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Abstract

We provide a model that merges two basic models of strategic network forma-
tion and incorporates them as extreme cases: Jackson andWolinsky�s connections
model based on bilateral formation of links, and Bala and Goyal�s two-way �ow
model, where links can be unilaterally formed. In our model a link can be cre-
ated unilaterally, but when it is only supported by one of the two players the �ow
through it su¤ers some friction or decay, but more than when it is supported by
both players. When the friction in singly-supported links is maximal (i.e. there
is no �ow) we have Jackson and Wolinsky�s connections model, while when �ow
in singly-supported links is as good as in doubly-supported links we have Bala
and Goyal�s two-way �ow model. In this setting, a joint generalization of the
results relative to e¢ ciency and stability in both seminal papers is achieved, and
the robustness in both models is tested with positive results.
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1 Introduction

The importance of the role played by the network structures underlying social and
economic phenomena is now widely recognized1. From a theoretical point of view,
perhaps the most challenging issue is the formation of network structures. There are
two main models of strategic network formation in economic literature: that of Jackson
and Wolinsky (1996), where a link between two �players� (individuals, �rms, towns,
etc.) needs the support of both and forms only if both agree, and that of Bala and
Goyal (2000a), where players can form links unilaterally. Jackson andWolinsky�s model
has two variants: the connections model and the coauthors model. Bala and Goyal�s
model also has two versions: the one-way �ow model, in which �ow through a link runs
toward a player only if he/she supports it, and the two-way �ow model, in which �ow
runs in both directions through all links.
These seminal models have had a great impact on the literature2, and are at the

root of several extensions resulting from introducing di¤erent variations into one model
or the other. This paper addresses a di¤erent goal: the uni�cation of the two models by
eliminating the dichotomy of unilateral vs. bilateral formation of links. This is achieved
by a model that bridges the gap between the two basic models of strategic network
formation3. More precisely, we provide a model which has Jackson and Wolinsky�s
connections model and Bala and Goyal�s two-way �ow model as extreme cases. In
the model introduced here a link can be created unilaterally and �ow occurs in both
directions with some degree of decay, the same in both directions. However, when a
link is only supported by one of the two players (such a link is referred to as a �weak�
link) the �ow through it su¤ers a greater decay than when it is supported by both
players (a �strong� link). That is, strong links work better than weak links, which
may be a reasonable assumption in some contexts4. When the decay in weak links is
maximal (i.e. there is no �ow) we have Jackson and Wolinsky�s connections model,
where only strong links work, whereas when �ow in weak links is as good as in strong
links we have Bala and Goyal�s two-way �ow model, where strong links are ine¢ cient
and unstable. In contrast to these two extreme cases, it seems reasonable to consider
intermediate situations where both types of link work, but strong doubly-supported
links work better than weak singly-supported ones. This joint generalization of both

1Goyal (2007), Jackson (2008) and Vega-Redondo (2007) are excellent monographs on social and
economic networks.

2The number of citations of Jackson and Wolinsky�s model exceeds 2000, and citation Bala and
Goyal�s model exceeds 1300.

3In a previous paper (Olaizola and Valenciano, 2015) we provide a transitional model that integrates
a variation without decay of Jackson and Wolinsky�s connections model and Bala and Goyal�s two-way
�ow model, also without decay, as extreme cases.

4If links are interpreted as not fully reliable attempts to initiate communication, as in Bala and
Goyal (2000b), the lower friction through a strong link could then be interpreted as a higher probability
that at least one of the communication attempts will be successful, so communication through weak
links might be more likely to fail than that through strong links. Haller and Sarangi (2005) consider
a situation where doubly-supported links are more reliable than singly-supported ones.
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seminal models allows for a study of the transition from one to the other, thus providing
a �neighborhood�of each model which o¤ers a point of view for testing the robustness
of the results for each of the extreme cases.
We �rst provide a characterization of e¢ cient architectures which smoothly extends

the results relative to e¢ ciency in the seminal papers (Proposition 1 in Jackson and
Wolinsky (1996), and Proposition 5.5 in Bala and Goyal (2000a)). As it turns out,
in spite of the richer variety of feasible structures in this model, possibly combining
weak and strong links (which complicates considerably the proofs), only the e¢ cient
structures in either model, i.e. the complete network of strong links, the complete
network of weak links, the all-encompassing star of strong links or that of weak links,
and the empty network, are e¢ cient in this more general setting. No mixed structure
is e¢ cient for any value of the parameters.
As both a strictly noncooperative point of view and one allowing for pairwise agree-

ments make sense in this joint generalization, we study the model in the cross�re of
both approaches. Thus we study Nash, strict Nash and pairwise stability. The notion
of pairwise stability needs to be adapted for this more general model, where an in-
dividual�s potential actions include creating weak links or even making a preexisting
weak link strong by making it double. A natural adaptation of this notion consistent
with this situation is provided. A study of stability from the two points of view of the
e¢ cient structures yields an incomplete characterization, which includes as particular
cases the results obtained separately in either model (Proposition 2 in Jackson and
Wolinsky (1996), and Proposition 5.3 in Bala and Goyal (2000a)).
Thus, in both respects, i.e. e¢ ciency and stability, transition from one model to the

other turns out to be perfectly smooth, so that both models are robust and compatible
from the point of view provided by this more general model.
The rest of the paper is organized as follows. Section 2 introduces notation and

terminology. Section 3 reviews the strategic models of network formation of Jackson
and Wolinsky (1996) and Bala and Goyal (2000a). A model that bridges the gap
between these two is presented in Section 4.1, and the pairwise stability notion is
adapted to the new setting in 4.2. Section 5.1 addresses the question of e¢ ciency for
the intermediate model. In Section 5.2 Nash stable, Nash strictly stable and pairwise
stable structures are studied, and Section 6 summarizes the main conclusions and
points out some lines of further research.

2 Preliminaries5

A directed N -graph is a pair (N;�), where N = f1; 2; :::; ng is a �nite set with n � 3
whose elements are called nodes, and � is a subset of N �N , whose elements are called
links. When both (i; j), and (j; i) are in �, we say that i and j are connected by a

5This brief section is similar to Section 2 in Olaizola and Valenciano (2015), as the notation relative
to graphs is the same in both papers.
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strong link, while if only one of them is there we say that they are connected by a weak
link. If M � N , the M -subgraph of (N;�) is the M -graph (M;� jM) with

� jM := f(i; j) 2M �M : (i; j) 2 �g:

Alternatively, a graph � can be speci�ed by a map g� : N �N ! f0; 1g,

g
�
(i; j) :=

�
1; if (i; j) 2 �
0; if (i; j) =2 �:

When we specify a graph � by a map g, we denote gij := g(i; j), and if gij = 1 link (i; j)
is referred to as �link ij in g�, and we write ij 2 g. Note that for M � N , subgraph
� jM is speci�ed by g jM�M but, abusing the notation, this subgraph is denoted by
g jM . The empty graph is denoted by ge (i.e. ge(i; j) = 0, for all i; j).
If gij = 1 in a graph g, g� ij denotes the graph that results from replacing gij = 1

by gij = 0 in g; and if gij = 0, g + ij denotes the graph that results from replacing
gij = 0 by gij = 1. Similarly, if gij = gji = 1, g� ij = (g� ij)� ji, and if gij = gji = 0,
g + ij = (g + ij) + ji. An isolated node in a graph g is a node that is not involved in
any link, that is, a node i s.t. for all j 6= i, gij = gji = 0. A node is peripheral in a
graph g if it is involved in a single link (weak or strong).
Given a graph g, a path of length k from j to i in g is a sequence of k + 1 distinct

nodes j0; j1; :::; jk, s.t. j = j0, i = jk, and for all l = 1; :::; k, gjl�1jl = 1 or gjljl�1 = 1.
A graph g is acyclic or contains no cycles if there is no sequence of k (k > 2) distinct
nodes, i1; :::; ik, s.t. for all l = 1; :::; k � 1, gilil+1 = 1 or gil+1il = 1, and gi1ik = 1 or
giki1 = 1.

De�nition 1 Given a graph g, and K � N , the subgraph g jK is said to be:
(i) A weak component of g if for any two nodes i; j 2 K (i 6= j) there is a path from j
to i in g, and no subset of N strictly containing K meets this condition.
(ii) A strong component if for any two nodes i; j 2 K (i 6= j) there is a path of strong
links from j to i in g, and no subset of N strictly containing K meets this condition.

