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Abstract

For marriage markets with equal numbers of men and women and where all men find all women
acceptable and all women find all men acceptable, Sasaki and Toda (1992) characterize the
core by anonymity, Pareto optimality, consistency, and converse consistency. In a recent paper,
Nizamogullari and Özkal-Sanver (2012) generalize this result to the full domain of marriage
markets by adding individual rationality and by replacing anonymity with gender fairness. We
generalize both results by characterizing the core on the domain of no odd rings roommate
markets by individual rationality, anonymity, Pareto optimality, consistency, and converse con-
sistency. We also prove that extending this characterization to the domain of solvable roommate
markets is not possible.

JEL classification: C78, D63.
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1 Introduction

We consider one-to-one matching markets in which agents can either be matched as pairs or remain
single. These markets are known as roommate markets and they include, as special cases, the well-
known marriage markets (Gale and Shapley, 1962; Roth and Sotomayor, 1990). Furthermore, a
roommate market is a simple example of hedonic coalition formation as well as network formation:
in a “roommate coalition” situation, only coalitions of size one or two can be formed and in a
“roommate network” situation, each agent is allowed or able to form only one link (for surveys of
coalition and network formation see Demange and Wooders, 2004; Jackson, 2008).

Various characterizations of the core have been established for marriage markets (Sasaki and
Toda, 1992; Toda, 2006). For these well-known “benchmark matching markets,” the set of core
matchings forms a distributive lattice and reflects polarization between the two sides of the market
(Knuth, 1997, attributed this result to John Conway). For one-sided matching problems such as
roommate markets and coalition/network formation, the core does not exhibit such strong struc-
tural properties and hence it is an interesting question to ask if the structure of the core drives the
normative characteristics of the core or if the characterizing properties are strong enough indepen-
dent of the particular (lattice) structure of the core.
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Toda (2006) provided two characterizations of the core using the well known solidarity property
of population monotonicity, which he adapted to the two-sided setup of marriage markets. Klaus
(2011) and Can and Klaus (2012) introduced the new properties of competition and resource sen-
sitivity for roommate markets to account for the loss of two-sidedness and established associated
core characterizations for various roommate market preference domains (including the domain of
marriage markets). However, whether or not the first characterization of the core for marriage
markets by Sasaki and Toda (1992) could also be extended to the one-sided model of roommate
markets has been an open question for twenty years. We provide the answer to this question in
this article.

For marriage markets with equal numbers of men and women and where all men find all women
acceptable and all women find all men acceptable, Sasaki and Toda (1992) characterized the core
by anonymity,1 Pareto optimality, consistency,2 and converse consistency3. In a recent paper,
Nizamogullari and Özkal-Sanver (2012) generalized this result to the full domain of marriage mar-
kets by adding individual rationality and by strengthening anonymity to gender fairness.4 Further-
more, Özkal-Sanver (2010, Proposition 4.2) showed that on the domain of all roommate markets,
no solution satisfies Pareto optimality, anonymity, and converse consistency. However, the proof
of this impossibility result used an unsolvable roommate market. Hence, the question whether
or not the characterization of Sasaki and Toda (1992) can be extended to the domain of solvable
roommate markets or to any of its subdomains (apart from the domain of marriage markets) has
not been answered until now.

In this article, we will first extend the characterizations of Sasaki and Toda (1992) and
Nizamogullari and Özkal-Sanver (2012) to the domain of no odd rings roommate markets (Theo-
rem 3). Second, we will show that the corresponding properties are compatible on the domain of
solvable roommate markets, but that they do not characterize the core (Example 1).

Our paper is organized as follows. In Section 2 we present the roommate model, basic properties
of solutions, and the core. In Section 3, we introduce the variable population properties consistency
and converse consistency. Section 4 first reviews the above mentioned characterizations of the core
(Theorems 1 and 2) and an impossibility result (Özkal-Sanver, 2010, Proposition 4.2). We then
establish a new characterization of the core for no odd rings roommate markets (Theorem 3) and
establish a new possibility result on the domain of solvable roommate markets (Example 1).

2 Roommate Markets

The following Subsections 2.1 and 2.2 mostly follow Klaus (2011) and Can and Klaus (2012).

1Anonymity : matchings assigned by the solution do not depend on agents’ names.
2Consistency : if a set of matched agents leaves, then the solution should still match the remaining agents as

before.
3Converse consistency : matchings assigned by the solution are (conversely) related to the matchings the solution

assigns to certain restricted roommate markets (with at most four agents).
4Gender fairness (Özkal-Sanver, 2004) requires that renaming men as women, and renaming women as men, does

not change the outcomes chosen by the solution when taking the renaming of agents into account.
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2.1 The Model

We consider Gale and Shapley’s (1962, Example 3) roommate markets with variable sets of agents,
e.g., because the allocation of dormitory rooms at a university occurs every year for different sets
of students.

Let N be the set of potential agents5 and N be the set of all non-empty finite subsets of N, i.e.,
N = {N ⊂ N | ∞ > |N | > 0}. For N ∈ N , L(N) denotes the set of all linear orders over N .6 For
i ∈ N , we interpret Ri ∈ L(N) as agent i’s strict preferences over sharing a room (being matched)
with any of the agents in N \ {i} and being single (consuming an outside option); e.g., Ri : j, k, i, l
means that i would first like to share a room with j, then with k, and then i would prefer to stay
alone rather than sharing the room with l. If j Pi i, then agent i finds agent j acceptable and if
i Pi j, then agent i finds agent j unacceptable. RN =

∏
N L(N) denotes the set of all preference

profiles of agents in N (over agents in N). A roommate market consists of a set of agents N ∈ N
and their preferences R ∈ RN and is denoted by (N,R). A marriage market (Gale and Shapley,
1962) is a roommate market (N,R) such that N is the union of two disjoint sets M and W and
each agent in M (respectively W ) prefers being single to being matched with any other agent in
M (respectively W ).

A matching µ for roommate market (N,R) is a function µ : N → N of order two, i.e., for all
i ∈ N , µ(µ(i)) = i. Thus, at any matching µ, the set of agents is partitioned into pairs of agents
who share a room and singletons (agents who do not share a room). Agent µ(i) is agent i’s match
and if µ(i) = i then i is matched to himself or single. For notational convenience, we often denote
a matching in terms of the induced partition, e.g., for N = {1, 2, 3, 4, 5} and matching µ such that
µ(1) = 2, µ(3) = 3 and µ(4) = 5 we write µ = {(1, 2), 3, (4, 5)}. For S ⊆ N , we denote by µ(S)
the set of agents that are matched to agents in S, i.e., µ(S) = {i ∈ N | µ−1(i) ∈ S}. We denote
the set of matchings for roommate market (N,R) by M(N) (note that the set of matchings does
not depend on preferences R). If it is clear which roommate market (N,R) we refer to, matchings
are assumed to be elements ofM(N). Since agents only care about their own matches, we use the
same notation for preferences over agents and matchings: for all agents i ∈ N and matchings µ, µ′,
µ Ri µ

′ if and only if µ(i)Ri µ
′(i).

