6= p∗k. Without loss of generality, assume that p∗i 6= p∗k. Replacing p∗k
with p∗i in (A13), we have

P∗q−2|n−2[p
{jk},∗]− P∗q−1|n−2[p

{jk},∗] 6= 0 (A14)

which by (A12) implies that p∗j = p∗k as 0 < p∗k < 1. Finally, if p∗i 6= p∗j are

part of p∗, solving FA, then so are, by (A12), p′∗i = p∗i − ε and p′∗j = p∗j + ε

for all sufficiently small ε 6= 0. Repeating the same argument that lead to

p∗j = p∗k, using p′∗i and p′∗j instead of p∗i and p∗j , we find p′∗j = p∗k, contradicting

the obvious p∗j 6= p′∗j . �

By lemma A2, the p∗ solving FA satisfies p∗ = p(r∗, p∗, s∗) where

p∗ = b−s∗
n−r∗−s∗ . What remains are parts 3.(a) through 3.(e) characteriz-

ing r∗ and s∗. Part 3.(b), r∗ ≤ n − q, is obvious. With r∗ > n − q, the

number of committee members receiving non-zero favours is strictly less
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than q and Pq|n[p(r∗, p∗, s∗)] = 0, which can always be improved upon by

Pq|n[p(0, p, 0)] > 0

For parts 3.(a), s∗ = 0, and 3.(d), r∗ = 0, if b < q−1, first note that both

hold for n = 1; hence until we prove 3.(a) and 3.(d), assume that n ≥ 2.

To proceed, we analyse the first order necessary conditions for optimality

derived from (A9) that read

∂U(p∗)

∂pi
− λ∗ +m−,∗ = 0 if p∗i = 0

∂U(p∗)

∂pi
− λ∗ = 0 if 0 < p∗i < 1

∂U(p∗)

∂pi
− λ∗ −m+,∗ = 0 if p∗i = 1

(A15)

which, using the non-negativity of the Lagrange multipliers, can be rewritten

as
∂U(p∗)

∂pi

∣∣∣∣
p∗i=1

≥ ∂U(p∗)

∂pi

∣∣∣∣
0<p∗i<1

≥ ∂U(p∗)

∂pi

∣∣∣∣
p∗i=0

(A16)

and implies that

P∗q−1|n−2[p
{ij},∗] ≥ P∗q−2|n−2[p

{ij},∗] (A17)

for any pair of p∗i 6= p∗j .

For q = 1, 3.(a) holds by the virtue of the fact that b < 1 and 3.(d) holds

vacuously as b < q − 1 = 0. For q = n, 3.(a) holds as s∗ > 0 implies the left

hand side of (A17) is equal to zero and hence Pq|n[p(r∗, p∗, s∗)] = 0. Note

that we can use argument based on (A17), as it is not possible for all of the

elements of p∗ to equal unity. Still for q = n, 3.(d) also holds because r∗ > 0

implies that Pq|n[p(r∗, p∗, s∗)] = 0, which can be improved upon. Notice

that by covering q = 1 and q = n cases, we have shown that 3.(a) and 3.(d)

for n = 2; hence until we prove 3.(a) and 3.(d) fully, assume that n ≥ 3.

Now consider a number of entries in p∗ = p(r∗, p∗, s∗) different from

zero and unity, n − r∗ − s∗. Naturally, n − r∗ − s∗ = 0 only for integer

value of b, but then Pq|n[p∗] = 0 as the largest integer b satisfying b < q

is q − 1. Moreover, n − r∗ − s∗ 6= 1. If this were so, then the only case

in which Pq|n[p∗] > 0 would be s∗ = q − 1. Then, we could obtain p{ij},∗

in (A17) by dropping the non-zero non-unit entry and one unit entry. This

would make the p{ij},∗ n − 2 vector with q − 2 unit entries and n − q zero
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entries. Subsequently, the left hand side of (A17) would equal zero and the

right hand side would equal unity. As a result, we have n− r∗ − s∗ ≥ 2.

Writing p{ij},∗ in general form, it will have r∗ − z zero entries, s∗ − u
unit entries and n−2− (r∗−z)− (s∗−u) of the p∗ entries, where 0 ≤ z ≤ 2,

0 ≤ u ≤ 2 and 0 ≤ 2 − (z + u) ≤ 2, with z and u denoting the number

of zero and unit entries dropped from the original p∗, respectively. Using

lemma A1, we can rewrite (A17) as

(n− 2− (r∗ − z)− (s∗ − u) + 1) p∗
z+u=1

= b− s∗
z+u=1
≥ q − 2− (s∗ − u) + 1.