When a component in either sense consists of a single node we say that it is a trivial
component. In both senses, an isolated node, i.e. a node that is not involved in any link,
is a trivial component. The size of a component is the number of nodes from which it
is formed. Based on these de�nitions we have two di¤erent notions of connectedness.
We say that a graph g is weakly (strongly) connected6 if g is the unique weak (strong)
component of g. Note that strong connectedness implies weak connectedness. A weak
(strong) component g jK of a graph g is minimal if for all i; j 2 K s.t. gij = 1, the

6Note that the sense in which the term �strongly connected� is used here di¤ers from its usual
meaning in the literature, where a directed network is said to be strongly connected when for any
two distinct nodes there is an oriented path from one to the other. In our context, a clear distinction
between weak and strong links invites the use of the term in the sense in which we use it here.
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number of weak (strong) components of g is smaller than the number of weak (strong)
components of g � ij. When g is clear from the context, we refer to a component g jK
as component K.
A graph is minimally weakly (strongly) connected if it is weakly (strongly) con-

nected and minimal. In both cases, a minimally connected graph is a tree (of weak
links in one case, of strong links in the other), but, in principle, any node in such
trees can be seen as the root, i.e. a reference node from which there is a unique path
connecting it with any other. Note that a weakly connected graph with no cycles is
a tree in general formed by weak and strong links, and in general neither minimally
weakly nor strongly connected.
Given a graph g, the following notation is also used:

Nd(i; g) := fj 2 N : gij = 1g (i.e. set of nodes with which i supports a link),
N e(i; g) := fj 2 N : gji = 1g (i.e. set of nodes which support a link with i),
N o(i; g) := Nd(i; g) [N e(i; g) (i.e. set of nodes involved in a link with i):

The set of nodes connected with i by a path is denoted by N(i; g). Note that
none of these sets contains i. Their cardinalities are denoted by �di (g) := #Nd(i; g);
�ei (g) := #N

e(i; g); �oi (g) := #N
o(i; g), and �i(g) := #N(i; g).

The distance between two nodes i; j (i 6= j), denoted by d(i; j; g), is the length of
the shortest path connecting them. When there is no path connecting two nodes the
distance between them is said to be 1.
The graph architectures explained hereafter play a role in what follows. A line is

a graph consisting of a sequence of distinct nodes connected by links where no other
links exist. A star (all-encompassing star) is a graph where one node is involved in
links with some (all) other players, and no other links exist. A mixed star is a star
formed by weak links and strong links. A mixed star consisting of ks strong links and
kw weak links is denoted by Sks;kw . A wheel consists of a sequence of nodes connected
by links in which the �rst and the last in that sequence are also linked, and no other
links exist. A complete (weak-complete, strong-complete) graph is one where any two
nodes are involved in a link (weak link, strong link).

3 Unilateral vs. bilateral link-formation

We consider situations where individuals may initiate or support links with other in-
dividuals under certain assumptions, thus creating a network formalized as a graph.
We assume that at each node i 2 N there is an agent identi�ed by label i and re-
ferred to as player7 i. Each player i may invest in links with other players8. A map
gi : Nnfig ! f0; 1g describes the links in which player i invests. We write gij := gi(j);

7In order to avoid biased language, we often refer to players by the more neutral term �nodes�.
8This is similar to Myerson�s (1977) model, where all players simultaneously announce the set of

players with whom they wish form links. But while in Myerson�s model links are formed if and only
if they were proposed by both, we consider a di¤erent scenario here.
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and gij = 1 (gij = 0) means that i invests (does not invest) in a link with j. Thus,
vector gi = (gij)j2Nnfig 2 f0; 1gNnfig speci�es the links in which i invests and is re-
ferred to as a strategy of player i. Gi := f0; 1gNnfig denotes the set of i�s strategies and
GN = G1�G2�:::�Gn the set of strategy pro�les. A strategy pro�le g 2 GN univocally
determines a graph (N;�g) of links invested in, where �g := f(i; j) 2 N �N : gij = 1g.
Given a strategy pro�le g 2 GN and i 2 N , g�i denotes the Nnfig strategy pro�le that
results by eliminating gi in g, i.e. all links in which player i invests 9, and (g�i; g0i),
where g0i 2 Gi, denotes the strategy pro�le that results from replacing gi by g0i in g.
Let g be a strategy pro�le representing the links invested in by each player. The

following is generally assumed:
1. Investment by player i in a link with player j entails a cost cij > 0 for all j 6= i.
2. The player at node j has a particular type of information or other good10 of

value vij for player i.
3. If v = (vij)i;j2N is the matrix of values, c = (cij)i;j2N is the matrix of cost

(assuming11 cii = vii = 0), and g is the strategy pro�le, the payo¤ of a player is given
by a function

�i(g) = Ii(g
�;v)� ci(g; c); (1)

where Ii(g�;v) is the information received by i through the actual network g� under
strategy pro�le g, and ci(g; c) =

P
j2Nd(i;g) cij the cost incurred by i.

Under di¤erent assumptions, di¤erent models specify g� and Ii di¤erently. In all
cases a game in strategic form is speci�ed: (GN ; f�igi2N). In Jackson and Wolinsky
(1996) only doubly supported links actually form, i.e.

g�ij = minfgij; gjig: (2)

In Bala and Goyal (2000a) links are created unilaterally, i.e.

g�ij = maxfgij; gjig: (3)

In both models the information �ow through a link su¤ers some degree of decay, with
� (0 < � < 1) being the fraction of the value of information at one node that reaches
another node through a link12. Thus, for the right instantiation of g�, i.e. (2) or (3),
in both cases we have:

Ii(g
�;v) =

X
j2N(i;g)

vij �
d(i;j;g�): (4)

The point of this work is to provide and study a model that bridges the gap between
these two.

9Note that if ji 2 g, then ji 2 g�i.
10Although other interpretations are possible, in general, we give preference to the interpretation

in terms of information.
11Only to make it possible to call c and v matrices. Nevertheless, in practice cii and vii play no

role. Note also that by de�nition gii remains unde�ned for any strategy.
12Bala and Goyal (2000a) also consider the case of no decay, i.e. � = 1.
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4 Bridging the gap

4.1 A merging of two models

In both Jackson andWolinsky�s (1996) connections model and Bala and Goyal�s (2000a)
two-way �ow model with decay, a level of friction in the �ow through a link is assumed,
so that only a fraction of the information at one node reaches the other through that
link. In both models the �ow is assumed to be homogeneous (i.e. the same through
all actual links). In order to bridge the gap between these two models, making a
transition from one to the other possible, we introduce a very simple form of endogenous
heterogeneity13 relative to the level of decay. We consider a model where information
�ows through all links with some degree of decay, the same in both directions, but
friction is smaller through strong links.
More precisely, we consider the following model. Let � (0 � � � 1) be the fraction

of the value of information at one node that reaches another node through a strong
link, and let � (0 � � � � � 1) be the fraction of the value of information at one node
that reaches another node through a weak link. For a graph g representing a strategy
pro�le and a pair of nodes i 6= j, let Pij(g) denote the set of paths in g from i to j.
For p 2 Pij(g), let `(p) denote the length of p and !(p) the number of weak links in p.
Then i values information originating from j that arrives via p by

Ii(p;v) = vij�
`(p)�!(p)�!(p):

If information is routed via the best possible route from j to i, then i�s valuation of
information originating from j is

Iij(g;v) = max
p2Pij(g)

Ii(p;v)

and i�s overall bene�t from g (ignoring costs) is

Ii(g;v) =
X

j2N(i;g)

Iij(g;v):

Thus (1) becomes (note that now the actual network is the strategy pro�le, i.e. g� = g):

�i(g) = Ii(g;v)� ci(g; c) =
X

j2N(i;g)

vij max
p2Pij(g)

�`(p)�!(p)�!(p) � ci(g; c): (5)

Observe that:
� 0 = � < � < 1 yields Jackson and Wolinsky�s original connections model: infor-

mation �ows only through links in which both players invest.

13See Bloch and Dutta (2009) for a model with endogenous heterogeneity where players may invest
their endowments across links.
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� 0 < � = � < 1 yields Bala and Goyal�s two-way �ow model with decay: informa-
tion �ows in both directions with the same decay through weak and strong links.
Thus, the intermediate situations, i.e. 0 � � � � < 1 yield a bridge-model between

Jackson and Wolinsky�s original connections model (� = 0) and Bala and Goyal�s
two-way �ow connections model with decay (� = �).

