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Abstract

We generalize results on the monotonicity of equilibria for network games with

incomplete information. In those games players know the stochastic process of network

formation and their own degree in the realized network, and decide an action whose

payoff depends on the strategic interaction in the network between their own action and

a statistic (as, for example, the mean, the maximum or the minimum) of neighbors’

actions. We show that, even under degree independence, not only the distinction

between strategic complements and strategic substitutes is important in determining

the nature of Bayesian Nash equilibria, but also the nature itself of the statistic.

JEL classification: D85.

Keywords: Network Games, sample statistics, substitutes and complements.

1 Introduction

Following the paper “Network Games” by Galeotti et al. (2010) (hencefort: NG), many

recent models on games with local externalities assume that agents are nodes of a network

environment, and that they have to take an action which has local externalities channeled

trough the topology of the network. However, the agents have limited observability on the

structure of the network and even on the identity of their peers. Essentially, nodes know only

their own degree and have some information about the general network formation process
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that generated the whole social network. The realization could be such that the degree of

neighbors is i.i.d., and independent also on the degree of the node itself. More generally, any

stochastic process for the realization of the network could be formalized as in the recent paper

by Acemoglu et al. (2013). The nodes, in these network games with limited observability,

compute expected statistics over the sample of the actions of the neighbors that they will

end up finding in the pool. From an applied point of view, such models are a good tool for

analyzing many complex social phenomena, as peer effects, the spread of habits, marketing

for goods with externalities, vaccination policies, and public good contributions, just to name

a few.

However, it must be noted that up to now the theoretical predictions of these models

are unclear when it comes to assign some correlation between the degree of nodes and their

action: who will endogenously tend to vaccinate more during a flu pandemic, those with

many or those with few links? when a bad habit as smoking spreads in a school and there

are peer effects, who will be more likely to smoke? those with many or those with few links?1

Since some of the theoretical prediction in those models differ from those of NG, it becomes

important from a theoretical point of view to study what differs in the apparently similar

assumptions.

In this note we point out that the distinctions that have been made up to now are

not sufficient to understand the possible outcomes of those games. Apart from the degree

correlation mentioned above, the literature has focused on the sign of the externality, distin-

guishing between local public goods and local public bads, and on the cross derivative between

the externalities and own actions, distinguishing between games of substitutes and games of

complements.2 However, not much attention has been put on the nature of the statistic upon

neighbors’ actions that is affecting the payoff.

As an example, vaccination and acquisition of information are both activities with positive

externalities and the substitute property (i.e. the more my neighbors contribute the less I will,

in equilibrium). However, they differ in the statistic that affects payoffs. In the vaccination

case I am influenced by the minimum contribution in my neighborhood (it is a weakest–link

game), so that having more neighbors increases the probability of finding a non–vaccinated

one, and agents with higher degree will be more likely to vaccinate. In the information

acquisition case I am influenced by the neighbor who knows more (it is a best–shot game),3

1On the vaccination example, see Goyal and Vigier (2014a,b), Galeotti and Rogers (2013) and again
Acemoglu et al. (2013). On the smoking example, see Currarini et al. (2013).

2On this see also the discussion in Jackson and Zenou (2014) about strategic complements and strategic
substitutes.

3Minimum and maximum contributions from neighbors relate respectively to weakest–link and best–shot
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so that having more neighbors increases the probability of finding a well–informed one,

and agents with higher degree will be more likely to free ride and not acquire information

themselves

Best shot games fall in the cathegory of those statistics whose expectation is increasing

with the degree of a node, which can be seen just as the size of sample from which the

statistic is computed. For weakest link games this expectation is instead decreasing with the

size of the sample.

Finally, we provide novel and non–trivial results also for those statistics that are expected

to be constant in the size of the sample. This last category includes the mean and the mode,

which are the statistics most used in the empirical literature on peer effects and reference

groups (a good survey is given in Blume et al. (2010)).

The paper is organized in the following way: in Section 2 we describe the model. Section

3 contains the main results. Section 4 provides the relation with the previous literature.

Section 5 concludes the discussion and provides possible directions for further research.

2 The model

Let N = {1, 2, ....n} be a finite set of agents. Each agent i ∈ N obtains some partial

information about the realization of a random network and then chooses an action xi ∈ X ,

where X ⊆ R is a compact set. Payoffs are assigned in a way that depends on the realized

network environment. The structure is the one of a Bayesian game, and we follow the

notation of NG, integrating it with some of the formalization from Acemoglu et al. (2013).

Network: Our network environment is represented by a (possibly directed) network g, in

which the set of nodes is the set of agents, and a link ij denotes that the action of agent

j affects i’s payoff. We denote by Ni(g) the set of neighbors of i in g (excluding i) and

by ki,g ∈ K the number of such neighbors (i.e. i’s out–degree in the network) where K is

the set of natural numbers {0, 1, 2, . . . , n − 1}.. We call Vk,g the set of nodes that have

degree k in network g, and by vk,g the cardinality of this set. Network g is obtained from

a probability distribution P over all the 2n(n−1) possible networks. We call P the network

formation process.