Given a roommate market (N,R) and N ′ ⊆ N , we define the reduced preferences R′ ∈ RN ′ of
R to N ′ as follows:

(i) for all i ∈ N ′, R′i ∈ L(N ′) and

(ii) for all j, k, l ∈ N ′, j R′l k if and only if j Rl k.

We denote the reduced preferences of R to N ′ by RN ′ .

Given a roommate market (N,R), a matching µ ∈ M(N), and N ′ ⊆ N such that µ(N ′) = N ′,
the reduced (roommate) market of (N,R) at µ to N ′ equals (N ′, RN ′).

Given a roommate market (N,R), a matching µ ∈ M(N), and N ′ ⊆ N such that µ(N ′) = N ′,
we define the reduced matching µ′ of µ to N ′ as follows:

5All results remain valid for a finite set of potential agents that contains at least 6 agents (the proof of our main
result, Theorem 3, as well as the independence of properties in Theorem 3 can be shown with a population of 6
agents).

6A linear order over N is a binary relation R̄ that satisfies antisymmetry (for all i, j ∈ N , if i R̄ j and j R̄ i, then
i = j), transitivity (for all i, j, k ∈ N , if i R̄ j and j R̄ k, then i R̄ k), and comparability (for all i, j ∈ N , i R̄ j or j R̄ i).
By P̄ we denote the asymmetric part of R̄. Hence, given i, j ∈ N , i P̄ j means that i is strictly preferred to j; i R̄ j
means that i P̄ j or i = j and that i is weakly preferred to j.
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(i) µ′ : N ′ → N ′ and

(ii) for all i ∈ N ′, µ′(i) = µ(i).

We denote the reduced matching of µ to N ′ by µN ′ . Note that µN ′ ∈M(N ′).

In the sequel, we consider various domains of roommate problems: the domain of all roommate
markets D, the domain of marriage markets DM , and later the domains of solvable and of no odd
rings roommate markets. To avoid notational complexity when introducing solutions and their
properties, we use the domain of all roommate markets D with the understanding that any other
domain could be used as well.

A solution ϕ on D is a correspondence that associates with each roommate market (N,R) ∈ D
a nonempty subset of matchings, i.e., for all (N,R) ∈ D, ϕ(N,R) ⊆ M(N) and ϕ(N,R) 6= ∅. A
subsolution ψ of ϕ on D is a correspondence that associates with each roommate market (N,R) ∈ D
a nonempty subset of matchings in ϕ(N,R), i.e., for all roommate markets (N,R) ∈ D, ψ(N,R) ⊆
ϕ(N,R) and ψ(N,R) 6= ∅. A proper subsolution ψ of ϕ on D is a subsolution of ϕ on D such that
ψ 6= ϕ.

2.2 Basic Properties and the Core

We first introduce a voluntary participation condition based on the idea that no agent can be forced
to share a room.

Individual Rationality: Let (N,R) ∈ D and µ ∈ M(N). Then, µ is individually rational if
for all i ∈ N , µ(i) Ri i. IR(N,R) denotes the set of all these matchings. A solution ϕ on D
is individually rational if it only assigns individually rational matchings, i.e., for all (N,R) ∈ D,
ϕ(N,R) ⊆ IR(N,R).

An individually rational matching for a marriage market (N,R) ∈ DM respects the partition
of agents into two types and never matches two men or two women. Hence, we embed marriage
markets into our roommate market framework by an assumption on preferences (same gender agents
are unacceptable) and individual rationality to ensure that no two agents of the same gender are
matched. We refer to a marriage market for which matching agents of the same gender is not
feasible as a classical marriage market (Gale and Shapley, 1962).

Anonymity requires that the agents’ matches do not depend on their names. A permutation π
of N is a bijective function π : N→ N. By ΠN we denote the set of all permutations of N.

Let N ∈ N . Given π ∈ ΠN and a roommate market (N,R), let Nπ = {i ∈ N | π−1(i) ∈ N} and
Rπ ∈ RNπ

be such that for all i, j, k ∈ N , i P πj k if and only if π−1(i) Pπ−1(j) π
−1(k). Furthermore,

for µ ∈M(N) let µπ ∈M(Nπ) be such that for all i ∈ Nπ, µπ(i) = π
(
µ(π−1(i))

)
.

Anonymity: A solution ϕ on D is anonymous if for all π ∈ ΠN and all (N,R) ∈ D, µ ∈ ϕ(N,R)
and (Nπ, Rπ) ∈ D imply µπ ∈ ϕ(Nπ, Rπ).

Next, we introduce the well-known condition of Pareto optimality.

Pareto Optimality: Let (N,R) ∈ D and µ ∈ M(N). Then, µ is Pareto optimal if there is no
other matching µ′ ∈M(N) such that for all i ∈ N , µ′ Ri µ and for some j ∈ N , µ′ Pj µ. PO(N,R)
denotes the set of all these matchings. A solution ϕ on D is Pareto optimal if it only assigns Pareto
optimal matchings, i.e., for all (N,R) ∈ D, ϕ(N,R) ⊆ PO(N,R).
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A matching µ for roommate market (N,R) ∈ D is blocked by a pair {i, j} ⊆ N [possibly i = j]
if j Pi µ(i) and i Pj µ(j). If {i, j} blocks µ, then {i, j} is called a blocking pair for µ. A matching
is individually rational if there is no blocking pair {i, j} with i = j.

Let (N,R) ∈ D and µ ∈ M(N). Then, µ is stable if there is no blocking pair for µ. S(N,R)
denotes the set of all these matchings. A roommate market is solvable if stable matchings exist, i.e.,
(N,R) is solvable if and only if S(N,R) 6= ∅. The domain of solvable roommate markets is denoted
by DS . Furthermore, on the domain of solvable roommate markets DS , a solution ϕ is stable if it
only assigns stable matchings, i.e., for all (N,R) such that S(N,R) 6= ∅, ϕ(N,R) ⊆ S(N,R).

Gale and Shapley (1962) showed that all marriage markets are solvable, i.e., D ⊇ DS ⊇ DM ,
and they gave an example of an unsolvable roommate market (Gale and Shapley, 1962, Example 3).

For our main result we need the solvability of roommate markets and their reduced markets;
e.g., the domain of marriage markets is such a domain of roommate markets because it is closed
with respect to the reduction operator, i.e., starting from a marriage market (N,R) ∈ DM , any
reduced market (N ′, RN ′) of (N,R) is a marriage market.

Chung (2000) introduced a sufficient condition for solvability that also applies to the larger
domain of weak preferences. We formulate his well-known no odd rings condition for our strict
preference setup and refer to it as the no odd rings condition.

Let (N,R) ∈ D. Then, a ring for roommate market (N,R) is an ordered subset of agents
{i1, i2, . . . , ik} ⊆ N , k ≥ 3, such that (subscript modulo k) for all t ∈ {1, 2, .., k}, it+1 Pit it−1 Pit it.
If k is odd, then {i1, i2, . . . , ik} is an odd ring for roommate market (N,R). A roommate market
(N,R) ∈ D is a no odd rings roommate market if there exists no odd ring in (N,R). The domain
of all such roommate markets is called the domain of no odd rings roommate markets and denoted
by DNOR. The domain of no odd rings roommate markets is closed with respect to the reduction
operator and D ⊇ DS ⊇ DNOR ⊇ DM .