4.2 Stability notions

From a conceptual point of view, the �rst interesting issue raised by this �intermediate�
model is how to adapt the di¤erent notions of stability used in each of the two bench-
mark models to this �mixed� situation. In Bala and Goyal�s purely noncooperative
model Nash and strict Nash equilibrium are the natural stability notions. In Jackson
and Wolinsky�s model, stability analysis is based on the notion of �pairwise� stabil-
ity. In this transitional model a noncooperative approach based on Nash and strict
Nash equilibrium makes sense, but adapting the pairwise stability notion (Jackson and
Wolinsky, 1996) is more delicate. The concept introduced by Jackson and Wolinsky, in
a context where only strong links make sense and actually form, consists of two require-
ments: (i) no player gains by severing a link (�link deletion proofness�); and (ii) no
two players who are not linked have an incentive to create a strong link (�link addition
proofness�). Part (i) is the stability requirement for the noncooperative dimension of
Jackson and Wolinsky�s model, but in the current transitional model individual play-
ers have other options, given that weak links can be created unilaterally, and so can
strong links by making double an existing weak link. Thus we add a requirement of
�link creation proofness�to that of �link deletion proofness�, and the simplest way of
�strategy-proofness�w.r.t. the modi�cation which results from combining the two: no
player gains by changing his/her investment from one link into a new one.
Thus we consider the following three forms of stability.

De�nition 2 A strategy pro�le g is:
(i) A Nash equilibrium if �i(g�i; g0i) � �i(g); for all i and all g0i 2 Gi:
(ii) A strict Nash equilibrium if �i(g�i; g0i) < �i(g); for all i and all g

0
i 2 Gi (g0i 6= gi):

(iii) Pairwise stable if:
- for all ij 2 g; �i(g � ij) � �i(g);
- for all ij =2 g; �i(g + ij) � �i(g);
- for all ij 2 g; ij0 =2 g; �i((g � ij) + ij0) � �i(g); and
- for all i; j (i 6= j) s.t. gij = gji = 0, if �i(g+ ij) > �i(g) then �j(g+ ij) < �j(g).

5 The transition

In what follows we assume homogeneity in costs and values across players, i.e. we
assume vij = 1 and cij = c > 0, for all i; j: Consequently, we drop v and c in (5), and
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write i�s payo¤ as:

�i(g) = Ii(g)� ci(g) =
X

j2N(i;g)

max
p2Pij(g)

�`(p)�!(p)�!(p) � c�di (g) (6)

We �rst address the question of e¢ ciency and then that of stability.

5.1 E¢ ciency

A network is said to be e¢ cient for a particular con�guration of values of the parame-
ters if it maximizes the aggregate payo¤, referred to as the value of the network. When
the value of network g, denoted by v (g), is greater than or equal to that of network g0

we say that g dominates g0. Both Jackson and Wolinsky (1996) and Bala and Goyal
(2000a) provide a characterization of e¢ cient networks in their settings. Propositions
1 and 2 present their results. The statements are adapted to the terminology used
here.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0c

δ

I

III
II

Figure 1: E¢ ciency: � = 0 (Jackson and Wolinsky), n = 20

Proposition 1 (Proposition 1, Jackson and Wolinsky, 1996) In Jackson and Wolin-
sky�s connections model, the unique e¢ cient network is:
(i) The strong-complete graph if c < � � �2 (Region I in Figure 1).
(ii) All-encompassing stars of strong links if � � �2 < c < � + (n� 2) �2=2 (Region II
in Figure 1).
(iii) The empty network if � + (n� 2) �2=2 < c (Region III in Figure 1).

Figure 1 shows the regions where these architectures are e¢ cient. The cost, c, is
represented on the vertical axis, and the fraction of the unit of information at one node
that reaches another one through a link, �, on the horizontal axis. In order to keep the
di¤erent regions of values of the parameters bounded, only the part of the picture for
c � 1 is represented in the �gures, although no upper bound is imposed on c.
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Figure 2: E¢ ciency: � = � (Bala and Goyal), n = 20

Proposition 2 (Proposition 5:5, Bala and Goyal, 2000a) In Bala and Goyal�s two-way
�ow model with decay, the unique e¢ cient network is:
(i) The weak-complete graph if c < 2

�
� � �2

�
(Region I�in Figure 2).

(ii) All-encompassing stars of weak links if 2
�
� � �2

�
< c < 2�+(n� 2) �2 (Region II�

in Figure 2).
(iii) The empty network if 2� + (n� 2) �2 < c (Region III�in Figure 2).

As we presently show, the only e¢ cient architectures in our setting are, depending
on the values of the parameters (�, �, c and n): the strong-complete, the weak-complete,
the star of strong links, the star of weak links and the empty network. In order to
have a complete characterization, the region where each of them is e¢ cient must be
determined. This is established in Proposition 3, where only the region where the
strong-complete network is e¢ cient, and part of the region where the weak-complete
network is e¢ cient are directly established. The rest is the result of several lemmas,
which in a patchwork-like way cover the whole region where the parameters vary. In
spite of the complexity of this piecewise study, the strategy of the proof is easy to
understand. The basic idea is, as in the seminal papers, to compare the value of
an arbitrary component with that of certain �dominant� structures. Nevertheless,
the possibility of weak and strong links makes this comparison more complicated. In
di¤erent regions of values of the parameters, it is proved that a component of a network
is dominated by a star with the same number of nodes (Lemmas 1, 2, 3 and 4). Then
it is shown that a mixed star is dominated by a star with the same number of links
(either all strong or all weak) (Lemma 5). To conclude the proof, a region containing
the boundary between the regions where the star of strong links and the weak-complete
graph are (later proved to be) e¢ cient remains to be studied. This requires the use
of di¤erent dominant structures, namely, two interesting sorts of �hybrid� structure
(Figure 3) between a star of strong links and a weak-complete network (Lemma 6).
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Finally, such hybrid structures are proved to be dominated in that region either by
a weak-complete network or by a star of strong links with the same number of nodes
(Lemma 7).

Lemma 1 If the payo¤ function is given by (6) with 0 � � � � < 1 and c > maxf� �
�2; 2

�
�� �2

�
g, then the maximal value of a weak component containing m nodes and

m� 1 or more strong links is only reached by a star with m� 1 strong links.

Proof. Let K be a weak component containing m nodes and ks � m� 1 strong links
and kw � 0 weak links. Without loss of generality, it can be assumed that no link is
super�uous. Then,

v(K) = ks (2� � 2c) + kw (2�� c) + p(�; �);

where p(�; �) is a polynomial on � and � with integer positive coe¢ cients (summing
up to maxfm (m� 1) � 2 (ks + kw) ; 0g, i.e. twice the number of pairs of nodes non-
directly connected) multiplying monomials of the form �q�r with q + r � 2. As � �
�, the maximal value of this polynomial is obtained when p(�; �) = (m (m� 1) �
2 (ks + kw))�

2, that is

v(K) � ks (2� � 2c) + kw (2�� c) + (m (m� 1)� 2 (ks + kw)) �2;

while the value of a star of m� 1 strong links with m nodes is

v(Sm�1;0) = (m� 1) (2� � 2c) + (m� 1) (m� 2) �2:

Thus, the di¤erence is

v(Sm�1;0)� v(K) � (m� 1� ks)
�
2� � 2c� 2�2

�
+ kw

�
2�2 � 2�+ c

�
� 0;

given that m� 1� ks � 0, 2� � 2c� 2�2 < 0 and 2�2 � 2� + c > 0. Moreover, it is 0
only for ks = m � 1 and kw = 0. Finally, a component with ks = m � 1 and kw = 0
is necessarily minimally strongly connected, and the maximal value of a minimally
strongly connected component is only reached by stars of strong links.

Lemma 2 If the payo¤ function is given by (6) with 0 � � � � < 1 and c > 2�, then
a weak component containing m nodes and fewer than m� 1 strong links is dominated
by a mixed star with the same number of strong links.

Proof. Let K be a weak component containing m nodes and ks < m� 1 strong links
and kw � m � 1 � ks > 0 weak links. Without loss of generality, it can be assumed
that no link is super�uous. Thus, reasoning as in the preceding lemma, we have:

v(K) � ks (2� � 2c) + kw (2�� c) + ks (ks � 1) �2

+ks (m� 1� ks) 2�� + (m� 1� ks) (m� 2� ks)�2;

10



while the value of a star with ks strong links and m� 1� ks weak links is

v (Sks;m�1�ks) = ks (2� � 2c) + (m� 1� ks) (2�� c)
+ks (ks � 1) �2 + ks (m� 1� ks) 2�� + (m� 1� ks) (m� 2� ks)�2:

Thus, the di¤erence is

v (Sks;m�1�ks)� v(K) = (c� 2�) (ks + kw � (m� 1)) � 0;

given that ks + kw � m� 1 and c > 2�. And it is 0 only for ks + kw = m� 1. Finally,
the maximal value of a component with m� 1 links is only reached by stars.
The next lemma establishes the same result for 2 (�� �2) < c < 2�.