(A18)

Now, assume that s∗ ≥ 1 in p∗ solving FA. Then, we can set u = 1 in (A18)

to obtain b ≥ q, a contradiction to b < q proving 3.(a). Similarly, assume

that r∗ ≥ 1 in p∗ solving FA for b < q− 1. Then, we can set z = 1 in (A18)

to obtain b ≥ q − 1, a contradiction proving that 3.(d). As r∗ = s∗ = 0 are

the only remaining possibilities, this also proves the uniqueness claim from

3.(e).

What remains to be shown is 3.(c) and the uniqueness claim from 3.(e).

The results thus far imply we can express the value of the maximized ob-

jective function in FA as

Pq|n[p∗] = F (q, n− r, b/(n− r)) (A19)

with r = 0 when b < q − 1 and r ∈ {0, . . . , n− q} when q − 1 ≤ b ≤ q. The

argument below and proof of theorem 1 both use arguments based on the

derivative of F (q, n− r, b/(n− r)) with respect to b. The derivative can be

expressed in several alternative ways summarized in the following lemma.

Lemma A3. Assume 0 ≤ b ≤ q and r ∈ {0, . . . , n− q}. Then,

∂F (q, n− r, b/(n− r))
∂b

=

(
b

n−r

)q−1 (
n−r−b
n−r

)n−r−q
B(k, n− r − (q − 1))

1

n− r
= f(q − 1, n− r − 1, b/(n− r))

=
q

b
f(q, n− r, b/(n− r))

=
n− r − (q − 1)

n− r − b
f(q − 1, n− r, b/(n− r))

(A20)
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with ∂F (q,n−r,b/(n−r))
∂b > 0 for all 0 < b ≤ q.

Proof. The lemma is easily proved using (A4). �

To prove 3.(c), we first show that the interval for b such that r∗ = n− q
is convex. This will follow from the next lemma showing that F (q, q, b/q)

increases faster in b than F (q, n− r, b/(n− r)) for r ∈ {0, . . . , n− q− 1} and

b ∈ [q−1, q]. Note that we only need to focus on b ∈ [q−1, q]. For b < q−1,

we know that r∗ = 0.

Lemma A4. Assume that q − 1 ≤ b ≤ q. Then,

∂F (q, q, b/q)

∂b
>
∂F (q, n− r, b/(n− r))

∂b
(A21)

for r ∈ {0, . . . , n− q − 1}.

Proof. Evaluating ∂F (q,n−r−1,b/(n−r−1))
∂b > ∂F (q,n−r,b/(n−r))

∂b at b = q − 1 for

r ∈ {0, . . . , n− q − 1} using lemma A3, we have

f(q−1, n−r−1, (q−1)/(n−r−1)) > f(q−1, n−r−1, (q−1)/(n−r)). (A22)

This holds because f(q − 1, n − r − 1, p) is strictly increasing in p for p <
q−1

n−r−1 , and we have q−1
n−r <

q−1
n−r−1 . Thus ∂F (q,n−r,b/(n−r))

∂b

∣∣∣
b=q−1

is strictly

increasing in r for r ∈ {0, . . . , n− q − 1}.
Using lemma A3 again ∂F (q,q,b/q)

∂b > ∂F (q,n−r,b/(n−r))
∂b rewrites as

1 >

(
n− r
q

)(
q

n− r

)q (n− r − q
n− r

)n−r−q (n− r − b
n− r − q

)n−r−q
(A23)

which we know holds for r ∈ {0, . . . , n − q − 1} at b = q − 1. However, it

then has to hold for b ∈ [q−1, q] as the last term, the only one that depends

on b, is decreasing in b. �

By lemma A4, we know that if F (q, q, b/q) ≥ F (q, n− r, b/(n− q)) holds

for some b = b′ ∈ [q − 1, q] and r ∈ {0, . . . , n − q − 1}, then it has to hold

strictly for all b ∈ (b′, q]. Denote by b̂q|r the value of b ∈ [q − 1, q] solving

F (q, q, b/q) = F (q, n−r, b/(n−q)) for r ∈ {0, . . . , n−q−1}. By the preceding

argument, there is either exactly one such b or it does not exist. In the latter

case, set b̂q|r = q − 1. Define b̂q = maxr∈{0,...,n−q−1} b̂q|r. Clearly, r∗ = n− q
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if and only if b ∈ [b̂q, q], and by lemma A4 r∗ = n − q is unique solution to

FA if b > b̂q.