Another well-known concept for matching problems is the core.

A matching is in the core if no coalition of agents can improve their welfare by rematching among
themselves. For roommate market (N,R) ∈ D, core(N,R) = {µ ∈ M(N) | there exists no S ⊆
N and no µ′ ∈M(N) such that µ′(S) = S, for all i ∈ S, µ′(i)Riµ(i), and for some j ∈ S, µ′(j)Pj
µ(j)}.

Similarly as in other matching models (e.g., classical marriage markets and college admis-
sions markets with responsive preferences), the core equals the set of stable matchings, i.e., for
all (N,R) ∈ D, core(N,R) = S(N,R). Hence, the core is a solution on the domain of solvable
roommate markets DS and all its subdomains (particularly DNOR and DM ) but not on the domain
of all roommate markets D.

3 Consistency and Converse Consistency

Consistency and converse consistency are key properties in many frameworks with variable sets of
agents. Thomson (2013) provides an extensive survey of consistency and its converse for various
economic models, including marriage markets. For roommate markets, consistency essentially
requires that when a set of matched agents leaves, then the solution should still match the remaining
agents as before.
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Consistency: A solution ϕ on D is consistent if the following holds for each (N,R) ∈ D and each
µ ∈ ϕ(N,R). If (N ′, RN ′) ∈ D is a reduced market of (N,R) at µ to N ′ (i.e., µ(N ′) = N ′), then,
µN ′ ∈ ϕ(N ′, RN ′).

Lemma 1 (Can and Klaus (2012), Lemma 1). On either of the roommate market domains DS,
DNOR, or DM , no proper subsolution of the core satisfies consistency.

Lemma 1 was first established by Toda (2006, Lemma 3.6) for classical marriage markets. On
the domain of all roommate markets, no solution is a subsolution of the core for solvable problems
and satisfies consistency (Özkal-Sanver, 2010, Proposition 4.3).

Since stable matchings need not exist for the general domain of all roommate markets, we
have to restrict attention to subdomains of solvable roommate markets when studying the core.
Considering the whole domain of solvable roommate markets when studying consistency is difficult
because a solvable roommate market might well have unsolvable reduced markets. Requiring that
a solution only selects matchings that guarantee the solvability of all restricted markets, would
already steer results forcefully towards the core. However, two domains of roommate markets we
consider, DM and DNOR, satisfy “closedness” and “solvability under the restriction operation”,
i.e., for any roommate market in D′ ∈ {DM ,DNOR}, all possible reduced markets are (i) elements
of the domain D′ and (ii) solvable.

The last property we introduce is converse consistency, a property that determines the desir-
ability of a matching for a roommate market on the basis of the desirability of its restrictions to
reduced roommate markets that are obtained by taking two agents and their matches. So, given a
matching µ for a roommate market (N,R) and a set of agents N ′ ⊆ N , |N ′| = 2, if the restriction
of µ to the set of agents M ′ = N ′ ∪ µ(N ′) equals the matching chosen by the solution for this type
of roommate market, then µ must be a matching assigned by the solution.

Converse Consistency: A solution ϕ on D is conversely consistent if the following holds for each
(N,R) ∈ D and each µ ∈ M(N). If for all N ′ ⊆ N , |N ′| = 2, M ′ = N ′ ∪ µ(N ′), and all reduced
markets (M ′, RM ′) ∈ D, µM ′ ∈ ϕ(M ′, RM ′), then µ ∈ ϕ(N,R).

Proposition 1. On either of the roommate market domains DS, DNOR, or DM , the core satisfies
individual rationality, anonymity, Pareto optimality, consistency, and converse consistency.

Proof. It is easy to see that, on any roommate market domain D, the core satisfies individual
rationality, anonymity, and Pareto optimality. Can and Klaus (2012, Proposition 2) proved the
consistency of the core for either of the roommate market domains DS , DNOR, or DM .

Next, assume that the core is not conversely consistent on domain D ∈ {DS ,DNOR,DM}.
Then, there exist (N,R) ∈ D and µ ∈M(N) such that for all N ′ ⊆ N , |N ′| = 2, M ′ = N ′ ∪µ(N ′),
and all reduced markets (M ′, RM ′), µM ′ ∈ core(M ′, RM ′) and µ 6∈ core(N,R). Hence, there exists
a blocking pair {i, j} ⊆ N for µ. Let N̄ ′ = {i, j} and M ′ = (N̄ ′ ∪ µ(N̄ ′)). Then, {i, j} is also a
blocking pair for µM ′ ; a contradiction.
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4 Characterizing the Core

4.1 Previous Results

For a subdomain of the domain of classical marriage markets for which matching agents of the
same gender is not feasible, Sasaki and Toda (1992) characterized the core by anonymity, Pareto
optimality, consistency, and converse consistency.

Theorem 1 (Sasaki and Toda (1992), Main Theorem). On the domain of classical marriage mar-
kets with equal numbers of men and women and where all men find all women acceptable and all
women find all men acceptable, a solution satisfies anonymity, Pareto optimality, consistency, and
converse consistency if and only if it is the core.

In a recent paper, Nizamogullari and Özkal-Sanver (2012) generalized this result to the full
domain of classical marriage markets by adding individual rationality and replacing anonymity
with a stronger property called gender fairness (introduced in Özkal-Sanver, 2004).7 We will discuss
their characterization result in view of ours in Section 4 (after the proof of Theorem 3).

Theorem 2 (Nizamogullari and Özkal-Sanver (2012), Theorem 3.1). On the domain of classical
marriage markets, a solution satisfies individual rationality, Pareto optimality, consistency, con-
verse consistency, and gender fairness if and only if it is the core.

Özkal-Sanver (2010, Proposition 4.2) showed that on the domain of all roommate markets, no
solution satisfies Pareto optimality, anonymity, and converse consistency. However, the proof of this
impossibility result used an unsolvable roommate market. Hence, the question whether or not the
characterization of Sasaki and Toda (1992) can be extended to the domain of solvable roommate
markets or to any of its subdomains has not been answered until now.

In the next section, we will first extend the characterizations of Sasaki and Toda (1992) and
Nizamogullari and Özkal-Sanver (2012) to the domain of no odd rings roommate markets (Theo-
rem 3). Second, we will show that the corresponding properties are compatible on the domain of
solvable roommate markets, but that they do not characterize the core (Example 1).

4.2 Core Characterizations for Roommate and Marriage Markets

First, we prove that the characterizations of Sasaki and Toda (1992) and Nizamogullari and Özkal-
Sanver (2012) can be extended to the domain of no odd rings roommate markets.

Theorem 3. On the domain of no odd rings roommate markets, a solution satisfies individual
rationality, anonymity, Pareto optimality, consistency, and converse consistency if and only if it is
the core.

We obtain an alternative characterization of the core by replacing individual rationality with
mutually best (see Corollary 2 in Appendix A).

7Loosely speaking, gender fairness requires that renaming men as women, and renaming women as men, does not
change the outcomes chosen by the solution when taking the renaming of agents into account.
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Proof. By Proposition 1, the core satisfies all the properties in the theorem on DNOR. To prove the
uniqueness part, let ϕ be a solution on the domain of no odd rings roommate markets DNOR that
satisfies individual rationality, anonymity, Pareto optimality, consistency, and converse consistency.
We will first show that ϕ ⊆ core.

