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Abstract

This paper takes an axiomatic approach to find rules for allocating the value of a network
when the externalities generated across components are identifiable. Two new, and different,
allocation rules are defined and characterized in this context. The first one is an extension of
the player-based flexible network allocation rule (Jackson (2005)). The second one follows the
flexible network approach from a component-wise point of view, where the notion of network
flexibility is adjusted with a flavor of core stability. Furthermore, two other allocation rules
are proposed by relaxing the axiom of equal treatment of vital players. These collapse into
the player-based flexible network allocation rule (Jackson (2005)) for zero-normalized value
functions with no externalities across components.

Keywords: Allocation rules, networks, player-based flexible network allocation rule, My-
erson value.

JEL Classification: C71, C79.

1 Introduction

This paper proposes new ways for allocating the value of a network among its participants
assuming that the structure of the externalities across components is known. In cases where
this information is available, it is useful to define concepts that will take the “component-
wise allocation” of the total value of a network into account. In this paper I first extend to
this setting the flexible network approach introduced by Jackson (2005) and then define and
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characterize a new flexible network allocation rule that allows no transfers across components,
an idea introduced by Myerson (Myerson (1977).)

An allocation rule is said to be component efficient (Myerson (1977)) if it distributes the total
value of a connected network among its participants and is said to be fair (Myerson (1977)) if
for every direct connection in the network both participants lose or gain the same amount from
breaking this connection. Fairness as defined by Myerson implies an equal bargaining power
when the only threat in case of disagreement between the two players participating in the link
consists of breaking such a link. Therefore, this axiom implicitly assumes that the bargaining
power of an agent depends only on subnetworks of the network under consideration. Jackson
(2005) criticizes this since the bargaining possibilities of a player should depend on all networks,
not only on the subnetworks, as agents could not only delete connections, but create new ones.

According to this viewpoint, the axiom of flexible network (Jackson (2005)) is introduced
as follows. A network is flexible if, once organized into a given network structure, the group
of agents is always allowed to reorganize internally. If this group of agents cooperates at the
grand coalition level they will organize themselves into an efficient network. An allocation rule
satisfies the axiom of flexible network if it recommends the same payoff scheme at an efficient
network than it would at the complete network with flexibility.

Two comments are in order. First, the axiom of flexible network implies that the payoff
scheme at any efficient network is the same. Second, the axiom remains silent about the payoff
scheme at inefficient networks. As a remedy for this second point, a new axiom, proportionality,
is introduced, by means of which the value of a non efficient network is distributed re-scaling
proportionally the payoff scheme corresponding to any efficient network. The axioms of equal
treatment of vital players and a weak definition of additivity are added to obtain uniqueness.

In this paper, I first extend the (player-based) flexible network allocation rule (Jackson
(2005)) to the case where the value is available component-wise. The “intra-component alloca-
tion” of the total value of a network is written as a value function assigning a real number to
every component within a network, where the numbers corresponding to each component add up
to the total value of the network. The value of a component is allowed to depend on the network
structure outside, and therefore the case with externalities across components is captured easily.
Contrary to the (player-based) flexible network allocation rule in Jackson (2005), the allocation
rule in this setting recommends different payoff schemes anytime the structure of externalities
across components changes. I subsequently propose two allocation rules by relaxing the ax-
iom of equal treatment of vital players. These allocation rules collapse into the (player-based)
flexible network allocation rule for zero-normalized value functions1 with no externalities across
components.

The first allocation rule proposed follows very closely the original approach by Jackson
(2005), in the sense that all efficient networks, as being the ones expected to arise distribute

1A value function is zero-normalized if the value of any disconnected agent is equal to 0 in any possible network
structure.
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the value in the same way. The difference with the original proposal by Jackson (2005) lies
in the network structure that coalitions take as a reference when computing their possibilities.
The second rule not only relaxes the axiom of equal treatment of vital players but reshapes
the notion of flexible network. As mentioned before, the axiom of flexible network combined
with proportionality forces the allocation rule to recommend the same payoff at networks that
distribute the total value in the same way. In other words, the network loses its meaning in favor
of a more simple coalitional structure that could be represented as a TU-game, a disappointing
trait given that network relations are a different object than coalitional relations, since the
former are bilateral in nature. To escape from this trap I redefine the axiom of flexible network
by using a stability argument.