Lemma 3 If the payo¤ function is given by (6) with 0 � � � � < 1 and 2 (�� �2) <
c < 2�, then a weak component containing m nodes and fewer than m� 1 strong links
is dominated by a mixed star with the same number of strong links.

Proof. Let K be a weak component containing m nodes, ks < m� 1 strong links and
kw � m� 1� ks > 0 weak links. Without loss of generality, it can be assumed that no
link is super�uous. The maximal value of the component here requires a more detailed
discussion than in the case c > 2� addressed in the preceding lemma. Thus we have

v(K) � ks (2� � 2c) + kw (2�� c) + A�2 +B�� + C�2;

where
A = minfks(ks � 1);m(m� 1)� 2ks � 2kwg:

Two cases must be considered depending on which of these numbers is smaller:

1st case: A = m(m� 1)� 2ks � 2kw: In this case B = C = 0, and we have

v(K) � ks (2� � 2c) + kw (2�� c) + (m(m� 1)� 2ks � 2kw)�2;

while the value of a star with ks strong links and m� 1� ks weak links is

v (Sks;m�1�ks) = ks (2� � 2c) + (m� 1� ks) (2�� c)
+ks (ks � 1) �2 + ks (m� 1� ks) 2�� + (m� 1� ks) (m� 2� ks)�2:

Thus, the di¤erence is

v (Sks;m�1�ks)� v(K)
� (m� 1� ks � kw) (2�� c) + (ks(ks � 1)�m(m� 1) + 2ks + 2kw)�2

+ks (m� 1� ks) 2�� + (m� 1� ks) (m� 2� ks)�2

= a (2�� c) + b�2 + d�� + e�2;

11



where a; b; d and e denote the coe¢ cients in the last expression. Note that a � 0, while
b; d and e are � 0. As 2�� c < 2�2; by replacing 2�� c by 2�2 in the last expression
and taking into account that � � � we have

v (Sks;m�1�ks)� v(K) � a2�2 + b�2 + d�� + e�2

� a2�2 + b�2 + d�2 + e�2 = (2a+ b+ d+ e)�2

Therefore, if 2a+ b+ d+ e � 0 the proof is concluded in the 1st case, and summing up
these coe¢ cients we have 2a+ b+ d+ e = 0:

2nd case: A = ks(ks � 1): In this case ks(ks � 1)=2 is the maximal number of
non-directly linked pairs that can receive �2 from each other. Now

B = minf2ks(m� 1� ks);m(m� 1)� 2ks � 2kw � ks(ks � 1)g:

Thus, we again have two cases:
Case 2.1: B = m(m� 1)� 2ks � 2kw � ks(ks � 1): In this case C = 0, and

v(K) � ks (2� � 2c) + kw (2�� c) + ks(ks � 1)�2

+(m(m� 1)� 2ks � 2kw � ks(ks � 1))��:

Thus, subtracting this value from that of a star with ks strong links and m � 1 � ks
weak links the di¤erence is

v (Sks;m�1�ks)� v(K) � (m� 1� ks � kw) (2�� c)
+(2ks(m� 1� ks)� (m(m� 1)� 2ks � 2kw � ks(ks � 1))��
+(m� 1� ks) (m� 2� ks)�2 = a (2�� c) + b�� + d�2;

and proceeding just as in the �rst case we similarly conclude that v (Sks;m�1�ks) �
v(K) � 0:
Case 2.2: B = 2ks(m� 1� ks): In this case

C = m(m� 1)� 2ks � 2kw � ks(ks � 1)� 2ks(m� 1� ks); and

v (Sks;m�1�ks)� v(K) � (m� 1� ks � kw) (2�� c)
+(ks + kw � (m� 1))2�2 = a (2�� c) + b�2;

and proceeding again as before we conclude that v (Sks;m�1�ks)� v(K) � 0:

Lemma 4 If the payo¤ function is given by (6) with 0 � � � � < 1, and c < 2 (� � �),
then: (i) in an non-empty e¢ cient network all links are strong; (ii) if in addition
c > � � �2, then a weak component is dominated by a star of strong links.

12



Proof. (i) Let g be a nonempty e¢ cient network, and assume ij 2 g and ji =2 g, then
the contribution of i�s (j�s) unit of value to j�s (i�s) payo¤ is �, otherwise ij would be
super�uous, but then, as c < 2 (� � �), by making ij double the sum of the payo¤s of
i and j would increase, and no other player�s payo¤ would decrease, which contradicts
g�s e¢ ciency.
(ii) Let K be a weak component with no super�uous links. By (i), all its links must

be strong. But then by Lemma 1 it is dominated by a star of strong links (note that
c > 2

�
�� �2

�
follows easily from c < 2 (� � �) and c > � � �2, and Lemma 1 can be

applied.)

Lemmas 1, 2, 3 and 4 establish that, for di¤erent con�gurations of values of the
parameters, any component is dominated by a star, possibly mixed. The following
lemma shows that mixed stars are always dominated by stars containing only one type
of link.

Lemma 5 If the payo¤ function is given by (6) with 0 � � � � < 1, a star containing
both strong and weak links is strictly dominated either by a star with the same number
of links all of which are strong or by a star with the same number of links all of which
are weak.

Proof. Let Sks;kw be a star connecting m nodes with ks > 0 strong links and kw =
m� 1� ks > 0 weak links. Its value is given by

v (Sks;kw) = ks (2� � 2c) + kw (2�� c) + ks (ks � 1) �2 + 2kskw�� + kw (kw � 1)�2:

By making double a weak link, Sks+1;kw�1 results, and

v (Sks+1;kw�1) = (ks + 1) (2� � 2c) + (kw � 1) (2�� c)
+ (ks + 1) ks�

2 + 2 (ks + 1) (kw � 1)�� + (kw � 1) (kw � 2)�2:

Thus, as kw = m� 1� ks, v (Sks+1;kw�1)� v (Sks;kw) =

(2� � 2c)� (2�� c) + 2 (m� 2)� (� � �) + 2ks (� � �)2 : (7)

Note that if this number is > 0, the greater ks is the greater this number will be,
and consequently the value of a star of strong links connecting m nodes is greater than
that of Sks;kw .
By making a double link weak, Sks�1;kw+1 results, and

v (Sks�1;kw+1) = (ks � 1) (2� � 2c) + (kw + 1) (2�� c)
+ (ks � 1) (ks � 2) �2 + 2 (ks � 1) (kw + 1)�� + (kw + 1) kw�2:

Thus, as kw = m� 1� ks, v (Sks�1;kw+1)� v (Sks;kw) =

� (2� � 2c) + (2�� c) + 2
�
�2 �m�� + (m� 1)�2

�
� 2ks (� � �)2 : (8)

13



If this number is > 0, the smaller ks is the greater this number will be and consequently
the value of a star of weak links is greater than that of Sks;kw .
It only remains to show that the value necessarily increases by either making a

weak link double or making a strong one weak, that is, either (7) or (8) is greater
than 0. Write X = (2� � 2c) � (2�� c), Y = 2 (m� 2)� (� � �) + 2ks (� � �)2 and
Y 0 = 2

�
�2 �m�� + (m� 1)�2

�
� 2ks (� � �)2. Thus we prove that necessarily either

v (Sks+1;kw�1)�v (Sks;kw) = X+Y > 0 or V (Sks�1;kw+1)�v (Sks;kw) = �X+Y 0 > 0:

Assume X + Y � 0, i.e. X � �Y , then we prove that �X + Y 0 > 0, i.e. X < Y 0.
For this it su¢ ces to show that �Y < Y 0, i.e. Y + Y 0 > 0: In fact we have Y + Y 0 =
2 (� � �)2 > 0.
Above c = �� �2 and c = 2

�
�� �2

�
the preceding lemmas show the domination of

stars, either of weak links or of strong links, for all the con�gurations of values of the
parameters except the region considered in the next two lemmas, where two sorts of
�hybrid� structure, somewhere between stars of strong links and weak-complete (see
Figure 3)14, serve as a term of comparison.
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u
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(b)

Figure 3: �Hybrid�structures

Lemma 6 If the payo¤ function is given by (6) with 0 � � � � < 1 and

maxf2 (� � �) ; 2
�
�� �2

�
g < c < 2

�
�� �2

�
,

then a weak component containing m nodes and fewer than m� 1 strong links is dom-
inated by a network consisting of a star with the same number of strong links and: (i)
if c > 2 (�� ��), with the rest of the nodes along with the center of the star forming a
complete subnetwork of weak links; (ii) if c < 2 (�� ��), any other pairs, except those
of peripheral nodes of the star, are connected by weak links; (iii) in particular, in both
cases, if the component contains no strong links it is dominated by the weak-complete
graph.