Assume, by contradiction, that there exists a no odd rings roommate market (N̄ , R̄) ∈ DNOR

such that ϕ(N̄ , R̄) * core(N̄ , R̄). Then, there exists a matching µ̄ ∈ ϕ(N̄ , R̄) with a blocking
pair {i, j} for µ̄. By individual rationality, i 6= j. Let N ′ = {i, j}. Set N = N ′ ∪ µ̄(N ′) =
{i, j, µ̄(i), µ̄(j)}, R = R̄N , and µ = µ̄N . Consider the reduced market (N,R) ∈ DNOR. Since
µ̄ ∈ ϕ(N,R) \ core(N,R), by consistency, µ ∈ ϕ(N,R) \ core(N,R). We consider three cases
depending on the cardinality of N .

In the sequel, we indicate the matches of matching µ (or corresponding other matchings being
discussed at the time) in preference tables by a cycle around an agent’s match.

Case 1 (|N |=2): Then, N = {i, j} and {i, j} being a blocking pair for µ implies that agents’
preferences are as follows:

Ri j i

Rj i j

However, note that agents i and j would both prefer being matched with each other than being
single at µ; a contradiction to Pareto optimality.

Case 2 (|N |=3): Without loss of generality, let k = µ(i) and j is single at µ. Then, N = {i, j, k}.
By individual rationality and {i, j} being a blocking pair for µ, agents’ partial preferences are as
follows:

Ri j k i

Rj i j

Rk i k

Among all no odd rings roommate markets, there is exactly one that complies with the above
partial preferences:

Ri j k i

Rj k i j

Rk i j k

It is noteworthy to mention that the above preference profile illustrates why we need to impose
the no odd rings domain restriction in our theorem. The above roommate market is not solvable
and solution ϕ is not defined for this subproblem. Therefore, for this specific preference profile, we
cannot obtain a contradiction. We use this insight to construct a counterexample (Example 1) of
a solution that is defined on the domain of solvable roommate markets, that does not equal the
core, and that satisfies all properties in the theorem. We now proceed with the proof knowing that
none of the subproblems we consider contains an odd ring and hence ϕ is defined and all properties
apply.

Preferences Rj and Rk above are incomplete and we can distinguish 8 cases of complete and no
odd ring preferences Rj and Rk. Relying heavily on anonymity, we will deal with all possible cases
at the same time, but the interested reader can find a case by case proof in Appendix C.
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Let πa ∈ ΠN be such that
πa(i) = 1, πa(j) = 2, and πa(k) = 3

and let πb ∈ ΠN be such that

πb(i) = 3, πb(j) = 4, and πb(k) = 1.

For Ñ = {1, 2, 3, 4} we define matching µ̃ = {(1, 3), 2, 4} and R̃ ∈ RÑ such that

R̃1 : 2 3 1 ‖ [4]

and notation ‖ [4] here means that the position of agent 4 relative to agents 3 and 1 is determined
by the position of agent j = π−1b (4) relative to agents i = π−1b (3) and k = π−1b (1) in Rk = Rπ−1

b (1),

R̃2 : 1 2 4 ‖ [3]

and notation ‖ [3] here means that the position of agent 3 relative to agents 1 and 2 is determined
by the position of agent k = π−1a (3) relative to agents i = π−1a (1) and j = π−1a (2) in Rj = Rπ−1

a (2),
8

R̃3 : 4 1 3 ‖ [2]

and notation ‖ [2] here means that the position of agent 2 relative to agents 1 and 3 is determined
by the position of agent j = π−1a (2) relative to agents i = π−1a (1) and k = π−1a (3) in Rk = Rπ−1

a (3),
and

R̃4 : 3 4 2 ‖ [1]

and notation ‖ [1] here means that the position of agent 1 relative to agents 3 and 4 is determined
by the position of agent k = π−1b (1) relative to agents i = π−1b (3) and j = π−1b (4) in Rj = Rπ−1

b (4).
9

We show that for all N ′ ⊆ Ñ , |N ′| = 2, M ′ = N ′ ∪ µ̃(N ′), and all reduced markets (M ′, R̃M ′),
µ̃M ′ ∈ ϕ(M ′, R̃M ′). Hence, by converse consistency, µ̃ ∈ ϕ(Ñ , R̃). However, note that matching
{(1, 2), (3, 4)} is preferred by everybody; a contradiction to Pareto optimality.

• N ′ = M ′ = {1, 3}:

R̃1 3 1

R̃3 1 3

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = M ′ = {2, 4}:

R̃2 2 4

R̃4 4 2

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

8We could choose the position of agent 4 in R̃2 freely.
9We could choose the position of agent 2 in R̃4 freely.
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• N ′ = {1, 2} or N ′ = {2, 3} and M ′ = {1, 2, 3}:

R̃1 2 3 1 πa
←− Ri j k i

R̃2 1 2 ‖ [3] πa
←− Rj i j ‖ [k]

R̃3 1 3 ‖ [2] πa
←− Rk i k ‖ [j]

Note that Nπa = M ′. In the above preference table, we have already indicated that R̃M ′ =
Rπa . Then, by anonymity, µ̃M ′ = µπa ∈ ϕ(M ′, R̃M ′).

• N ′ = {1, 4} or N ′ = {3, 4} and M ′ = {1, 3, 4}:

R̃1 3 1 ‖ [4] πb
←− Rk i k ‖ [j]

R̃3 4 1 3 πb
←− Ri j k i

R̃4 3 4 ‖ [1] πb
←− Rj i j ‖ [k]

Note that Nπb = M ′. In the above preference table, we have already indicated that R̃M ′ =
Rπb . Then, by anonymity, µ̃M ′ = µπb ∈ ϕ(M ′, R̃M ′).

Case 3 (|N |=4): Let k = µ(i), l = µ(j), and N = {i, j, k, l}. By individual rationality and {i, j}
being a blocking pair for µ, agents’ partial preferences are as follows:

Ri j k i

Rj i l j

Rk i k

Rl j l

There are 4 · 4 · 12 · 12 = 2304 preference profiles that comply with the above partial preferences.
Even though some of these profiles are not part of the no odd rings domain, a case by case proof
as for Case 2, Appendix C, is a bit too much work. Luckily, as in Case 2, we can offer a compact
proof using anonymity. Note that even though we will not mention it explicitly, the following proof
excludes preference profiles that contain odd rings (as in Case 2, for odd rings roommate markets
solution ϕ is not defined).

Let πa ∈ ΠN be such that

πa(i) = 3, πa(j) = 5, πa(k) = 1, and πa(l) = 6,

let πb ∈ ΠN be such that

πb(i) = 6, πb(j) = 4, πb(k) = 5 and πb(l) = 2,

and let πc ∈ ΠN be such that

πc(i) = 2, πc(j) = 1, πc(k) = 4 and πc(l) = 3.