Before going on, let us consider as benchmark the configuration model proposed by Bender

and Canfield (1978). It is a model of random network formation where the degree distribution

games, as introduced by Hirshleifer (1983) in a non–network context. NG and Boncinelli and Pin (2012)
discuss network best shot games, while classical weakest–link games are those related to contagion, as Galeotti
and Rogers (2013).
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is given. As the number n of nodes grows to infinity, knowing only own degree provides no

additional information on the degree of neighbors, which can be supposed as drawn uniformly

and i.i.d. from that degree distribution. Following NG, we call degree independence this lack

of correlation between own degree and the degree of neighbors. When instead, knowing own

degree k changes the expectation on the degree of neighbors, we may have degree assortativity

or disassortativity (on this, see also the discussion in Section 3).

Payoffs: Payoffs are based on the realized network g. Player i’s payoff function when she

chooses xi and her ki,g neighbors choose the action profile ~xi,g = (x1; ...;xki) is:

Πki,g(xi, ~xi,g) = f (xi, s(~xi,g))− c(xi) , (1)

where s is a measure computed on the set of the neighbors’ actions,4 and f(x, s) is continu-

ously differentiable function from R2 to R with:

fx > 0 , and fxx ≤ 0 .

We say that when fs > 0 we have positive exterernalities, when instead fs < 0 we have

negative exterernalities. Moreover, if fxs ≤ 0 or fxs ≥ 0, we say, respectively, that f has the

substitutes or the complements property. Finally, c(x) is a convex cost function such that

cx > 0 and cxx ≥ 0.

Statistic: The effects of local interaction are aggregated by the measure s. Formally s is a

different k–dimensional function for every k ∈ K. So, s is a family of n functions5 and each of

them is anonymous on the arguments, which means that any permutation of the elements of

~xi,g would give the same result. This very general specification includes measures of central

tendency as well as measures of variability (or dispersion). Measures of central tendency

include the mean, median and mode, while measures of variability include the standard

deviation (or variance), the minimum and maximum values of the variables, kurtosis and

skewness. In the following we refer to any measure s as a statistic.

Information: The only piece of information that an agent i obtains before deciding her

action, on top of the common prior P , is her own degree ki,g in the realized network g. Then

players play a game of incomplete information described by the quadruple (N ,X , (Πki,g)ki,g∈K, P ).

4Formally, s is a function from Rki,g to R and, if ki,g = 0, s is a constant.
5In principle we allow them to be even different functions for each k

4



Bayesian game: A strategy for player i is a mapping σi : K → ∆(X ), where ∆(X ) is the

set of probability distributions on X , i.e. σi = [σik]k∈K where σik is the mixed strategy played

by player i of degree k. Furthermore ~σig is the strategy profile of i’s neighbors in network

g, ~σ = [σi]i∈N is the strategy profile of the game and ~σ−i = [σj]j∈N/i is the set of strategy

profiles of all players excluded i.

We consider symmetric Bayesian Nash equilibria in which every agent with the same infor-

mation and facing the same ex–ante conditions (i.e. each agent i with the same degree k)

chooses the same strategy, i.e. σik = σjk ∀ k ∈ K and ∀ i, j ∈ N .

We say that a strategy profile ~σ is first order stochastic dominance (FOSD) increasing if,

for every k ∈ K\{n − 1} we have that σk+1 FOSD σk (which is to say that the cumulative

distribution of σk+1 is always below the cumulative distribution of σk – in the context of

pure strategies it means that xk+1 ≥ xk). Analogously, ~σ is FOSD decreasing if, for every

k ∈ K\{n− 1} we have that σk FOSD σk+1.

Given a realized network g and a strategy profile ~σ the expected payoff of agent i of

degree k, who knows her own position and the positions of all other nodes, is given by:

Πe
i,g(σi, ~σig) =

∫
Xn

Πki,g(xi, ~xi,g) d~σ . (2)

On this, we have to include also the uncertainty about the realization of the network. Adding

this, the expected payoff of agent i of degree k is

Πe
k(σi, ~σ−i) =

∑
g P (g) ·

∑
i∈Vk,g

Πe
i,g(σi, ~σig)∑

g P (g) · vk,g
. (3)

In words, an agent evaluates all possible nodes i with degree k in any possible realized

network g, updating priors with the information that her degree is actually k.6 For each

such node i’s position and network g, and for each realization of ~σ, there will be a vector

~xi,g that lists the action of each neighbor, depending on their degree in network g.