What remains to be shown is that q > b̂q ≥ q + 2 + 1
q −

(
1 + 1

q

)q+1
.

This follows from the definition of b̂q, easily verifiable b̂q|n−q−1 = q + 2 +

1
q −

(
1 + 1

q

)q+1
, and the fact that r∗ = n − q at b = q combined with the

continuity of F (q, n−r, b/(n−r)) in b and F (q, q, 1) = 1 > F (q, n−r, q/(n−
r)) for any r ∈ {0, . . . , n−q−1}. Note that q > q+2+ 1

q−
(

1 + 1
q

)q+1
≥ q−1.

It holds for q = 1 and otherwise is easily observed using the monotonic

decreasing convergence of
(

1 + 1
q

)q+1
to limq→∞

(
1 + 1

q

)q+1
= e (Sandor,

2007). �

A1.3 Proof of proposition 2

First, notice that b∗ maximizing (B − b)Rq|n[b] has to satisfy b∗ ≤ q for any

B. For b ≥ q, Rq|n[b] = 1; hence the objective function of CE is strictly

decreasing in b for b > q. We must therefore show that b∗ 6= q for B < q+ 1.

Assume that b∗ = q and B < q + 1. Then, we have Rq|n[b∗] = 1, and

the value of the objective function in CE is equal to B − q. Consider now a

deviation consisting of allocating pi = 1− ε to exactly one of the committee

members receiving unit favours for some small ε > 0. The expected utility

of this deviation is (B − q + ε)(1− ε). Because, by conjecture, b∗ = q solves

CE
B − q ≥ (B − q + ε)(1− ε)

B ≥ q + 1− ε.
(A24)

The second inequality has to hold for any ε > 0 so it rewrites as B ≥ q + 1,

contradicting B < q + 1. This proves part one of the theorem.

For part two, assume that b∗ is such that r∗ in the associated FA satisfies

r∗ = n − q. With voting rule q, this implies that all committee members

allocated positive favours have to vote yes for the chair’s proposal to pass.

Her objective function in CE under r∗ = n− q is thus

(B − b)
(
b

q

)q
(A25)

which is maximized at b = B q
q+1 . From proposition 1, we know that r∗ =

n − q cannot be optimal in FA for b < q − 1. Condition in part two of the

theorem, B q
q+1 < q − 1, which can be rewritten as B < q − 1

q , thus implies
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a contradiction to r∗ = n− q.
Part three is immediate given the characterization of the solution to FA.

With B < q − 1, b∗ < q − 1, which implies that r∗ = 0. �

A1.4 Proof of theorem 1

As in the proof of proposition 2, any b∗ solving CE has to satisfy b∗ ≤ q.

Therefore, we need to show that b < q cannot solve CE. Additionally, notice

that if we show that b∗ = q for given size of the overall budget B′, then b∗ = q

for any B ≥ B′. To see this, b∗ = q for B′ means that

B′ − q ≥ (B′ − b)Rq|n[b] (A26)

holds for all b ≤ q. Adding a positive c to both sides

(B′ + c)− q ≥ (B′ − b)Rq|n[b] + c

≥ ((B′ + c)− b)Rq|n[b]
(A27)

where the second inequality follows from Rq|n[b] ∈ [0, 1].

Because the characterization of the solution to FA in proposition 1 does

not specify the number of the committee members receiving zero favours

for b ∈ [q − 1, q], we will be working with F (q, n − r, b/(n − r)) instead of

working with Rq|n[b]. However, we know that any solution to FA has to

have r ∈ {0, . . . , n − q}. To avoid unnecessary repetitions, from now on

statements ‘for all r’ are taken to mean ‘for all r ∈ {0, . . . , n− q}’.
Our approach to proving theorem 1, except for the last part, will be to

show that the derivative of the objective function in CE is increasing as a

function of b. The following lemma summarizes behaviour of the derivative.