For Ñ = {1, 2, 3, 4, 5, 6} we define matching µ̃ = {(1, 3), (2, 4), (5, 6)} and R̃ ∈ RÑ such that

R̃1 : 2 3 1 ‖ [4], [5], [6]
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and notation ‖ [4]], [5], [6] here means that the position of agents 5 and 6 relative to each other and
to agents 3 and 1 is determined by the position of agents j = π−1a (5) and l = π−1a (6) relative to
each other and to agents i = π−1a (3) and k = π−1a (1) in Rk = Rπ−1

a (1) and that the position of agent

4 relative to agents 2, 3, and 1 is determined by the position of agent k = π−1c (4) relative to agents
i = π−1c (2), l = π−1c (3), and j = π−1c (1) in Rj = Rπ−1

c (1),

R̃2 : 1 4 2 ‖ [3], [5], [6]

and notation ‖ [3], [5], [6] here means that the position of agents 5 and 6 relative to each other and
to agents 4 and 2 is determined by the position of agents k = π−1b (5) and i = π−1b (6) relative to
each other and to agents j = π−1b (4) and l = π−1b (2) in Rl = Rπ−1

b (2) and that the position of agent

3 relative to agents 1, 4, and 2 is determined by the position of agent l = π−1c (3) relative to agents
j = π−1c (1), k = π−1c (4), and i = π−1c (2) in Ri = Rπ−1

c (2),

R̃3 : 5 1 3 ‖ [2], [4], [6]

and notation ‖ [2], [4], [6] here means that the position of agent 6 relative to agents 5, 1, and 3 is
determined by the position of agent l = π−1a (6) relative to agents j = π−1a (5), k = π−1a (1), and
i = π−1a (3) in Ri = Rπ−1

a (3) and that the position of agents 2 and 4 relative to each other and to

agents 1 and 3 is determined by the position of agents i = π−1c (2) and k = π−1c (4) relative to each
other and to agents j = π−1c (1) and l = π−1c (3) in Rl = Rπ−1

c (3),

R̃4 : 6 2 4 ‖ [1], [3], [5]

and notation ‖ [1], [3], [5] here means that the position of agent 5 relative to agents 6, 2, and 4 is
determined by the position of agent k = π−1b (5) relative to agents i = π−1b (6), l = π−1b (2), and
j = π−1b (4) in Rj = Rπ−1

b (4) and that the position of agents 1 and 3 relative to each other and to

agents 2 and 4 is determined by the position of agents j = π−1c (1) and l = π−1c (3) relative to each
other and to agents i = π−1c (2) and Rk = π−1c (4) in Rk = Rπ−1

c (4),

R̃5 : 3 6 5 ‖ [1], [2], [4]

and notation ‖ [1], [2], [4] here means that the position of agent 1 relative to agents 3, 6, and 5 is
determined by the position of agent k = π−1a (1) relative to agents i = π−1a (3), l = π−1a (6), and
j = π−1a (5) in Rj = Rπ−1

a (5) and that the position of agents 2 and 4 relative to each other and to

agents 6 and 5 is determined by the position of agents l = π−1b (2) and j = π−1b (4) relative to each
other and to agents i = π−1b (6) and k = π−1b (5) in Rk =π−1

b (5), and

R̃6 : 4 5 6 ‖ [1], [2], [3]

and notation ‖ [1], [2], [3] here means that the position of agents 1 and 3 relative to each other and
to agents 5 and 6 is determined by the position of agents k = π−1a (1) and i = π−1a (3) relative to
each other and to agents j = π−1a (5) and l = π−1a (6) in Rl = Rπ−1

a (6) and that the position of agent

2 relative to agents 4, 5, and 6 is determined by the position of agent l = π−1b (2) relative to agents
j = π−1b (4), k = π−1b (5), and i = π−1b (6) in Ri = Rπ−1

b (6).
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We show that for all N ′ ⊆ Ñ , |N ′| = 2, M ′ = N ′ ∪ µ̃(N ′), and all reduced markets (M ′, R̃M ′),
µ̃M ′ ∈ ϕ(M ′, R̃M ′). Hence, by converse consistency, µ̃ ∈ ϕ(Ñ , R̃). However, note that matching
{(1, 2), (3, 5), (4, 6)} is preferred by everybody; a contradiction to Pareto optimality.

• N ′ = M ′ = {1, 3}:

R̃1 3 1

R̃3 1 3

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = M ′ = {2, 4}:

R̃2 4 2

R̃4 2 4

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = M ′ = {5, 6}:

R̃5 6 5

R̃6 5 6

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = {1, 5}, N ′ = {1, 6}, N ′ = {3, 5}, or N ′ = {3, 6} and M ′ = {1, 3, 5, 6}:

R̃1 3 1 ‖ [5], [6] πa
←− Rk i k ‖ [j], [l]

R̃3 5 1 3 ‖ [6] πa
←− Ri j k i ‖ [l]

R̃5 3 6 5 ‖ [1] πa
←− Rj i l j ‖ [k]

R̃6 5 6 ‖ [1], [3] πa
←− Rl j l ‖ [k], [i]

Note that Nπa = M ′. In the above preference table, we have already indicated that R̃M ′ =
Rπa . Then, by anonymity, µ̃M ′ = µπa ∈ ϕ(M ′, R̃M ′).

• N ′ = {2, 5}, N ′ = {2, 6}, N ′ = {4, 5}, or N ′ = {4, 6} and M ′ = {2, 4, 5, 6}:

R̃2 4 2 ‖ [5], [6] πb
←− Rl j l ‖ [k], [i]

R̃4 6 2 4 ‖ [5] πb
←− Rj i l j ‖ [k]

R̃5 6 5 ‖ [2], [4] πb
←− Rk i k ‖ [l], [j]

R̃6 4 5 6 ‖ [2] πb
←− Ri j k i ‖ [l]

Note that Nπb = M ′. In the above preference table, we have already indicated that R̃M ′ =
Rπb . Then, by anonymity, µ̃M ′ = µπb ∈ ϕ(M ′, R̃M ′).
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• N ′ = {1, 2}, N ′ = {1, 4}, N ′ = {3, 2}, or N ′ = {3, 4} and M ′ = {1, 2, 3, 4}:

R̃1 2 3 1 ‖ [4] πc
←− Rj i l j ‖ [k]

R̃2 1 4 2 ‖ [3] πc
←− Ri j k i ‖ [l]

R̃3 1 3 ‖ [2], [4] πc
←− Rl j l ‖ [i], [k]

R̃4 2 4 ‖ [1], [3] πc
←− Rk i k ‖ [j], [l]

Note that Nπc = M ′. In the above preference table, we have already indicated that R̃M ′ =
Rπc . Then, by anonymity, µ̃M ′ = µπc ∈ ϕ(M ′, R̃M ′).

Cases 1, 2, and 3 have now all resulted in contradictions. Hence, our assumption that ϕ * core was
incorrect and we have now shown that ϕ ⊆ core. However, by Lemma 1, no proper subsolution of
the core satisfies consistency. Hence, ϕ = core.

We prove the independence of properties in Theorem 3 in Appendix B.