The Bayesian Nash equilibria can be represented simply as a (mixed) strategy profile ~σ∗,

where every agent i, depending on her degree ki, will choose an optimal strategy σ∗k, that

maximizes the individual expected payoff for agent i from (3).

Let φig(s|~σig) be the probability density function of s exactly for node i in network g when

the strategy profile of the i’s neighbors is ~σig. For an agent observing only her own degree k

6Note that Πe
k(σi, ~σ−i) =

∑
g P (g|k) ·

∑
i∈Vk,g

Πe
ig(σi,~σig)

vk,g
where P (g|k) =

vk,g·P (g)∑
g vk,g·P (g) is the update proba-

bility that network g is in force.
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the posterior distribution for the statistic s will be:

φk(s|~σ, P ) ≡
∑

g P (g) ·
∑

i∈Vk,g
φig(s|~σig)∑

g P (g) · vk,g
, (4)

therefore, since the Bayesian updating based on the network structure is linear, the expected

value of s for an agent of degree k is

Ek(s|~σ, P ) =

∑
g P (g) ·

∑
i∈Vk,g

Eig (s|~σig)∑
g P (g) · vk,g

, (5)

where Eig (s|~σig) is the expected value of s for node i in network g and when the strategy

profile of the i’s neighbors is ~σig.

We call Φk(s|~σ, P ) the cumulative probability distribution on s from φk(s|~σ, P ). Then

Φk(s|~σ, P ) summarizes all the information provided by P (the network formation process)

and ~σ (the strategy profile). Finally by V ark(s|~σ, P ) we denote the variance of s for an agent

of degree k when the strategy profile of the game is ~σ and the network formation process is

P .

Definitions: Given that the type of statistic s(.) affects the individual payoff and sub-

sequently the optimal individual behavior, through the network formation process P and

equilibrium strategy ~σ, we highlight its relevant characteristics.

Definition 1. Let P have degree independence. A statistic s is stable if for every ~σ and

k ∈ K\{n− 1} we have that Ek+1(s|~σ, P ) = Ek(s|~σ, P ).

Definition 2. Let P have degree independence. A statistic s is increasing (or decreasing)

if for every ~σ and k ∈ K\{n− 1} we have that Ek+1(s|~σ, P ) > Ek(s|~σ, P ) (or respectively, if

for every ~σ and k ∈ K\{n− 1} we have that Ek+1(s|~σ, P ) < Ek(s|~σ, P )).

Definition 3. Let P have degree independence. A statistic s is FOSD increasing (or FOSD

decreasing) if for every ~σ, k ∈ K\{n−1}, and x ∈ R, we have that Φk+1(x|~σ, P ) ≤ Φk(x|~σ, P )

(or respectively, if for every ~σ, k ∈ K\{n − 1}, and x ∈ R, we have that Φk+1(x|~σ, P ) ≥
Φk(x|~σ, P )). We say that statistics s is strictly FOSD increasing (or decreasing) when all

inequalities are stricty satisfied.

Definition 4. Let P have degree independence. A statistic s satisfies second order stochastic

dominance (SOSD): if for every ~σ and y ∈ R we have the following inequality:∫ y

−∞
Φk+1(x|~σ, P ) dx ≤

∫ y

−∞
Φk(x|~σ, P ) dx . (6)
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The following two results could be useful to understand the meaning of the assumptions

made in our propositions.

1. It is directly verifiable that a strictly FOSD increasing statistic (Definition 3) implies

an increasing one (Definition 2).

2. If s is stable and satisfies SOSD (Definitions 1 and 4), then s is converging, in the sense

that for every σ and k ∈ K\{n− 1}, we have that V ark+1(s|~σ, P ) < V ark(s|~σ, P ) (we

prove this in Appendix A as a corollary to Lemma 1).

When P has degree independence, for any strategy profile ~σ, many standard statistics

as the mean, the median, or the sample variance, are both stable and converging. Still

under degree independence, examples of increasing and decreasing statistics are instead,

respectively, the maximum and the minimum (whenever the strategy profile ~σ is not constant

for each k ∈ K).

3 Results

In this game the existence of a symmetric Bayesian Nash equilibrium follows directly from

Kakutani fixed point theorem, as mixed equilibria on a compact set X form themselves a

convex compact set.

Our first result is about the characterization of Bayesian Nash equilibria in the case P has

degree independence. The following proposition describes the equilibrium strategies and

their relation with the characteristics of the statistics s, both for strategic complements and

strategic substitutes.