Lemma A5. Assume b ≤ q. Then

∂

∂b
(B − b)F (q, n− r, b/(n− r)) =

= (B − b)q
b
f(q, n− r, b/(n− r))− F (q, n− r, b/(n− r))

≥ q
b
f(q, n− r, b/(n− r)) [B − n− 1 + r + q − b] .

(A28)

Proof. The equality follows from lemma A3. To demonstrate the inequality,

we have F (q, n − r, b/(n − r)) =
∑n−r

s=q f(s, n − r, b/(n − r)). Furthermore,
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by applying lemma A1, we have f(q, n− r, b/(n− r)) ≥ f(s, n− r, b/(n− r))
for s ∈ {q + 1, . . . , n− r}. This implies that

q

b
f(q, n− r, b/(n− r)) [n− r − q + 1] ≥ F (q, n− r, b/(n− r)) (A29)

providing us the result to be shown. �

Using lemma A5, for B = n + 1, and hence for any larger B by the

opening remark, the derivative of the objective function in CE with respect

to b is strictly positive for b < q and any r. This proves part one of the

theorem.

The current setup now lends itself to proving part four. We will return to

parts two and three shortly. We begin the proof of part four, which applies

for B ≥ n and q ≤ n − 1, again using lemma A5. Now it implies that the

objective function in CE is strictly increasing in b for b < q and any r ≥ 1.

Therefore, assume that r = 0 until we prove part four. For r = 0, we cannot

use lemma A5, as there is one term too many in F (q, n, b/n), each of which

we are replacing by f(q, n, b/n). However, the next lemma shows that the

sum of the four terms in F (n− 3, n, b/n), as a fraction of f(n− 3, n, b/n), is

less than three for any b ≤ n − 3. This will prove part four of the theorem

for any q ≤ n−3, as the square brackets in (A28) become [B−n+r+q−b].
Naturally, we can only use this argument for n ≥ 4.

Lemma A6. Assume that b ≤ n− 3 and n ≥ 4. Then,∑n
s=n−3 f(s, n, b/n)

f(n− 3, n, b/n)
≤ 3. (A30)

Proof. Using simple algebra, the expression can be rewritten as

1 +
3

n− 2

b

n− b
+

6

(n− 1)(n− 2)

(
b

n− b

)2

+
6

n(n− 1)(n− 2)

(
b

n− b

)3

.

(A31)

It is clearly continuous and increasing in b. Therefore, it remains to show

that it is less than 3 when evaluated at b = n−3. Doing so along with some

algebra yields
1

9

[
26− 4

n− 2
− 8

n− 1
− 27

n

]
≤ 27

9
(A32)
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for any n ≥ 4. �

What remains for part four of the theorem are q = n − 2 and q =

n − 1 when r = 0. We cannot use the same argument as above, based

on a strictly increasing objective function in CE, as the objective function

might have local maxima for r = 0. Instead, we will directly confirm that

(B − b)Rq|n[b] ≤ B − q for any b ≤ q. We set B = n, which suffices to prove

part four of the theorem by the opening remark.

With B = n and r = 0, the objective function in CE rewrites as, using

p = b
n , n(1 − p)F (q, n, p). Expanding F (q, n, p), the objective function will

be a sum of n− q + 1 terms with a typical one being

n(1− p)
(
n

s

)
ps(1− p)n−s. (A33)

Maximizing each term individually, its maximum is attained at p = s
n+1 ,

with a value of

n

(
n+ 1− s

s

)n+1−s(n
s

)(
1− n+ 1− s

n+ 1

)n+1

(A34)

yielding (
1− 1

n+ 1

)n+1

for s = n

4

1

n2

(n− 1)2

(
1− 2

n+ 1

)n+1

for s = n− 1

27

2

n2(n− 1)

(n− 2)3

(
1− 3

n+ 1

)n+1

for s = n− 2.

(A35)

Naturally, maximizing each term individually yields the maximum value

weakly larger than joint maximization. Therefore, we need to show that the

sum of the first two terms in (A35), for q = n− 1, and the sum of the first

three terms in (A35), for q = n− 2, is less than 1 and 2, respectively, values

of the objective function in CE for B = n, r = n− q and b = q.