We next consider the marriage market domain DM ( DNOR. Recall that we model the classical
marriage market restriction that no two men and no two women are matched together via the agents’
preferences together with individual rationality: no woman finds another woman acceptable and no
man finds another man acceptable. Note that our anonymity property, for any marriage market,
will respect the division into men and women that is ingrained in the agents’ preferences and
that the proof of our characterization in Theorem 3 can easily be adapted to show the following
corollary.10

Corollary 1. On the domain of marriage markets, a solution satisfies individual rationality,
anonymity, Pareto optimality, consistency, and converse consistency if and only if it is the core.

Nizamogullari and Özkal-Sanver (2012, Example 3.2) showed for classical marriage markets
that the above characterization does not seem to apply. The reason why, on the domain of classical
marriage markets, a solution different from the core satisfies the properties individual rationality,
anonymity, Pareto optimality, consistency, and converse consistency is that for classical marriage
markets anonymity is a much weaker property: it only allows to rename men within the group
of men and women within the group of women. Hence, “classical marriage market anonymity”
as introduced by Sasaki and Toda (1992) and adapted by Nizamogullari and Özkal-Sanver (2012)
still allows a solution to discriminate based on gender and hence does not capture the full spirit of
anonymity. It suffices to strengthen anonymity by adding the requirement that whenever there is
an equal number of men and women present, then renaming men as women and women as men does
not essentially change the matchings a solution assigns (up to the corresponding name changes):
this stronger property is referred to as gender fairness (Özkal-Sanver, 2004; Nizamogullari and
Özkal-Sanver, 2012).

Özkal-Sanver (2010, Proposition 4.2) showed that on the domain of all roommate markets, no
solution satisfies Pareto optimality, anonymity, and converse consistency. By Proposition 1, the
core satisfies all these properties on the domain of solvable roommate markets. However, Theorem 3
does not hold on DS as we will demonstrate with the following counter example.

10Proposition 1 and Lemma 1 hold on the marriage market domain DM . Furthermore, since all marriage markets
are no odd rings roommate markets but not all no odd rings roommate markets are marriage markets, the proof in
principle is just shorter.
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Example 1. We define solution ϕ̂ ) core on DS using the following roommate markets and
matching. Let roommate market (N̂ , R̂) be such that N̂ = {1, 2, 3, 4, 5, 6} and partial preferences
R̂ are given as follows (we indicate the matches of matching µ̂ below by a cycle around an agent’s
match.):

R̂1 2 3 1 . . . µ = {(1, 3), (2, 6), (4, 5)}
R̂2 3 6 1 2 . . . µ̂ = {(2, 3), (4, 6), 1, 5}
R̂3 1 2 3 . . .

R̂4 5 6 4 . . . core(N̂ , R̂) = {µ}
R̂5 6 4 5 . . .

R̂6 4 2 5 6 . . .

A roommate market of the form (N̂ , R̂) contains two odd rings {1, 2, 3} and {4, 5, 6}. Now
consider matching µ̂ = {(2, 3), (4, 6), 1, 5} ∈ PO(N̂ , R̂) ∩ IR(N̂ , R̂) and its reduced markets
M ′ = {i, j, µ̂(i), µ̂(j)} with i, j ∈ N̂ . Note that the reduced markets (M ′, R̂M ′) with M ′ ∈
{{1, 2, 3}, {4, 5, 6}} are not solvable and that µ̂M ′ is a stable matching for the reduced market
(M ′, R̂M ′) with M ′ = {2, 3, 4, 6} (these facts will guarantee that by converse consistency no non-
stable matchings will be added to larger roommate markets that include (N̂ , R̂) as reduced market).
For all roommate markets of the form (N̂ , R̂), solution ϕ̂ adds the unstable matching µ̂ to the core,
i.e., ϕ̂(N̂ , R̂) = core(N̂ , R̂) ∪ {µ̂}. Furthermore, for all π ∈ ΠN, ϕ̂(N̂π, R̂π) = core(N̂π, R̂π) ∪ {µ̂π}.
For all other roommate markets (N,R) ∈ DS , ϕ̂(N,R) = core(N,R). Solution ϕ̂, by construction,
satisfies individual rationality, anonymity, Pareto optimality, consistency, and converse consistency.
�

Appendix

A Mutually Best

Mutually best requires that two agents who are “mutually best agents” are always matched with
each other.

Mutually Best: Let (N,R) ∈ D and i, j ∈ N [possibly i = j] such that for all k ∈ N , i Rj k and
jRik. Then, i and j are mutually best agents for (N,R). A matching is a mutually best matching if
all mutually best agents are mutually matched. MB(N,R) denotes the set of all these matchings.
A solution ϕ on D is mutually best if it only assigns matchings at which all mutually best agents
are matched, i.e., for all roommate markets (N,R) ∈ D, ϕ(N,R) ⊆MB(N,R).

Our notion of mutually best is slightly stronger than that used in Toda (2006) for marriage
markets (because he considers mutually best man-woman pairs, he does not allow for a single
mutually best agent i = j).

Lemma 2 (Can and Klaus (2012), Lemma 2). On the domain of no odd rings roommate markets,
mutually best and consistency imply individual rationality.

Corollary 2. On the domain of no odd rings roommate markets, a solution satisfies anonymity,
Pareto optimality, mutually best, consistency, and converse consistency if and only if it is the core.
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B Independence of Properties in Theorem 3

• The solution IR that always assigns the set of individually rational matchings satisfies individ-
ual rationality, anonymity, consistency, and converse consistency, but not Pareto optimality.

• The intersection of the Pareto solution PO with solution IR, PO ∩ IR, satisfies individual
rationality, anonymity, Pareto optimality, and consistency, but not converse consistency.

To see that converse consistency is violated, consider the following roommate market (N,R) ∈
DNOR with N = {1, 2, 3, 4, 5, 6} and matching µ = {(1, 2), (3, 4), (5, 6)}:

R1 4 2 1 . . .

R2 5 1 2 . . .

R3 6 4 3 . . .

R4 1 3 4 . . .

R5 2 6 5 . . .

R6 3 5 6 . . .

It is easy to check that converse consistency would imply that µ ∈ PO ∩ IR even though all
agents prefer matching {(1, 4), (2, 5), (3, 6)}.

• The solution ζ that for any roommate market (N,R) ∈ DNOR such that |N | ≤ 4 assigns
the core and otherwise equals PO ∩ IR satisfies individual rationality, anonymity, Pareto
optimality, and converse consistency, but not consistency.

• We define a subsolution of the Pareto solution ψ  PO by elimination all matchings that have
a blocking pair composed of two different agents, i.e., in difference to the core this solution
allows for degenerate blocking pairs of the form {i, i} and hence violates individual rationality.

Solution ψ satisfies anonymity, Pareto optimality, consistency, and converse consistency.

• We define solution ξ as follows. First, consider the following roommate market (N̂ , R̂) ∈
DNOR with N̂ = {1, 2, 3} and matching µ̂ = {(1, 3), 2}:

R̂1 2 3 1

R̂2 1 2 3

R̂3 1 3 2

The unique stable matching for this roommate market is {(1, 2), 3} and solution ξ adds
matching µ̂ to the core, i.e., ξ(N̂ , R̂) = core(N̂ , R̂) ∪ {µ̂}.
Next, consider roommates markets (N,R) ∈ DNOR such that N̂ ⊆ N , RN̂ = R̂ and let
µ̄ ∈ core(N,R) such that µ̄N̂ = {(1, 2), 3} and at matching µ̃ = µ̄N\N̂ ∪ µ̂, {1, 2} is the

unique blocking pair. Then, solution ξ adds the unstable matching µ̃ to core(N,R). Note
that solution ξ might add several of these additional unstable matchings that replace the
component {(1, 2), 3} in a stable matching with component µ̂. For all remaining roommates
markets (N,R) ∈ DNOR, ξ(N,R) = core(N,R). Note that the addition of matchings with
the “component” µ̂ is designed such that ξ satisfies converse consistency.