Proposition 1. Let the network formation process P be characterized by degree indepen-

dence, then:

1. if s is stable and satisfies SOSD, then for any symmetric Bayesian Nash equilibrium σ∗,

(i) if fxss > 0 then σ∗ is FOSD decreasing, if (ii) fxss < 0 then σ∗ is FOSD increasing,

if finally (iii) fxss = 0 then σ∗k = σ∗k′ for each k, k′ ∈ K;

2. if s is FOSD increasing, then for any symmetric Bayesian Nash equilibrium σ∗, (i) if

fxs > 0 then σ∗ is FOSD increasing, if instead (ii) fxs < 0 then σ∗ is FOSD decreasing;

3. if s is FOSD decreasing, then for any symmetric Bayesian Nash equilibrium σ∗, (i) if

fxs > 0 then σ∗ is FOSD decreasing, if instead (ii) fxs < 0 then σ∗ is FOSD increasing.
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The formal proof is in Appendix B, as all the proofs of the following results. Point (1)

follows directly from a result that we prove in Lemma 1 in Appendix A. The proofs of Points

(2) and (3) are analogous to the proof of Proposition 2 in NG. 7

Point 1 of the proposition shows that when the statistics s is stable and satisfies SOSD,

equilibrium strategies do not depends on the characteristics of complementarity or substi-

tutability of the utility function but on the sign of the third partial derivative fxss. The

equilibrium strategies are increasing (decreasing) with respect to the degree when fxss < 0

(fxss > 0) irrespective of the properties of complementarity or substitutability of the utility

function. This result arises from the fact the the assumptions of stability and SOSD of the

statistics s together with fxss < 0 (fxss > 0) imply that the marginal utility of action xi is

increasing (decreasing) in k. Furthermore we like to stress that this is not only a theoretical

and abstract case but an effective one. Indeed the mean represents a case of statistic satis-

fying the assumptions in point 1 and, as described in Blume et al. (2010), it is largely used

in the empirical literature on peer effects and reference groups.

Point 2 (3) shows that when the statistic s is increasing (decreasing) with respect to the

degree, then the equilibrium strategies are increasing (decreasing) with respect to the degree

in the case of strategic complements and decreasing (increasing) with respect to the degree

in the case of strategic substitute. Examples of statistics that satisfy the properties in point

2 and 3 are, respectively, the maximum (as in one shot games, see for example in NG and

Boncinelli and Pin 2012) and the minimum (as in weakest links or minimum effort games).

In order to give an intuition of the forces at work, consider individuals arranged on a

random network characterized by degree independence. Suppose their utility function is

affected only by the higher action across their neighbors (this is the case wheren s is FOSD

increasing). Then for individuals with high degree it is more profitable to play higher (lower)

actions when the utility function is characterized by strategic complement (substitutes).

From the analytical derivations obtained in the proofs, it is easy to extend our results

to the cases where P has not degree independence. In the literature on complex networks,

stemming from Newman (2002), a network exhibits degree assortativity or disassortativity,

depending on the sign of the Pearson correlation coefficient of the degree between pairs of

linked nodes, computed over all links. When the sign is positive (negative) the network is

characterized by assortativity (disassortativity).8 In general, when P does not show degree

7Note that the assumptions on the properties of statistic s are not so restrictive. Indeed many of the
statistics used in the literature of strategic interaction satisfy these assumptions. Ideally, we would like to
take the less restrictive assumption of SOSD in points (2) and (3) but it requires to have more assumptions
on the shape of the function f .

8However, in NG this notion is related to the function that rules the network externalities of the game
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independence, the value of statistics s for an agent of given degree k will depend both on

P and on the strategy profile ~σ. Consider a stable statistic under degree independence, for

example the mean. Suppose a symmetric strategy profile ~σ increasing with the degree and a

P characterized by degree assortativity. It is direct to check that the expected value of the

mean over the neighbours actions is increasing with the degree.

Therefore, to obtain a general result, we aggregate in a single expression the function f

that determines payoffs together with all the information that we have about the network

structure and the statistics from φk(y|~σ, P ). The next proposition provides a general check

to see if there is monotonicity in the equilibrium of the game.

Proposition 2. Consider the expected marginal revenues given by quantity

Ek(fx|x, ~σ, P ) ≡
∫ ∞
−∞

fx (x, y) · φk(y|~σ, P ) dy (7)

where fx is the derivative of f with respect to x. Then:

1. if (7) is strictly decreasing in k for any ~σ, then in every symmetric Bayesian Nash

equilibrium of the network game the equiibrium strategy σ∗k is FOSD decreasing in k;

2. if (7) is strictly increasing in k for any ~σ, then in every symmetric Bayesian Nash

equilibrium of the network game the equiibrium strategy σ∗k is FOSD increasing in k.

Figure 1 provides a visual interpretation of the argument in the proof, which is classical

and is based simply on best responses: from the payoff function (1) the optimal response

for a player is when marginal costs (increasing by assumptions) intersect expected marginal

revenues (decreasing by assumption) – so, if an increase/decrease in k has a monotonic effect

on those expected marginal revenues, also the intersection point will move monotonically.

From the next example it is clear that the standard distinction between complements

and substitute is not enough to determine the characterization of equilibria.