Proof. (i) Let K be a weak component, containing m nodes, ks < m� 1 strong links
and kw � m � 1 � ks > 0 weak links. Without loss of generality, it can be assumed
that no link is super�uous. Thus we have

v(K) � ks (2� � 2c) + kw (2�� c) + A�2 +B��;
14A strong link between two nodes is represented by a thick line connecting them, while a weak link

is represented by a thin line between them that only touches the node that supports it.
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where
A = minfks(ks � 1);m(m� 1)� 2ks � 2kwg:

Let g�ks be a m-node network consisting of a star with ks strong links and the rest
of the nodes along with the center of the star forming a complete subnetwork of weak
links (see Figure 3-a). Then

v(g�ks) = ks (2� � 2c) + k
0
w (2�� c) + A0�2 +B0��; (9)

where

k0w = (m� ks)(m� ks � 1)=2, A0 = ks(ks � 1) and B0 = 2ks(m� ks � 1): (10)

Now, depending on the value of A, we have two cases:

1st case: A = m(m� 1)� 2ks� 2kw: In this case B = 0 and A � A0. Then we have

v(g�ks)� v(K) � (k
0
w � kw) (2�� c) + (A0 � A)�2 +B0��:

As k0w + A
0=2 + B0=2 = kw + A=2 and A � A0, k0w � kw. And as 2� � c < 2�� and

k0w � kw +B0=2 = A=2� A0=2, and 2�� < 2�2 we have:

v(g�ks)� v(K) � (A
0 � A)�2 + (k0w � kw +B0=2)2��

� (k0w � kw +B0=2 + A0=2� A=2)2�� = 0:

2nd case: A = ks(ks � 1): Then

B = minf2ks(m� 1� ks);m(m� 1)� 2ks � 2kw � ks(ks � 1)g:

In both cases B0 � B � 0, and kw � k0w � 0, with k0w + B
0=2 = kw + B=2. And as

c < 2 (�� ��), we have

v(g�ks)� v(K) � (k0w � kw) (2�� c) + (B0 �B)2��
� (k0w � kw)(2�� c� 2��) � 0:

(ii) Let K be a weak component as in (i). Let g��ks be a m-node network consisting
of a star with ks strong links and any other pairs of nodes, except those of peripheral
nodes of the star, connected by weak links (see Figure 3-b). Thus

v(g��ks ) = ks (2� � 2c) + k
0
w (2�� c) + A0�2; (11)

where
A0 = ks(ks � 1) and k0w = m(m� 1)=2� ks � ks(ks � 1)=2: (12)

Two cases must be considered depending on the value of A:

1st case: A = m(m� 1)� 2ks� 2kw: In this case B = 0 and A � A0. Thus we have

v(K) � ks (2� � 2c) + kw (2�� c) + A�2;
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and consequently

v(g��ks )� v(K) � (k
0
w � kw) (2�� c) + (A0 � A)�2:

As k0w + A
0=2 = kw + A=2, that is, k0w � kw = A=2� A0=2 � 0, and we have

v(g��ks )� v(K) � (k
0
w � kw)(2�� c� 2�2) � 0:

2nd case: A = ks(ks � 1): Thus

B = minf2ks(m� 1� ks);m(m� 1)� 2ks � 2kw � ks(ks � 1)g:

In this case B � 0, and as kw + B=2 = k0w and c < 2 (�� ��), i.e. 2�� < 2� � c, we
have:

v(K) � ks (2� � 2c) + kw (2�� c) + ks(ks � 1)�2 +B��
� ks (2� � 2c) + (kw +B=2) (2�� c) + ks(ks � 1)�2:

Thus
v(g��ks )� v(K) � (k

0
w � (kw +B=2))(2�� c) = 0:

(iii) Just note that in both cases, (i) and (ii), the component is assumed to have fewer
than m � 1 strong links, which includes the case of no strong links. But note that
the structure proved to dominate the component, i.e. g�0 or g

��
0 , is a weak-complete

network.

Lemma 7 If the payo¤ function is given by (6) with 0 � � � � < 1 and

maxf2 (� � �) ; 2
�
�� �2

�
g < c < 2

�
�� �2

�
,

then a weak component of a network is dominated either by a weak-complete subnetwork
or by a star of strong links with the same number of nodes.

Proof. In view of the preceding lemma, in this region a component with no strong
links is dominated by a weak-complete network with the same number of nodes. If a
component withm nodes contains at leastm�1 strong links, Lemma 1 establishes that
it is dominated by a star with m� 1 strong links. If it contains some strong links, but
fewer than m�1, Lemma 6 shows that it is dominated by one of two types of structure
with the same number ks of strong links, either g�ks or g

��
ks
. We now prove that such

structures are dominated either by a weak-complete subnetwork or by star of strong
links with the same number of nodes. Consider �rst the case when c > 2 (�� ��). In
this case, the dominant structure is g�ks . Thus v(g

�
ks
) is given by (9), with (10). Thus,

comparing this value with that of v(g�ks+1) and v(g
�
ks�1), we have

v(g�ks+1)� v(g
�
ks) = X + (2�� c)� 4��;
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v(g�ks�1)� v(g
�
ks) = �X + 2�

2;

where X = 2� � 2c� (m� ks) (2�� c) + ks2�2 + (m� 2ks)2��: We prove that one of
these di¤erences is necessarily positive. Assume �X +2�2 � 0; that is, X � 2�2: Thus

v(g�ks+1)� v(g
�
ks) � 2�

2 + 2�� c� 4��;

which is > 0 if c < 2�2 + 2� � 4��. To see that this is so, note that � < �, thus
(�� �)2 > 0, i.e. �2 + �2 � 2�� > 0: Then, as c < 2�� 2�2

c < 2�� 2�2 < 2�� 2(2�� � �2) < 2�2 + 2�� 4��:

Therefore one of the two di¤erences must be positive. In other words g�ks is dominated
either by g�ks�1 or by g

�
ks+1

. This entails that g�ks is dominated by one of the extreme
cases: g�0 or g

�
m, i.e. a m-node weak-complete network or star of strong links.

Consider now the case, c < 2 (�� ��). In this case, the dominant structure is g��ks .
Thus v(g��ks ) is given by (11) with (12). Thus, comparing this value with that of v(g

��
ks+1

)
and v(g��ks�1), we have

v(g��ks+1)� v(g
��
ks ) = X � (2�� c) ;

v(g��ks�1)� v(g
��
ks ) = �X + 2�

2;

where X = 2��2c�ks (2�� c)+ks2�2: But then one of these di¤erences is necessarily
positive. Assume �X + 2�2 � 0; that is, X � 2�2: Thus

v(g��ks+1)� v(g
��
ks ) � 2�

2 � 2�+ c > 0;

given that c > 2� � 2�2 is one of the inequalities specifying the region under consid-
eration. Thus g��ks is dominated either by g

��
ks�1 or by g

��
ks+1

: And consequently g��ks is
dominated by either g��0 or g��m , i.e. an m-node weak-complete network or a star of
strong links.

The following result, pulling together the partial results established in the preceding
lemmas, characterizes e¢ ciency for the transitional model.

Proposition 3 If the payo¤ function is given by (6) with 0 � � � � < 1, then the
unique e¢ cient pro�le is:
(i) The strong-complete graph if c < minf� � �2; 2 (� � �)g (Region I in Figures 4-7):
(ii) The weak-complete graph if

2 (� � �) < c < 2
�
�� �2

�
and c (n� 4) < 2n�� 4� � 2 (n� 2) �2 (Region I�in Figures 4-7):
(iii) All-encompassing stars of strong links if

� � �2 < c < maxf2 (� � �) + (n� 2)
�
�2 � �2

�
; � + (n� 2) �2=2g:
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Figure 4: E¢ ciency: � = 0:2; n = 20

and c (n� 4) > 2n�� 4� � 2 (n� 2) �2 (Region II in Figures 4-7):
(iv) All-encompassing stars of weak links if

maxf2 (� � �) + (n� 2)
�
�2 � �2

�
; 2
�
�� �2

�
g < c < 2�+ (n� 2)�2

(Region II�in Figures 4-7):
(v) The empty network if

c > maxf2�+ (n� 2)�2; � + (n� 2) �2=2g

(Region III in Figure 6):

Proof. (i) As c < �, an e¢ cient network is non-empty, and, as c < 2 (� � �), by
Lemma 4-(i), in a non-empty e¢ cient network all links are strong. Let g then be a
network where all links are strong and assume nodes i and j are not connected. As
c < ���2, i.e. �2 < �� c, both i and j improve their payo¤s if the strong link ij forms,
and the other players�payo¤s do not decrease. Therefore, the unique e¢ cient network
is the strong-complete one.
(ii) Consider �rst the subregion where c < 2