An allocation rule is sensitive flexible network if at an efficient network it recommends the
same payoff scheme as in the situation where coalitions could reorganize themselves internally
and assuming the rest of the population organize as in this efficient network. This axiom is
consistent with the idea of participants being allowed to reorganize their network structure any
time. Once they have reached an efficient network, they can not do better (as a whole, or in
total value). Therefore, it still reflects flexibility in the choice of the network, but recommends
different payoff schemes for different efficient networks. The sensitive flexible network allocation
rule also converges to the player based flexible network allocation rule defined by Jackson (2005)
in the absence of externalities across components (and for zero-normalized value functions).

In the last part of the paper, I take a component-wise approach. A network is stable for
one of its components if the agents in this component alone cannot reorganize better, taking
the network structure outside the component as given. An allocation rule is called component-
wise flexible network if at a stable network for one of its components it recommends the same
payoff to the participants in this component as in the case of network flexibility inside the
component. The network structure outside the component is given by the stable network. This
axiom applies the idea of flexible network looking at the choice of the network by component,
since an efficient network might not be the best network for each of its components. If network
flexibility is understood component-wise, so is the way we are allocating the value. So I will
impose the allocation rule to be component efficient, or, in other words, no transfers across
components are allowed, by changing the notion of proportionality. These two axioms together
with the corresponding component-wise equal treatment of vital players and additivity define a
unique allocation rule.

I finish this paper with three concluding remarks. First, I show that the Myerson value (or the
fair allocation rule) is the unique allocation rule satisfying component-wise equal treatment of
vital players (different from equal treatment of vital players) and strong additivity (additivity for
any possible behavior of the total value of the network and for any graph). As shown by Jackson
(2005), the Myerson value is not a flexible network allocation rule. Therefore, the accompanying
axioms of a flexible network approach have to be milder versions (if not abandoned altogether)
of either component-wise equal treatment of vital players or additivity, if considered. Second,
the new flexible network allocation rules are put in perspective with respect to a transformed
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axiom of fairness, called fairness in relative terms. Finally, the notion of component-wise flexible
network is related to problems of network formation.

The rest of this paper is organized as follows. Section 2 introduces the setting and defines
the Myerson value and the player-based flexible network allocation rule. Section 3 defines and
axiomatically characterizes the flexible network allocation rule in this context of identifiable
externalities, and proposes the two new allocation rules explained above. Section 4 introduces
some examples to show the differences across the two new allocation rules with the Myerson
value and the player-based flexible network allocation rule. Section 5 defines and axiomatically
characterizes the component-wise flexible network allocation rule. Section 6 concludes, while all
proofs are in the Appendix.

2 Definitions

2.1 Players: coalitions and networks

Let N = {1, ..., n} be a finite set of players. A subset S of N is called a coalition and 2N denotes
the set of all possible coalitions in N . Network relations among players in N are formally
represented by an undirected graph, written as a set of unordered pairs ij, where i, j ∈ N , and
i 6= j. Each unordered pair ij is referred to as a link.

Let g ∪ ij denote the graph resulting from adding the link ij to the existing graph g, while
g\ij denotes the graph resulting from deleting the link ij from g. Let gS be the set of all
unordered pairs in S ⊆ N , that is, the complete graph over S. Define the restriction of g to a
coalition S as g|S = {ij ∈ g : i ∈ S and j ∈ S}. Note that g|S ⊆ g and g|N = g. A coalition
T ⊆ S is called a connected component of S in g if: (1) for every two players in T , there is a
path, that is, a set of consecutive links, in g|S connecting them, and (2) for any player i in T
and any player j not in T , there is no path in g|S which connects them. For simplicity, I will
call them simply components. Let S|g be the set of components of S in g. Note that S|g is a
partition of S. Similarly, N |g denotes the set of components in g. Finally, let N(g) denote the
set of agents in N participating in at least one link in g and let n(g) be its cardinality.