Example 1. Consider P such that networks are undirected, nodes can have only degree 1

or 2, and they face ex–ante symmetric probability 0 < p < 1 to find all neighbors of the same

degree, and 1 − p of finding all neighbors of the other degree (so, when p → 1 we have a

network made almost only by circles and disconnected couples, as p decreases we have more

and more triplets of nodes in a line). Suppose that nodes play symmetric pure strategies

y1, y2 ∈ X ⊆ R+, and that the statistic s is the sum of neighbors’ actions.

(i.e. f), and they talk about positive or negative neighbour affiliation.
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xk xk+1 

E( fx | k ) 

E( fx | k+1 ) 

cx 

Figure 1: Intuition for Proposition 2 when x∗(k) ≥ x∗(k + 1).

Proposition 2 tells us that we need to consider the relation between

E1(fx|x, ~σ, P ) = pfx(x, y1) + (1− p)fx(x, y2)

and

E2(fx|x, ~σ, P ) = pfx(x, 2y2) + (1− p)fx(x, 2y1) .

Assume that 1/3 < p < 2/3, so that 2p > (1− p) and 2(1− p) > p. Assume also that fx is

increasing (fxs > 0, complementarity between x and s) and convex (fxss > 0) in s, so that

fx(x, 2s)− fx(x, 0) > 2
(
fx(x, s)− fx(x, 0)

)
. Then, for any y1, y2 ≥ 0, the following holds

E2(fx|x, ~σ, P ) = p
(
fx(x, 2y2)− fx(x, 0)

)
+ (1− p)

(
fx(x, 2y1)− fx(x, 0)

)
+ fx(x, 0)

≥ 2p
(
fx(x, y2)− fx(x, 0)

)
+ 2(1− p)

(
fx(x, y1)− fx(x, 0)

)
+ fx(x, 0)

> (1− p)
(
fx(x, y2)− fx(x, 0)

)
+ p
(
fx(x, y1)− fx(x, 0)

)
+ fx(x, 0)

= E1(fx|x, ~σ, P )

So, according to Proposition 2, in every symmetric Bayesian Nash equilibrium of the network
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game, optimal best responses are increasing, such that x∗1 < x∗2.

Last example combines results from points 1 and 2 of Proposition 1 assuming a not too

strong degree correlation,. It is possible to show that when P has not degree independence

the characteristics of complementarity and substitutability still play a role in shaping the

equilibrium strategies even if the statistics s is stable and converging. In general, Proposition

2 uses simple best response arguments to establish a necessary and sufficient condition under

which all equilibria are monotone either increasing or decreasing. When this condition fails,

e.g. because positive or negative degree correlation is too strong, a monotone equilibrium

may still always exist, but both increasing and decreasing equilibria may coexist. On this

see the following example and the discussion that we provide in the conclusion.

Example 2. Consider the network in Figure 2. Even if it is a unique network, a node

knowing only own degree may not know in which of the disconnected components she will be

placed. A node with degree 1 attributes probability 0.1 on the event that her only neighbor

also has degree 1; a node with degree 2 knows for sure that both her neighbors will have the

same degree, and the probability that they also have degree 2 is 0.25. So, this network shows

degree disassortativity.

The action space of the nodes is X = {0, 1}, the statistic s is just the sum of neighbors

actions (a case of increasing statistic) and the payoff is

Πki,g(xi, s) =
xi

1 + s
− c · xi ,

with c = 0.6. This is a game of substitutes with negative externalities.

This network game has the two following equilibria: a decreasing one in which degree–1

nodes play 1 and degree–2 nodes play 0, but also an increasing one in which degree–1 nodes

play 0 and degree–2 nodes play 1.

4 Relation with previous literature

The results provided in Propositions 1 and 2 include all the cases that we are aware of in the

literature on Bayesian network games. In particular, they generalize those of NG in several

ways. First, they depend on whatever statistics that enters in the strategic interaction, and

on its relation with the game structure. Then, the classical distinction between substitutabil-

ity and complementarity holds only when the statistic is naturally monotonic, otherwise we

need to check for third cross-derivatives or for monotonicity of expected marginal profits.
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Figure 2: The network considered in Example 2.

Finally, even if all the results of Proposition 1 are proved in the case where the network

structure P has degree independence, Proposition 2 allows to extended them when some

degree assortativity/disassortativity of the network is present (and as Example 1 shows, it

may be possible only when this network bias is not too strong).

So, what are the analogies with NG? Most of the results in that paper (from Proposition

2 on) are based on what they call Property A: the value of a statistic s computed on a vector

does not change when the vector size is increased by adding a null element. The easiest

example of statistic that does not satisfy this property is the average. Also, Property A

alone is not enough to guarantee a monotonic equilibrium in the context of our generalized

model. The following example shows that if s is not monotonic with respect to its arguments,

we may not have monotonic equilibria. Then we show that, assuming monotonicity of s,

property A leads to the case of FOSD increasing statistics.