�
�� �2

�
. Let g be a network where

two nodes, i and j, are not directly connected. Thus i (j) receives at most �2 from
j�s (i�s) unit of value. As 2�2 < 2� � c, the sum of the payo¤s of i and j increases
if a weak link between them forms, and the other players�payo¤s do not decrease.
Thus, if c < 2

�
�� �2

�
an e¢ cient network must be complete. Note that � must be

greater than �2. Now as 2 (� � �) < c, if a strong link ij in a complete network is
replaced by a weak link, then the sum of the payo¤s of i and j increases, and the other
players�payo¤s do not decrease. Therefore, if 2 (� � �) < c < 2

�
�� �2

�
then the

unique e¢ cient pro�le is the weak-complete graph. The rest of the region remains to
be examined, i.e. where c � 2

�
�� �2

�
. But this is a subset of the range of values of the
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Figure 5: E¢ ciency: � = 0:6; n = 20

parameters considered in Lemmas 6 and 7, where any component is dominated either
by a weak-complete subnetwork or by a star of strong links with the same number of
nodes. As c < 2 (�� �2) < 2�, an e¢ cient network must be connected, therefore any
network is dominated either by a weak-complete network or by an all-encompassing
star of strong links. Finally, it can be checked immediately that the former dominates
the latter if and only if c (n� 4) � 2n�� 4� � 2 (n� 2) �2, strictly if the inequality is
strict, while both structures are equally e¢ cient in case of equality.
(iii) By Lemma 1, any component with at least m � 1 strong links is dominated

by a star of strong links. It remains to be checked that this is also the case if it has
fewer than m� 1 strong links. As seen in Lemma 4, in this region, when c < 2 (� � �),
a weak component is dominated by a star of strong links, therefore the statement is
proven in this case. Now consider the case c � 2 (� � �). If c > 2�, Lemma 2 ensures
that any component is dominated by a mixed star with the same number of strong
links, and by Lemma 3 the same holds if 2 (�� �2) < c < 2�: By Lemma 5 mixed
stars are dominated either by stars of weak links or by stars of strong links, so this
conclusion applies to the subset of the region under consideration where c > 2 (�� �2).
The subset where 2 (� � �) � c < 2 (�� �2) remains to be discussed, where Lemmas
6 and 7 apply and ensure that any component is dominated either by a weak-complete
subnetwork or by a star of strong links with the same number of nodes. If c < 2�, an
e¢ cient network must be connected, therefore in this region any network is dominated
either by a weak-complete network or by an all-encompassing star of strong links. But
the latter is dominated by the former if and only if c (n� 4) � 2n�� 4�� 2 (n� 2) �2,
strictly if the inequality is strict, while both structures are equally e¢ cient in case of
equality. Now if c � 2�, Lemmas 2 and 5, ensure that any component of an e¢ cient
network must be a star of either weak links or strong links. As the value of a component
of an e¢ cient network must be non-negative, it is immediate to check that the value
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Figure 6: E¢ ciency: � = 0:2; n = 10

of a star with m1 +m2 nodes is greater than the sum of the values of two stars with
m1 and m2 nodes each. In short, it is proved that throughout the region a component
is dominated by a star of strong or of weak links. It then follows immediately that the
former dominates the latter if and only if c � 2 (� � �)+(n� 2)

�
�2 � �2

�
, strictly if the

inequality is strict, while both structures are equally e¢ cient in case of equality. Thus,
in the whole region the only non-empty e¢ cient network is the all-encompassing star
of strong links. Finally, the all-encompassing star of strong links yields a non-negative
value if and only if c < � + (n� 2) �2=2.
(iv) By the same argument used in (iii), Lemmas 1-5 ensure that in this region

any network is dominated by an all-encompassing star of weak links or by one of
strong links. As stated before, the former dominates the latter if and only if c �
2 (� � �) + (n� 2)

�
�2 � �2

�
, strictly if the inequality is strict, while both structures

are equally e¢ cient in case of equality. Thus, in the whole region the only e¢ cient non-
empty network is the all-encompassing star of weak links. Finally, the all-encompassing
star of weak links yields non-negative value if and only if c < 2�+ (n� 2)�2.
(v) This follows from the discussion in (iii) and (iv).

Remarks: (i) Figures 4-7 summarize Proposition 3 relative to e¢ ciency. The images
correspond to the cases � = 0:2 and � = 0:6; with n = 20 and n = 10. Note
that, as 0 � � � � < 1, only the part where 0:2 � � < 1 in Figures 4 and 6
(0:6 � � < 1 in Figures 5 and 7) is meaningful. The strong-complete network is
the only e¢ cient graph in Region I: below the straight line c = 2 (� � �) and the
parabola c = �� �2. The only e¢ cient networks in Region I�are weak-complete: above
the line c = 2 (� � �), and below the horizontal line c = 2 (�� �2) and the curve
c (n� 4) = 2n��4��2 (n� 2) �2 (a parabola). All-encompassing stars of strong links
are the only e¢ cient graphs in Region II: above the last parabola and c = � � �2,
and below two parabolas: c = 2 (� � �) + (n� 2)

�
�2 � �2

�
and c = � + (n� 2) �2=2
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Figure 7: E¢ ciency: � = 0:6; n = 10

(the part of the boundary corresponding to the latter is only visible in Figure 6 since
only the part of the pictures for c � 1 is represented in the �gures). All-encompassing
stars of weak links are the only e¢ cient graphs in Region II�: above the horizontal
line c = 2 (�� �2) and the parabola c = 2 (� � �) + (n� 2)

�
�2 � �2

�
, and below the

horizontal line c = 2� + (n� 2)�2 (the part of the boundary corresponding to the
latter is only visible in Figure 6). Finally, in Region III the only e¢ cient graph is the
empty network: above c = 2� + (n� 2)�2 and c = � + (n� 2) �2=2 (only visible in
Figure 6).
(ii) All inequalities in Proposition 3 are strict to preserve uniqueness, but on the

boundaries separating any two regions both structures are e¢ cient.
(iii) Observe that as � decreases towards 0 the image of these regions approaches

the �map�in Figure 1, corresponding to Proposition 1 (i.e. Proposition 1 of Jackson
andWolinsky (1996)), namely Regions I and II in Figures 4-7 expand towards Regions I
and II in Figure 1, while regions where �weak�structures are e¢ cient shrink and �nally
collapse when � = 0. In fact, Proposition 3 applied to case � = 0 yields Proposition
1. That is, setting � = 0 in (i), (iii) and (v) in Proposition 3, yields (i), (ii) and (iii)
in Proposition 1, respectively.
(iv) As � �moves rightward�, ranging from 0 to 1; the vertical line � = � is Bala

and Goyal�s two-way �ow model, with � = � being the fraction of a unit of information
at one node that reaches another one through a link. Thus, as this line sweeps the
rectangle, the boundary points separating Regions I�, II�and III on the vertical line
� = �, follow the curves c = 2 (�� �2), and c = 2� + (n � 2)�2, which depict Figure
2 exactly. In fact, Proposition 3 applied to case � = � yields Proposition 2 (i.e.
Proposition 5.5 of Bala and Goyal (2000a)). That is, setting � = � in (ii), (iv) and (v)
in Proposition 3, yields (i), (ii) and (iii) in Proposition 2, respectively.
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5.2 Stability

We now study the stability of the e¢ cient structures established in Proposition 3.
Pairwise stable architectures are not characterized in Jackson and Wolinsky (1996),
and nor are Nash stable networks in Bala and Goyal (2000a). The following results
relative to pairwise stability in Jackson and Wolinsky�s connections model and to Nash
and strict Nash architectures in Bala and Goyal�s two-way �ow model with decay
are proved in those seminal papers assuming homogeneity in costs and values across
players. Their statements are adapted to the terminology used here. In Jackson and
Wolinsky�s model all links are strong, while in Bala and Goyal�s all links are weak,
but who supports them may a¤ect the stability of an architecture (the same occurs in
our model). A center-sponsored (periphery-sponsored, mixed-sponsored) star is a star
of weak links where the center supports all links (no link, some but not all links).
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Figure 8: Pairwise stability: � = 0 (Jackson and Wolinsky)

Proposition 4 (Proposition 2, Jackson and Wolinsky, 1996) In Jackson and Wolin-
sky�s connections model:
(i) A pairwise stable network has at most one nontrivial strong component.
(ii) If 0 < c < � � �2, then the unique pairwise stable network is the strong-complete
graph (Region I in Figure 8).
(iii) If � � �2 < c < �, then an all-encompassing star of strong links is pairwise stable
(Region II in Figure 8), but not necessarily the unique pairwise stable graph (e.g. if
n = 4 and � � �3 < c < � a line of strong links is also stable, and if c < � � �3, then a
wheel of strong links is also stable).
(iv) If � < c, then in a nonempty pairwise stable network no player is peripheral (Region
III in Figure 8).
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Figure 9: Strict Nash stability: � = � (Bala and Goyal), n = 20