All of the terms in (A35) of the form
(

1− s
n+1

)n+1
are monotone in-

creasing to their limit exp [−s]. This can be seen from arithmetic geometric

mean inequality using a similar technique as in Sandor (2007), the details
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of which we do not believe need to be provided in full here. Thus, we need

4

1

n2

(n− 1)2
1

e2
+

1

e
≤ 1

27

2

n2(n− 1)

(n− 2)3
1

e3
+

4

1

n2

(n− 1)2
1

e2
+

1

e
≤ 2

(A36)

which holds for n ≥ 14. For the remaining values of n, that is for n ∈
{2, . . . , 13} under q = n − 1 and n ∈ {3, . . . , 13} under q = n − 2, we

have numerically confirmed that the maximized value of n(1− p)F (q, n, p),

maximized jointly with respect to p, is below 1 and 2 for the applicable

values of q. The details of the procedure, the Mathematica notebook, are

available upon request.

We now return to part two, which applies for B ≥ (q + 1)(2 − q
n). We

are aware that part one of the theorem can be proven from part two by

maximizing (q + 1)(2 − q
n) with respect to q. However proving part one

separately allowed us to focus on the case of r = 0 in the proof of part four.

Additionally, it was instrumental in explicitly showing the main approach

to the proof, ensuring that the derivative of the expected utility in CE is

strictly increasing in b.

We use the same approach, if somewhat differently, now. The following

expression presents a series of inequalities for the derivative of the objective

function in CE. We explain the source of each inequality after stating all of
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them. For any b ≤ q

∂

∂b
(B − b)F (q, n− r, b/(n− r)) =

0
= (B − b)q

b
f(q, n− r, b/(n− r))− F (q, n− r, b/(n− r))

1
≥ q
b
f(q, n− r, b/(n− r))

[
B − b− F (q, n− r, b/(n− r))

f(q, n− r, b/(n− r))

]
2
≥ q
b
f(q, n− r, b/(n− r))

[
B − b− F (q, n− r, q/(n− r))

f(q, n− r, q/(n− r))

]
3
=
q

b
f(q, n− r, b/(n− r))

[
B − b−

(
1 +

F (q + 1, n− r, q/(n− r))
f(q, n− r, q/(n− r))

)]
4
≥ q
b
f(q, n− r, b/(n− r))

[
B − b−

(
1 +

F (q + 1, n− r, q/(n− r))
f(q + 1, n− r, q/(n− r))

)]
5
≥ q
b
f(q, n− r, b/(n− r))

[
B − b−

(
1 +

(q + 1)(1− q
n−r )

q + 1− q

)]
6
≥ q
b
f(q, n− r, b/(n− r))

[
B − b−

(
1 +

(q + 1)(n− q)
n

)]
.

(A37)

0
= uses lemma A3 to rewrite the derivative.

1
≥ follows from q

b ≥ 1.
2
≥

follows from F (q,n−r,b/(n−r))
f(q,n−r,b/(n−r)) =

∑n−r
s=q f(s,n−r,b/(n−r))
f(q,n−r,b/(n−r)) increasing in b. To see

this, the typical term in the sum will be of the form

f(s, n− r, b/(n− r))
f(q, n− r, b/(n− r))

=

(
n−r
s

) (
b

n−r

)s (
n−r−b
n−r

)n−r−s
(
n−r
q

) (
b

n−r

)q (
n−r−b
n−r

)n−r−q
=

(
n−r
s

)(
n−r
q

) ( b

n− r − b

)s−q (A38)

where b
n−r−b is clearly increasing in b.

3
= is an identity cancelling the first

term in
∑n−r
s=q f(s,n−r,b/(n−r))
f(q,n−r,b/(n−r)) . We can only use this for q ≤ n − 1 and r ≤

n − q − 1. It is easy to see that for the remaining cases, the bound on B

ensuring a strictly increasing objective function in CE is q+1. This is weaker

than the bound we will derive below.
4
≥ follows from lemma A1, implying

that f(q, n−r, q/(n−r)) ≥ f(q+1, n−r, q/(n−r)).
5
≥ follows from Diaconis

and Zabell’s theorem A2. Finally,
6
≥ follows from − q

n−r decreasing in r.

Part two of the theorem is now immediate. The objective function in

CE is strictly increasing in b for any b < q if B − b > 1 + (q+1)(n−q)
n . This
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can be rewritten as B ≥ q + 1 + (q+1)(n−q)
n = (q + 1)(2− q

n).