Example 3. Consider the case in which X = {0, 1}, with the statistic s defined on every

vector of at least two elements, as the difference between its two greatest elements. This

statistic clearly satisfies Property A from NG, but none of the Definitions from 1 to 3. Since

X = {0, 1}, we have that s is 1 if and only if there is one and only one element 1 in the

vector, otherwise it is 0. Consider the case of degree independence, so that the matching

process is i.i.d.. So, if a fraction p of the nodes plays 1, then the probability that s is 1 is

pk = k · p(1− p)k−1 ,

which can be non–monotonic in k. Imagine that the degree distribution is such that a fraction

.15 of the nodes have degree 2, a fraction .7 have degree 3, and the remaining fraction .15

of nodes have degree 4. Payoff is Πki,g(xi, s) =
√
x+ s − c · xi (a case of substitutes) where

c = .75.

In this case there is an equilibrium in which nodes with degree 2 and 4 contribute with
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1, while nodes with degree 3 contribute by 0. With this strategy profile p = .3, p2 = .42,

p3 = .441 and p4 = .4116. The expected net value of contributing is given by

∆k = pk

(√
2− 1

)
+ (1− pk) ,

and this is above .75 for k ∈ {2, 4}, but not for k = 3, proving that this strategy profile is an

equilibrium.

In the last example the statistic s produces a different ordering of vectors of the neigh-

bours’ actions with respect to the model in NG, where the definitions of complements and

substitutes are implicitely based on the natural partial ordering between vectors.9 Therefore,

our definitions of strategic substitutes and strategic complements do not coincide with those

of NG when the statistic does not respect the natural partial ordering of vectors. However,

even if in the NG’s payoff function there is not an explicit statistic s but only a vector of

the neighbors’ actions, it is possible to check that the main results in NG are a specific case

of our framework.

The next proposition provides a link between our formulation and the results from NG.

Proposition 3. Suppose that X ⊆ R+, and that 0 ∈ X . If s is a monotonically increasing

function and satisfies Property A from NG, then s is FOSD increasing.

Therefore, when s is monotonically increasing, satisfies property A from NG, and the

network formation process P is characterized by degree independence, then the characteris-

tics of Bayesian Nash equilibria are described in point 2 of our Proposition 1. We note that

choosing a statistic s that is monotonically increasing in all its arguments, i.e. respecting

the natural partial ordering,10 the definitions of strategic substitutes/complements coincide

between our framework and NG. So it is straightforward that all the results from NG are

specific cases of our model: also those that are not based on degree independence.

5 Conclusion

In many applications, externalities, peer effects, learning and/or strategic interactions be-

tween individuals, can all be easily modeled as network games between agents of a social

network. The neighbors of a node are in one to one correspondence with the peers of the

9As an example, in the case of degree equal three the ordering of the possible vectors of neighbours’
actions (from the smaller to the larger) under statistics s is: (0, 0, 0) ∼ (0, 1, 1) ∼ (1, 1, 1) ≺ (0, 0, 1). Using
the criterion NG the ordering would be: (0, 0, 0) ≺ (0, 0, 1) ≺ (0, 1, 1) ≺ (1, 1, 1).

10This relates naturally to standard utility theory and to the assumption of non–satiation.
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individual, and the actions of those neighbors enter in the payoff function of the individual.

The way in which the neighbors’ actions affect the individual payoff can be, for example, the

average, as in most of peer effects framings or non–Bayesian learning models, the maximum,

as in local public goods games, or the minimum, as in vaccination games against the risk of

pandemic contagion. The existing literature points out the influence that the nature of this

payoff function, and in particular whether there is a complementarity or a substitute effect

between own action and the statistic on the actions of neighbors, has on the correlation be-

tween degree in the network and action taken in equilibrium. However, in this note we have

shown that in all the above cases it is important to know also the nature of the statistics.
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All results from ‘Network Games’ (by Proposition 3)

Example 1Example 2

Example 3Non—monotone statistic

Figure 3: Classification of the statistic (rows) adds a dimension on the analysis of network
games on top of degree correlation (columns), and the one on complements/substitutes games
(not shown here).

The table in Figure 3 summarizes the classification that we apply and how our results

integrate with those in the literature. Our Proposition 1 lists the unique characterization of

equilibria in all cases with stable or monotonic statistics, when there is no degree correlation.

In Proposition 2 we have extended the domain in which these monotonic equilibria are

the only possible ones, also when there is some positive or negative degree correlation, as in

14



Example 1. Example 2 shows instead that under too extreme correlation (a negative one in

the example) both increasing and decreasing equilibria can coexist.11

Finally, with Proposition 3 we have included all the results from NG into the domain of

increasing statistics.