Solution ξ satisfies individual rationality, Pareto optimality, consistency, and converse consis-
tency, but not anonymity.
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C Case by case proof for Case 2 (|N |=3) in the proof of Theorem 3

Case 2.1:

Ri j k i

Rj k i j

Rk j i k

Let Ñ = {i, j, k, l} and consider the following preference profile R̃ ∈ RÑ such that R̃N = R as well
as matching µ̃ = {(i, k), j, l} such that µ̃N = µ:

R̃i l j k i

R̃j k i j l

R̃k j l i k

R̃l i k l j

We will show that for all N ′ ⊆ Ñ , |N ′| = 2, M ′ = N ′ ∪ µ̃(N ′), and all reduced markets (M ′, R̃M ′),
µ̃M ′ ∈ ϕ(M ′, R̃M ′). Hence, by converse consistency, µ̃ ∈ ϕ(Ñ , R̃). However, note that matchings
{(i, j), (k, l)} and {(i, l), (j, k)} are preferred by everybody; a contradiction to Pareto optimality.

In the following steps we denote the market (M ′, R̃M ′) with the corresponding preference table
and indicate the matches of matching µ̃M ′ by a cycle around an agent’s match.

• N ′ = M ′ = {i, k}:

R̃i k i

R̃k i k

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = M ′ = {j, l}:

R̃j j l

R̃l l j

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = {i, j} or N ′ = {j, k} and M ′ = {i, j, k}:

R̃i j k i

R̃j k i j

R̃k j i k

This is the original roommate market (N,R) of Case 2.1 and µ̃M ′ = µ. Hence µ̃M ′ ∈
ϕ(M ′, R̃M ′).
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• N ′ = {i, l} or N ′ = {k, l} and M ′ = {i, k, l}:

R̃i l k i

R̃k l i k

R̃l i k l

Consider π ∈ ΠN such that π(i) = k, π(k) = i, and π(j) = l. Then, (M ′, R̃M ′) = (Nπ, Rπ)
and µ̃M ′ = µπ. Since µ ∈ ϕ(N,R), by anonymity µ̃M ′ ∈ ϕ(M ′, R̃M ′).

Case 2.2:

R̃i j k i

R̃j i k j

R̃k j i k

Consider π ∈ ΠN such that π(i) = k, π(k) = i, and π(j) = j. Note that we can obtain Case 2.2 by
applying permutation π to Case 2.1. Hence, we obtain a contradiction in a similar fashion (up to
name changes according to π).

Case 2.3:

Ri j k i

Rj k i j

Rk i k j

Let Ñ = {i, j, k, l} and consider the following preference profile R̃ such that R̃N = R as well as
matching µ̃ = {(i, k), j, l} such that µ̃N = µ:

R̃i j k i l

R̃j k i j l

R̃k l i k j

R̃l i k l j

We will show that for all N ′ ⊆ Ñ , |N ′| = 2, M ′ = N ′ ∪ µ̃(N ′), and all reduced markets (M ′, R̃M ′),
µ̃M ′ ∈ ϕ(M ′, R̃M ′). Hence, by converse consistency, µ̃ ∈ ϕ(Ñ , R̃). However, note that matching
{(i, j), (k, l)} is preferred by everybody; a contradiction to Pareto optimality.

In the following steps we denote the market (M ′, R̃M ′) with the corresponding preference table
and indicate the matches of matching µ̃M ′ by a cycle around an agent’s match.

• N ′ = M ′ = {i, k}:

R̃i k i

R̃k i k

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).
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• N ′ = M ′ = {j, l}:

R̃j j l

R̃l l j

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = {i, j} or N ′ = {j, k} and M ′ = {i, j, k}:

R̃i j k i

R̃j k i j

R̃k i k j

This is the original roommate market (N,R) of Case 2.3 and µ̃M ′ = µ. Hence µ̃M ′ ∈
ϕ(M ′, R̃M ′).

• N ′ = {i, l} or N ′ = {k, l} and M ′ = {i, k, l}:

R̃i k i l

R̃k l i k

R̃l i k l

Consider π ∈ ΠN such that π(i) = k, π(k) = i, and π(j) = l. Then, (M ′, R̃M ′) = (Nπ, Rπ)
and µ̃M ′ = µπ. Since µ ∈ ϕ(N,R), by anonymity µ̃M ′ ∈ ϕ(M ′, R̃M ′).

Case 2.4:

Ri j k i

Rj i k j

Rk i j k

Let Ñ = {i, j, k, l} and consider the following preference profile R̃ such that R̃N = R as well as
matching µ̃ = {(i, k), j, l} such that µ̃N = µ:

R̃i j k l i

R̃j i k j l

R̃k l i j k

R̃l k i l j

We will show that for all N ′ ⊆ Ñ , |N ′| = 2, M ′ = N ′ ∪ µ̃(N ′), and all reduced markets (M ′, R̃M ′),
µ̃M ′ ∈ ϕ(M ′, R̃M ′). Hence, by converse consistency, µ̃ ∈ ϕ(Ñ , R̃). However, note that matching
{(i, j), (k, l)} is preferred by everybody; a contradiction to Pareto optimality.

In the following steps we denote the market (M ′, R̃M ′) with the corresponding preference table
and indicate the matches of matching µ̃M ′ by a cycle around an agent’s match.
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• N ′ = M ′ = {i, k}:

R̃i k i

R̃k i k

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = M ′ = {j, l}:

R̃j j l

R̃l l j

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = {i, j} or N ′ = {j, k} and M ′ = {i, j, k}:

R̃i j k i

R̃j i k j

R̃k i j k

This is the original roommate market (N,R) of Case 2.4 and µ̃M ′ = µ. Hence µ̃M ′ ∈
ϕ(M ′, R̃M ′).

• N ′ = {i, l} or N ′ = {k, l} and M ′ = {i, k, l}:

R̃i k l i

R̃k l i k

R̃l k i l

Consider π ∈ ΠN such that π(i) = k, π(k) = i, and π(j) = l. Then, (M ′, R̃M ′) = (Nπ, Rπ)
and µ̃M ′ = µπ. Since µ ∈ ϕ(N,R), by anonymity µ̃M ′ ∈ ϕ(M ′, R̃M ′).

Case 2.5:

Ri j k i

Rj i k j

Rk i k j

Let Ñ = {i, j, k, l} and consider the following preference profile R̃ such that R̃N = R as well as
matching µ̃ = {(i, k), j, l} such that µ̃N = µ:

R̃i j k i l

R̃j i k j l

R̃k l i k j

R̃l k i l j
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We will show that for all N ′ ⊆ Ñ , |N ′| = 2, M ′ = N ′ ∪ µ̃(N ′), and all reduced markets (M ′, R̃M ′),
µ̃M ′ ∈ ϕ(M ′, R̃M ′). Hence, by converse consistency, µ̃ ∈ ϕ(Ñ , R̃). However, note that matching
{(i, j), (k, l)} is preferred by everybody; a contradiction to Pareto optimality.