Part three remains. As the line of the argument is very similar to part

two, we only indicate where it differs regarding (A37). Lines
3
= and

4
≥ can

be omitted, and the remaining lines become

5′

≥ q
b
f(q, n− r, b/(n− r))

[
B − b− F (q, n, q/n)

f(q, n, q/n)

]
6′

≥ q
b
f(q, n− r, b/(n− r))

[
B − b−

(
1− q

n

)
2F1(1, 1 + n, 1 + q, qn)

]
.

(A39)

where 2F1 is an ordinary or Gaussian hypergeometric function. To prove

that
5′

≥, we need to show that F (q,n−r,q/(n−r))
f(q,n−r,q/(n−r)) is decreasing in r.

6′

≥ is then

a matter of simply rewriting the tail probability to the probability mass

function ratio in terms of the hypergeometric function.

Lemma A7. F (q,n−r,q/(n−r))
f(q,n−r,q/(n−r)) is decreasing in r for r ∈ {0, . . . , n− q − 1}.

Proof. Rewriting the expression

F (q, n− r, q/(n− r))
f(q, n− r, q/(n− r))

=

∑n−r
s=q f(s, n− r, q/(n− r))
f(q, n− r, q/(n− r)

(A40)

note that increasing r implies fewer terms in the sum. For s > k, the typical

term in the sum will be equal to

f(s, n− r, q/(n− r))
f(q, n− r, q/(n− r))

=

(
n−r
s

)(
n−r
k

)
(

k
n−r

)s
(

k
n−r

)k
(
n−r−k
n−r

)n−r−s
(
n−r−k
n−r

)n−r−k
=
k!

s!

(
k

n− r − k

)s−k (n− r − k)!

(n− r − s)!

=
k!ks−k

s!

(n− r − k)

(n− r − k)
· . . . · (n− r − s+ 1)

(n− r − k)︸ ︷︷ ︸
s−k

(A41)

with the typical term among the last s−k ones n−r−s+i
n−r−k for i ∈ {1, . . . , s−k}.

It is easy to confirm that n−r−s+i
n−r−k is decreasing in r when i − (s − k) ≤ 0,

which clearly holds. The expression in the lemma, for larger r, is thus not

only sum of a smaller number of terms, but each of its summands is smaller

for larger values of r. The lemma follows. �

Finally, the theorem asserts that the bounds of parts one through three
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are decreasing. n + 1 ≥ (q + 1)(2 − q
n) can be observed by maximizing the

lower bound over q ∈ {1, . . . , n}. (q + 1)(2 − q
n) ≥ q + (1 − q

n) 2F1(1, 1 +

n, 1 + q, qn) then follows from the fact that the larger bound is derived using

an approximation of the exact value embedded in the lower bound. �

A1.5 Proof of theorem 2

To prove the theorem, we use Hoeffding’s theorem A1. As in the statement

of the theorem, express the key model parameters as a fraction of n, b′ = b
n ,

q′ = q
n , B′ = B

n and r′ = r
n ∈ [0, 1− q′] and fix all the primed variables when

n changes. We ignore possible non-integer values of the implied q and r.

With n − r = n(1 − r′) of the committee members receiving positive

favours and hence voting yes with probability p = b
n−r = b′

1−r′ , we can set

t = q−b
n−r = q′−b′

1−r′ in the statement of theorem A1. Notice t > 0 can be

rewritten as q′ > b′ and t ≤ 1− p as r′ ≤ 1− q′. Now using theorem A1, we

thus have

F (q, n− r, b/(n− r)) =F ((n− r)(p+ t), n(1− r′), b′/(1− r′))

≤ exp [−2(n− r)t2]

≤ exp

[
−2n

(q′ − b′)2

1− r′

] (A42)

where (q′−b′)2
1−r′ is strictly positive for q′ > b′ and any r′ ∈ [0, 1− q′].

Now, the condition for the given value of b′ and the implied value of b

to be optimal in CE is

(B − b)F (q, n− r, b/(n− r)) ≥B − q

F (q, n(1− r′), b′/(1− r′)) ≥ B
′ − q′

B′ − b′
.

(A43)

Fixing b′ such that ε = q′ − b′ > 0 and assuming that B′ > q′, there exists

n ε such that for any n ≥ n ε

F (q, n(1− r′), b′/(1− r′)) ≤ exp

[
−2n

(q′ − b′)2

1− r′

]
<
B′ − q′

B′ − b′
(A44)

as limn→∞ exp
[
−2n (q′−b′)2

1−r′
]

= 0, which concludes the proof. �
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