Additional comments are the following. First of all, a statistic may not be stable or

monotone, as in our Example 3. In such cases equilibria that are non–monotonic in the

degree may exist. Finally, the case of stable statistic is the most intuitive and used in the

empirical literature on peer effects and reference groups. We have shown that in this case it

becomes important to look also at third order derivatives of the payoff function. However,

we leave to future research the identification of necessary conditions that are more easily

identifiable on real data, and with a clearer economic interpretation.

We believe that our results will turn out to be useful for both theorists studying specific

models, and for applied researchers studying the interactions of economic agents.
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Appendix A Some Lemmas

We extend results from utility theory (see e.g. section 4.2 in the notes from Levin 2006) to

our context with the following corollary.

We define by φk(x) a bounded probability distribution function on R that depends on

k ∈ K, and we call Φk(x) its cumulative distribution. Following Definition 4, we say that

φk(x) satisfies second order stochastic dominance (SOSD) if for every y ∈ R we have:∫ y

−∞
Φk+1(x) dx ≤

∫ y

−∞
Φk(x) dx . (8)

Lemma 1. If statistic s is stable and satisfies SOSD, and u(·) is a positive valued concave

function, then ∫
u(s) · φk+1(s) ds ≥

∫
u(s) · φk(s) ds . (9)

If instead u(·) is a positive valued convex function, then∫
u(s) · φk+1(s) ds ≤

∫
u(s) · φk(s) ds . (10)
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Proof: Let us start by assuming that φk(x) is stable and satisfies SOSD, and that u is

positive valued and concave, i.e. that u > 0 and uxx ≤ 0. Let us call I(x) ≡
∫ x

−∞Φk(y) dy−∫ x

−∞Φk+1(y) dy, which is non–negative by inequality (8). Also, integrating by parts∫ x

−∞
Φk(y) dy = [y · Φk(y)]x−∞ −

∫ x

−∞
y dΦk(y)

Replacing into the expression for I(x) and taking its limit to∞, the stability of φk(x) implies

that

lim
x→∞

I(x) =

∫ ∞
−∞

y dΦk+1(y))−
∫ ∞
−∞

y dΦk(y) = 0 . (11)

Since I(x) is non–negative, also

−
∫ ∞
−∞

uxx(x)I(x)dx ≥ 0 (12)

Integrating by parts, the expression (12) is equivalent to

[−ux(x) · I(x)]∞−∞ +

∫ ∞
−∞

ux(x)
(

Φk(x)− Φk+1(x)
)
dx ≥ 0 (13)

By (11) the first term is equal to 0. Then again integrating by parts we get[
u(x)

(
Φk(x)− Φk+1(x)

)]∞
−∞
−
∫ ∞
−∞

u(x)
(
φk(x)− φk+1(x)

)
dx ≥ 0 (14)

It is directly verifiable that the first term is equal to 0. Therefore inequality (12) can be

rewritten as:

−
∫ ∞
−∞

u(x)
(
φk(x)− φk+1(x)

)
dx ≥ 0 , (15)

so
∫
u(x)

(
φk(x)− φk+1(x)

)
dy is non–positive, which proves the statement. With the same

reasoning, the case in which u is positive valued and convex, i.e. that u > 0 and uxx ≥ 0,

leads to the reverse inequality.

Corollary 1. If statistic s is stable and satisfies SOSD, then V ark+1(s|σ, P ) < V ark(s|σ, P ).

Proof: We have that

V ark(s|σ, P ) =

∫
s2 · φk(s) ds− (Ek(s))2 .

So, when s is stable (E(s))2 remains constant, and since s2 is convex we get the result from
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previous Lemma 1.

Lemma 2. If the statistic s is FOSD increasing, and u(·) is a positive valued non–decreasing

(non–increasing) function, then∫
u(s) · φk+1(s) ds ≥

(
≤ , respectively)

)∫
u(s) · φk(s)) ds . (16)

If the sample statistic s is FOSD decreasing, and u(·) is a positive non–decreasing (non–

increasing) function, then∫
u(s) · φk+1(s) ds ≤

(
≥ , respectively)

)∫
u(s) · φk(s)) ds . (17)

Proof: from the proof of Lemma 1 we have that:∫ ∞
−∞

ux(x)
(

Φk(x)− Φk+1(x)
)
dy = −

∫ ∞
−∞

u(x)
(
φk(x)− φk+1(x)

)
dx

So, a sufficient condition to determine the sign of∫ ∞
−∞

u(x)
(
φk+1(x)− φk(x)

)
dx

is the sign of the integral in the left–hand side.

When statistc s is FOSD increasing and u(·) is non-decreasing (non-increasing) we have

that
(

Φk(x) − Φk+1(x)
)
≥ 0 and ux(x) ≥ 0 (ux(x) ≤ 0) for every x so the integral on the

left hand side is non-negative (non-positive). The second part of the lemma is proved in a

similar way and it is omitted

Appendix B Proof of the Propositions

We use a reverse approach in proving our propositions. We first prove the technical result

of Proposition 2, and then we use it as a lemma to prove Proposition 1. Finally, we prove

Proposition 3.