Proposition 5 (Proposition 5:3, Bala and Goyal, 2000a) In Bala and Goyal�s two-way
�ow model with decay:
(i) A strict Nash network is either weakly connected or empty.
(ii) If 0 < c < � � �2, then the unique strict Nash network is the weak-complete graph
(Region I�in Figure 9).
(iii) If ���2 < c < �, then all-encompassing stars of weak links are strict Nash (Region
II�in Figure 9).
(iv) If � < c < �+(n�2)�2, then all-encompassing periphery-sponsored stars, and only
them among all-encompassing stars, are strict Nash (Region III�in Figure 9).
(v) If � < c, then the empty network is strict Nash (Region IV�in Figure 9).
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Figure 10: Pairwise stability: � = 0:2; n = 20
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Figure 11: Pairwise stability: � = 0:6; n = 20

In contrast with the seminal models, in which each requires a di¤erent notion of
stability, in the transitional model both a strictly noncooperative approach and one
allowing for pairwise agreements make sense, so the question of stability is addressed
from both points of view. The following two propositions establish the transition be-
tween the preceding results. Proposition 6 deals with pairwise stability and Proposition
7 with Nash stability.

Proposition 6 If the payo¤ function is given by (6) with 0 � � � � < 1, we have:
(i) A pairwise stable network has at most one non-trivial weak component (which is
strong if � = 0), and has at most one non-trivial strong component.
(ii) If 0 < c < minf���2; ���g, then the strong-complete graph is the unique pairwise
stable network (Region I in Figures 10-11).
(iii) If � � � < c < � � �2 and � < 2�= (1 + �), then weak-complete graphs are the
unique pairwise stable networks (Region I�in Figures 10-11).
(iv) If � � �2 < c < � � �, then all-encompassing stars of strong links are pairwise
stable (Region II in Figures 10-11).
(v) If � � �2 < c < � + (n� 2)�2, then all-encompassing periphery-sponsored stars of
weak links are pairwise stable (Regions II�and III�in Figures 10-11).
(vi) If maxf(� � �)(1 + (n � 2)�); � � �2g < c < �, then all-encompassing stars
of weak links (periphery-sponsored, center-sponsored or mixed-sponsored) are pairwise
stable (Region II�in Figures 10-11).
(vii) If c > � � �, then in a pairwise stable network a peripheral player cannot be
connected by a strong link. If c > �, then in a pairwise stable network a peripheral
player cannot be sponsored by a weak link. If c > �, then the empty network is pairwise
stable.

Proof. (i) Let g be a pairwise stable network. Assume g has more than one non-trivial
weak component. Let ij 2 g and kl 2 g be two links in di¤erent weak components. If

24



both are strong, i.e. ij 2 g and kl 2 g, it easily follows that both j and k bene�t by
creating a strong link jk. If � > 0 and one of them, say ij, is weak, i.e. ji =2 g, then k
will bene�t by creating a weak link with j. In both cases there is a contradiction with
pairwise stability.
(ii) Let g be the strong-complete network. A player i has no incentive to withdraw

support to a double link ij if and only if ��c is greater than or equal to � and to �2. In
other words, it must be ��c � maxf�; �2g, which is equivalent to c � minf���2; ���g.
Now assume this condition holds strictly: any two players not connected by a link must
then bene�t by forming a strong link, and any player bene�ts by making a weak link
supported by another player double, so only the strong-complete network is pairwise
stable.
(iii) Let g be a weak-complete network. For a weak link ij 2 g, player i has no

incentive to withdraw support for it if and only if ��c � �2. On the other hand, j has
no incentive to double this link if and only if � � � � c. Thus we have two necessary
conditions for pairwise stability: � � � � c � � � �2. Finally, i has no incentive to
switch its support from ij to another, say ik, thus making double the existing weak link
ki, if and only if 2� � � + ��; i.e. � � 2�= (1 + �) : Now assume all these conditions
hold strictly. Then, as c < � � �2 < �; either of the two players in any pair not
connected by a link would bene�t by creating a weak link. Thus g must be complete,
and as c > � � � no strong link can exist. Therefore g is weak-complete. Finally,
� < 2�= (1 + �) guarantees that weak-complete networks alone are pairwise stable.
(iv) Let g be an all-encompassing star of strong links. The player with most in-

centive to withdraw support for a link is the center, who has no incentive to do so if
� � c � �; i.e. c � � � �. No two peripheral nodes are interested in forming a strong
link if c � � � �2.
(v) Let g be an all-encompassing periphery-sponsored star. No peripheral node has

an incentive to sever its weak link if �+(n� 2)�2� c � 0. No pair of peripheral nodes
are interested in forming a strong link if �+(n�2)�2� c � �+�+(n�3)�2�2c � 0,
that is, if c � � � �2. Note that this implies c � � � �, and consequently the center
has no incentive to double any link. Therefore, g is pairwise stable if and only if
� � �2 � c � �+ (n� 2)�2.
(vi) Note that ���2 � c � � implies ���2 � c � �+(n�2)�2, therefore, as proven

in (v), an all-encompassing periphery-sponsored star is pairwise stable. Now let g be an
all-encompassing center-sponsored or mixed-sponsored star of weak links. The center
has no incentive to sever any link if c � �. No peripheral node whose link is supported
by the center has an incentive to double it if �+ (n� 2)�2 � � + (n� 2)��� c, i.e. if
c � (���)(1+(n�2)�). Finally, no pair of peripheral nodes are interested in forming
a strong link (in this respect the situation is entirely similar to (v)) if c � � � �2.
(vii) This is straightforward.

Remarks: (i) Figures 10 and 11 summarize Proposition 6 for n = 20; and � = 0:2
and � = 0:6, respectively, depicting the regions where the di¤erent architectures are
pairwise stable. The strong-complete network is the only pairwise stable architecture
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in Region I: below the line c = � � � and the parabola c = � � �2. The weak-complete
networks are the only pairwise stable architectures in Region I�: above the line c = ���,
below c = ���2, and to the left of the vertical line � = 2�= (1 + �) : All-encompassing
stars of strong links are pairwise stable in Region II: below the line c = ��� and above
the parabola c = � � �2. Periphery-sponsored stars are pairwise stable in Regions II�
and III�: above the line � = ���2 and below the horizontal line c = �+(n�2)�2 (note
that this last constraint is only visible in Figure 10 because for � = 0:6 this upper
bound is greater than 1). Other stars of weak links, i.e. center-sponsored and mixed-
sponsored stars, are pairwise stable in a relatively small subset of this region, namely
in Region II�: below c = �, above the lines c = � � �2 and c = (� � �)(1 + (n� 2)�).
(ii) Observe that as � decreases towards 0 the image of these regions approaches the

�map�of Figure 8, corresponding to Proposition 4 (i.e. Proposition 2 of Jackson and
Wolinsky (1996)), namely Regions I and II in Figures 10 and 11 expand approaching
Regions I and II in Figure 8, while regions where �weak�structures are pairwise stable
shrink and �nally collapse when � = 0. In fact, Proposition 6 applied to case � = 0
yields Proposition 4. That is, by setting � = 0 in (i), (ii), (iv) and (vii) in Proposition
6, yields (i), (ii), (iii) and (iv) in Proposition 4, respectively.
(iii) The architectures studied in Proposition 6 are not the only ones which are

pairwise stable. For example, for n = 4: a wheel of strong links is pairwise stable if
�� �2 < c < �� �; a line of strong links if �� �3 < c < �� �; any wheel of weak links
if ���2 < c < ���3 and � < � (2 + �) = (1 + �+ �2) (this last condition only applies
if it is possible for a node to switch its support from one weak link to making double
another existing weak link); a line of weak links whose peripheral nodes are sponsored
if � + ��� �2 � �3 < c < � and � < � (2 + �) = (1 + �).
(iv) Note that above the line c = � � �2 all pairwise stable structures considered

are formed exclusively by weak links, while below line c = �� � they consist of strong
links. As soon as � > 0 a gap opens between lines c = � � � and c = � � �2. The
following straightforward corollary emerges relative to this gap:

Corollary 1 If the payo¤ function is given by (6) with 0 � � � � < 1; � � � < c <
� � �2, and � < c, a non-empty pairwise stable network necessarily contains cycles.