In the following steps we denote the market (M ′, R̃M ′) with the corresponding preference table
and indicate the matches of matching µ̃M ′ by a cycle around an agent’s match.

• N ′ = M ′ = {i, k}:

R̃i k i

R̃k i k

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = M ′ = {j, l}:

R̃j j l

R̃l l j

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = {i, j} or N ′ = {j, k} and M ′ = {i, j, k}:

R̃i j k i

R̃j i k j

R̃k i k j

This is the original roommate market (N,R) of Case 2.5 and µ̃M ′ = µ. Hence µ̃M ′ ∈
ϕ(M ′, R̃M ′).

• N ′ = {i, l} or N ′ = {k, l} and M ′ = {i, k, l}:

R̃i k i l

R̃k l i k

R̃l k i l

Consider π ∈ ΠN such that π(i) = k, π(k) = i, and π(j) = l. Then, (M ′, R̃M ′) = (Nπ, Rπ)
and µ̃M ′ = µπ. Since µ ∈ ϕ(N,R), by anonymity µ̃M ′ ∈ ϕ(M ′, R̃M ′).

Case 2.6:

Ri j k i

Rj i j k

Rk j i k

Let Ñ = {i, j, k, l} and consider the following preference profile R̃ such that R̃N = R as well as
matching µ̃ = {(i, k), j, l} such that µ̃N = µ:
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R̃i j l k i

R̃j i j k l

R̃k l j i k

R̃l k l j i

We will show that for all N ′ ⊆ Ñ , |N ′| = 2, M ′ = N ′ ∪ µ̃(N ′), and all reduced markets (M ′, R̃M ′),
µ̃M ′ ∈ ϕ(M ′, R̃M ′). Hence, by converse consistency, µ̃ ∈ ϕ(Ñ , R̃). However, note that matching
{(i, j), (k, l)} is preferred by everybody; a contradiction to Pareto optimality.

In the following steps we denote the market (M ′, R̃M ′) with the corresponding preference table
and indicate the matches of matching µ̃M ′ by a cycle around an agent’s match.

• N ′ = M ′ = {i, k}:

R̃i k i

R̃k i k

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = M ′ = {j, l}:

R̃j j l

R̃l l j

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = {i, j} or N ′ = {j, k} and M ′ = {i, j, k}:

R̃i j k i

R̃j i j k

R̃k j i k

This is the original roommate market (N,R) of Case 2.6 and µ̃M ′ = µ. Hence µ̃M ′ ∈
ϕ(M ′, R̃M ′).

• N ′ = {i, l} or N ′ = {k, l} and M ′ = {i, k, l}:

R̃i l k i

R̃k l i k

R̃l k l i

Consider π ∈ ΠN such that π(i) = k, π(k) = i, and π(j) = l. Then, (M ′, R̃M ′) = (Nπ, Rπ)
and µ̃M ′ = µπ. Since µ ∈ ϕ(N,R), by anonymity µ̃M ′ ∈ ϕ(M ′, R̃M ′).
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Case 2.7:

Ri j k i

Rj i j k

Rk i j k

Let Ñ = {i, j, k, l} and consider the following preference profile R̃ such that R̃N = R as well as
matching µ̃ = {(i, k), j, l} such that µ̃N = µ:

R̃i j k l i

R̃j i j k l

R̃k l i j k

R̃l k l i j

We will show that for all N ′ ⊆ Ñ , |N ′| = 2, M ′ = N ′ ∪ µ̃(N ′), and all reduced markets (M ′, R̃M ′),
µ̃M ′ ∈ ϕ(M ′, R̃M ′). Hence, by converse consistency, µ̃ ∈ ϕ(Ñ , R̃). However, note that matching
{(i, j), (k, l)} is preferred by everybody; a contradiction to Pareto optimality.

In the following steps we denote the market (M ′, R̃M ′) with the corresponding preference table
and indicate the matches of matching µ̃M ′ by a cycle around an agent’s match.

• N ′ = M ′ = {i, k}:

R̃i k i

R̃k i k

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = M ′ = {j, l}:

R̃j j l

R̃l l j

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = {i, j} or N ′ = {j, k} and M ′ = {i, j, k}:

R̃i j k i

R̃j i j k

R̃k i j k

This is the original roommate market (N,R) of Case 2.7 and µ̃M ′ = µ. Hence µ̃M ′ ∈
ϕ(M ′, R̃M ′).
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• N ′ = {i, l} or N ′ = {k, l} and M ′ = {i, k, l}:

R̃i k l i

R̃k l i k

R̃l k l i

Consider π ∈ ΠN such that π(i) = k, π(k) = i, and π(j) = l. Then, (M ′, R̃M ′) = (Nπ, Rπ)
and µ̃M ′ = µπ. Since µ ∈ ϕ(N,R), by anonymity µ̃M ′ ∈ ϕ(M ′, R̃M ′).

Case 2.8:

Ri j k i

Rj i j k

Rk i k j

Let Ñ = {i, j, k, l} and consider the following preference profile R̃ such that R̃N = R as well as
matching µ̃ = {(i, k), j, l} such that µ̃N = µ:

R̃i j k i l

R̃j i j k l

R̃k l i k j

R̃l k l i j

We will show that for all N ′ ⊆ Ñ , |N ′| = 2, M ′ = N ′ ∪ µ̃(N ′), and all reduced markets (M ′, R̃M ′),
µ̃M ′ ∈ ϕ(M ′, R̃M ′). Hence, by converse consistency, µ̃ ∈ ϕ(Ñ , R̃). However, note that matching
{(i, j), (k, l)} is preferred by everybody; a contradiction to Pareto optimality.

In the following steps we denote the market (M ′, R̃M ′) with the corresponding preference table
and indicate the matches of matching µ̃M ′ by a cycle around an agent’s match.

• N ′ = M ′ = {i, k}:

R̃i k i

R̃k i k

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = M ′ = {j, l}:

R̃j j l

R̃l l j

Pareto optimality implies that µ̃M ′ ∈ ϕ(M ′, R̃M ′).

• N ′ = {i, j} or N ′ = {j, k} and M ′ = {i, j, k}:

R̃i j k i

R̃j i j k

R̃k i k j

This is the original roommate market (N,R) of Case 2.8 and µ̃M ′ = µ. Hence µ̃M ′ ∈
ϕ(M ′, R̃M ′).
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• N ′ = {i, l} or N ′ = {k, l} and M ′ = {i, k, l}:

R̃i k i l

R̃k l i k

R̃l k l i

Consider π ∈ ΠN such that π(i) = k, π(k) = i, and π(j) = l. Then, (M ′, R̃M ′) = (Nπ, Rπ)
and µ̃M ′ = µπ. Since µ ∈ ϕ(N,R), by anonymity µ̃M ′ ∈ ϕ(M ′, R̃M ′).

This case by case proof hence establishes a contradiction whenever |N | = 3.
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