Proof of Proposition 2 (page 9): Suppose the quantity in (7) is strictly decreasing in k.

In order to compute x∗k, the first order conditions are:

E

[
∂

∂x
f (x∗, s(~xi,g))

]
=

∂

∂x
c(x∗) ,
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or equivalently ∫ ∞
−∞

fx (x∗, y) · φk(y|~σ, P )) dy = cx(x∗) .

Since fx and cx are both strictly positive, and they are both strictly monotone with different

sign, there is a unique x∗k ∈ R that satisfies the equality. If this x∗k ∈ X , then σ∗k = x∗k is a

pure strategy. However, this x∗k could not be an element of X . In this last case the optimal

σ∗k should play one of the two (possibly both), left–most x∗−k or rightmost x∗+k , elements of

X closest to x∗k in R. If x∗−k and x∗+k give different expected payoffs, then σ∗k would be a pure

strategy playing the best one of the two. Only in the case in which x∗−k and x∗+k give the

same payoff, then any randomization σ∗k between those two points would be an optimal best

response.

By assumption, for an agent with degree k + 1, we have that∫ ∞
−∞

fx (x∗, y) · φk+1(y|~σ, P )) dy < cx(x∗) . (18)

Left–hand part of (18) is decreasing in x, right–hand part is non–decreasing, and then to

balance it back we need x∗k+1 < x∗k. Equality of best response strategies may hold only when

x∗k 6∈ X but not when σ∗k is a randomization between two points, because if the expected

payoff of x∗−k and x∗+k is the same for an agent with degree k, then x∗+k will provide a lower

payoff than x∗−k for an agent with degree k + 1.

This proves that if the quantity in (7) is strictly decreasing in k, for every x ∈ X , then in

every symmetric Bayesian Nash equilibrium of the network game the optimal action σ∗k is

FOSD decreasing in k.

The reverse inequality can be proved analogously.

Proof of Proposition 1 (page 7): Point 1. Let s be stable and converging. The derivative

with respect to xi of i’s expected payoff ∂
∂xi

Πe
k(xi, ~σ−i) =

∫∞
−∞ fx (x, s) · φk(s|~σ, P ) ds. If

fxss > 0 by Lemma 1 we have that the derivative is decreasing in k. Then, by Proposition

2, it directly follows that σ∗ is FOSD decreasing. If fxss < 0 by Lemma 1 we have that

the derivative is increasing in k. Then, by Proposition 2 directly follows that σ∗ is FOSD

increasing.

Point 2. Let s be FOSD increasing . The derivative with respect to xi of i’s expected

payoff ∂
∂xi

Πe
k(xi, ~σ−i) =

∫∞
−∞ fx (x, s) · φk(s|~σ, P ) ds. If fxs ≥ 0 by Lemma 2 we have that

the derivative is increasing in k. Then, by Proposition 2 directly follows that σ∗ is FOSD

increasing. If fxs ≤ 0 by Lemma 2 we have that the derivative is decreasing in k. Then, by

Proposition 2 directly follows that σ∗ is FOSD decreasing.
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Point 3. Let s be FOSD decreasing . The derivative with respect to xi of i’s expected

payoff ∂
∂xi

Πe
k(xi, ~σ−i) =

∫∞
−∞ fx (x, s) · φk(s|~σ, P ) ds. If fxs ≥ 0 by Lemma 2 we have that

the derivative is decreasing in k. Then, by Proposition 2 directly follows that σ∗ is FOSD

decreasing. If fxs ≤ 0 by Lemma 2 we have that the derivative is increasing in k. Then, by

Proposition 2 directly follows that σ∗ is FOSD increasing.

Finally, we prove Proposition 3, that relates our result with those in NG.

Proof of Proposition 3 (page 13): For every y in R we have that

Φ[y|s, k] = Prob
[
~x ∈ X k : s(~x) ≤ y

]
,

and

Φ[y|s, k + 1] = Prob
[
~x ∈ X k+1 : s(~x) ≤ y

]
,

Consider the operator σ0 : X k+1 → X k+1 that takes a random element of ~x (with uniform

probabilities) and puts it to 0. Then, also E [s ◦ σ0(·)] is a statistic (as it is anonymous),

and by monotonicity of s it is always the case that s(~x) ≥ E [s ◦ σ0(~x)]. Note also that it

is probabilistically the same to extract with uniform probabilities k elements, or to extract

k + 1 elements, and then remove randomly one of them. So, we have that for every y

Φ[y|s, k + 1] ≤ Φ[y|E [s ◦ σ0(·)] , k + 1] = Φ[y|s, k] ,

which proves the statement.
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