Proof. Assume g is a pairwise stable network. By Proposition 6-(i), g is weakly
connected. If � � � < c, no peripheral player can be connected by a strong link, nor
sponsored by a weak link if � < c. Therefore a peripheral node can only be connected
by a weak link supported by itself. But only one such peripheral node can exist,
because if there were more, as c < � � �2, it would then be pro�table for any pair of
them to form a strong link. Consequently, under these conditions g cannot be a weakly
connected graph with no cycles.

We now address noncooperative stability for the transitional model.

Proposition 7 If the payo¤ function is given by (6) with 0 � � � � < 1; we have:
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Figure 12: Nash stability: � = 0:2; n = 20

(i) A Nash network is either weakly connected or all its components are strongly con-
nected.
(ii) If 0 < c � minf� � �2; � � �g then the strong-complete network is Nash stable
(strict Nash if the inequalities hold strictly) (Region I in Figures 12-13).
(iii) If ��� � c � ���2 and � � 2�= (1 + �) then weak-complete networks are Nash
(strict Nash if the inequalities hold strictly) (Region I�in Figures 12-13).
(iv) If �� �2 � c � � � �, then all-encompassing stars of strong links are Nash stable
(strict Nash if the inequalities hold strictly) (Region II in Figures 12-13).
(v) If c � � � �, and � � �2 � c � � + (n � 2)�2, then all-encompassing periphery-
sponsored stars are Nash stable (strict Nash if the inequalities hold strictly) (Regions
II�and III�in Figures 12-13).
(vi) If maxf(� � �)(1 + (n � 2)�); � � �2g � c � �, then all-encompassing stars of
weak links (periphery-sponsored, center-sponsored or mixed-sponsored) are Nash stable
(strict Nash if the inequalities hold strictly) (Region II�in Figures 12-13).
(vii) If c > ���, then in a Nash stable network a peripheral player cannot be connected
by a strong link. If c > �, then in a Nash stable network a peripheral player cannot be
sponsored by a weak link. If c � �, then the empty network is Nash stable (strict Nash
if the inequality holds strictly).

Proof. (i) Let g be a Nash network. Assume g has more than one non-trivial weak
component. If any of them is not strongly connected it contains at least one weak link,
say ij, i.e. ij 2 g and ji =2 g, but then any node in a di¤erent weak component will
bene�t by creating a weak link with j, which contradicts that g is a Nash network.
(ii) Let g be the strong-complete network. A player i has no incentive to withdraw

support for a double link ij (or a set of them), if and only if � � c is greater than or
equal to � and to �2. In other words, if � � c � maxf�; �2g, which is equivalent to
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Figure 13: Nash stability: � = 0:6; n = 20

c � minf� � �2; � � �g. Now assume these conditions hold strictly, then the network
described is strict Nash.
(iii) Let g be a weak-complete network. Proceeding as in part (iii) of Proposition 6,

it can be concluded that under these conditions no player has an incentive to withdraw
support for any number of weak links, or switch their support to double any others,
or to double any weak ones. Thus, if all these conditions hold (strictly) g is a Nash
(strict Nash) network.
(iv) Let g be an all-encompassing star of strong links. The center has no incentive

to withdraw support for a link (or a set of them) if � � c � �. No peripheral node is
interested in forming a weak link with another (or a set of them) if c � �� �2. If these
conditions hold strictly, then g is strict Nash.
(v) Let g be an all-encompassing periphery-sponsored star. No peripheral node has

an incentive to sever its link if � + (n� 2)�2 � c � 0. If c � � � �, the center has no
incentive to double a link (or a set of them). If c � �� �2 no peripheral node has an
incentive to form a weak link with another (or a set of them). Therefore, if all three
conditions hold (strictly) g is a Nash (strict Nash) network. In (vi) we show that for
other stars to be Nash c � � is required.
(vi) Let g be an all-encompassing star. If it is center-sponsored or a mixed-

sponsored star, the center has no incentive to sever a link (or a set of them) if
c � � (which does not apply if the star is periphery-sponsored) and no periph-
eral node whose link is supported by the center has an incentive to double it if
� + (n � 2)�2 � � + (n � 2)�� � c, i.e. if c � (� � �)(1 + (n � 2)�). Finally, no
peripheral node is interested in forming a weak link with another (or a set of them) if
c � �� �2. If these conditions hold strictly, then g is strict Nash.
(vii) This is straightforward.
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Remarks: (i) Figures 12 and 13 summarize Proposition 7 for n = 20; and � = 0:2
and � = 0:6, respectively. The strong-complete network is Nash stable in Region I:
below the line c = � � � and the parabola c = � � �2. This region overlaps with the
region where all-encompassing stars of strong links are Nash, namely Region II: below
the line c = � � � and above the parabola c = � � �2. The weak-complete networks
are Nash in Region I�(the same region where they are pairwise stable): above the line
c = � � �, and below c = � � �2, and to the left of the vertical line � = 2�= (1 + �).
Periphery-sponsored stars are Nash in Regions II�and III�: above lines c = � � � and
c = ���2, and below the horizontal line c = �+(n� 2)�2 (only visible in Figure 12).
Finally, other stars of weak links, i.e. center-sponsored and mixed-sponsored stars, are
pairwise stable in a relatively small subset of this region, namely in Region II�: between
the horizontal lines c = � and c = �� �2 and above c = (� � �)(1 + (n� 2)�).
(ii) Observe that as � �moves rightward�, ranging from 0 to 1; the vertical line

� = � is Bala and Goyal�s two-way �ow model with � = � being the fraction of the
unit of information at one node that reaches another one through a link. Thus, as this
line sweeps the rectangle, the boundary points of Regions I�, II�and III�on the vertical
line � = �, follow the curves c = �, c = � � �2, and c = � + (n � 2)�2, which depict
Figure 9 exactly. In fact, Proposition 7 applied to case � = � yields Proposition 5 (i.e.
Proposition 5.3 of Bala and Goyal (2000a)). That is, setting � = � in (i), (iii), (v) and
(vi) in Proposition 7, yields (i), (ii), (iii) and (iv) in Proposition 5, respectively.
(iii) A comparison with the results for pairwise stability (Proposition 6) shows the

following. The region where the strong-complete network is stable in either sense is
the same, and the same goes for weak-complete networks (Regions I and I�in Figures
10-11 and 12-13). However these regions are di¤erent for stars of strong links and
stars of weak links (periphery-sponsored or not). In both cases the region where such
structures are pairwise stable is a subset of the region where they are Nash stable, due
to the possibility of pairwise coordination to form new strong links, which destabilizes
some Nash stable networks. But note that if attention is constrained to Bala and Goyal
setting, i.e. to the line where � = �, weak-complete networks, stars of weak links and
periphery-sponsored stars of weak links are stable in either sense in the same regions.
(iv) Again, as with pairwise stability, above the line c = � � �2 all Nash structures

considered are formed exclusively by weak links, while now below this line they consist
of strong links only.
(v) The architectures studied in Proposition 7 are not the only ones which are

Nash stable. For example, for n = 4: a wheel of strong links is Nash stable if �� �2 �
c � � � �; a line of strong links if � � �3 � c � � � �; a wheel of weak links
if � � �2 < c < � � �3 and � < � (2 + �) = (1 + �+ �2) (this last condition only
applies if it is possible for a node to switch its support from one weak link to double
another existing weak one); a line of weak links whose peripheral nodes are sponsored
if maxf�� �3; � + ��+ ��2 � �2 � �3 � �g � c � �.
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6 Conclusion

In this paper we introduce a model which bridges the gap between the two basic models
of strategic network formation and incorporates them as extreme cases: Jackson and
Wolinsky (1996) bilateral connections model and Bala and Goyal (2000a) unilateral
connections two-way �ow model. This richer hybrid model, provides a common setting
for them and makes it possible to transition from one to the other.
The e¢ cient architectures are fully-characterized for all possible values of the pa-

rameters and the results relative to e¢ ciency in both seminal papers extended. One
noteworthy result is that only the structures which are e¢ cient in the seminal models
emerge as e¢ cient in this transitional model.
The strictly noncooperative approach and the approach based on pairwise stability

both make sense and are applied in this setting. Jackson and Wolinsky (1996) pair-
wise stability results for their connections model and those of Bala and Goyal (2000a)
noncooperative stability results for their two-way �ow model are extended to the more
general model.
The point of view provided by this continuum of models, bridging the gap between

the two seminal models, shows the perfect compatibility and robustness of both in the
sense that the transition from one to the other is smooth in all respects.
Some lines of further research are the following. A similar transitional model be-

tween Jackson and Wolinsky�s (1996) connections model and Bala and Goyal�s (2000a)
one-way �ow model with decay, or between Bala and Goyal�s one-way �ow and two-
way �ow models with decay15 remains to be explored. Some of the extensions of the
benchmark models in the literature can also be tested in this mixed model.
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