2.2 Payoffs: values and allocation rules

Any function v assigning to each possible graph g a real number v(g) is a value function (Jackson
and Wolinsky (1996)). Let V denote the set of all possible value functions. A function w, which
to every graph g and every component T in N |g assigns a value w (T, g), is called a component-
wise (CW) value function. Let W be the set of all possible CW value functions.

Given a CW value function w, the total value which can be distributed among the players
in N when the graph is g is given by

∑
T∈N |g

w (S, g). I will then say that a CW value function

w ∈ W induces a value function v if
∑

S∈N |g w(S, g) = v(g) for all g. Let vw denote the value
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function induced by some given CW value function w ∈ W . Note that for every CW value
function w there is a unique induced value function vw, while given a value function v ∈ V
several CW value functions w could induce such a v.

A CW value function w is said to have no externalities across components if for any T ⊆ N
and any g such that T ∈ N |g the value w(T, g) stays constant as far as g|T does not change.

A CW value function w is called monotonic if for any graph g and any component T ∈ N |g:

w(T, g) ≥
∑

R∈T |g′
w
(
R, g′ ∪ g| (N\T )

)
,

for any g′ ⊆ g|T .
Given any CW value function w its monotonic cover ŵ is given by

ŵ (T, g) = max
g′⊆ g|T

∑
R∈ T |g′

w
(
R, g′ ∪ g|(N\T )

)
,

for all g and T ∈ N |g. Note that if a CW value function w is monotonic then it is equal to its
monotonic cover ŵ.

A graph is efficient (Jackson and Wolinsky (1996)) if vw(g) ≥ vw (g′), for all g′ in G. A
graph g is called stable for T , with T ∈ N |g, if w(T, g) = ŵ

(
T, gT ∪ g| (N\T )

)
. Stability for

a component T means that this component has no incentive to reorganize internally (taking as
given what the rest N\T are doing.)

It is clear that, in the absence of externalities across components, efficient graphs are stable.
This is not true in the case of externalities across components. Take for example an efficient
graph g inducing more than one component on the population N . It may not be optimal for
a given component T to organize itself as in g|T given what the others are doing in g| (N\T ).
Since g is efficient, in this best graph for T , N\T has to be earning less than in g. See the
Concluding Remarks for a discussion on stability.

Before stating some of the axioms on allocation rules, it is convenient to define a basis for
CW value functions. A basic CW value function, denoted wT,g, is a CW value function taking
values wT,g (R, g′) = 1 if both T ⊆ R and g ⊆ g′, and 0 otherwise. It is easily seen that a
CW value function w can be written in a unique way as a linear combination of basic CW value
functions, since {wT,g}g∈G,T∈N |g form a basis of W .

An allocation rule y is a function that assigns to every CW value function w ∈ W a payoff
vector in <N×G, recommending for every player i and graph g a payoff yi,g(w), with∑

i∈N

yi,g(w) = vw(g), (1)

for all g ∈ G. Note that balance (condition (1)) is already included in the definition of an
allocation rule, as in Jackson (2005).

5



An allocation rule y(w) is called insensitive to inter-component allocations (IICA) if y(w) =
y (w′) whenever vw = vw′ .

I now introduce the definition of two well-known allocation rules, the Myerson value and the
player-based flexible-network allocation rule. For a discussion on some of the axioms, see the
Concluding Remarks section.

Let ϕ denote the Myerson value for games in partition function form (see Myerson (1977b)).
The Myerson value (Myerson (1977), Jackson and Wolinsky (1996), Feldman (1996) and

Navarro (2007)) is the allocation rule yMV (w) assigning for every player i ∈ N and every graph
g ∈ G

yMV
i,g (w) = ϕi

(
UM

w,g

)
,

where
UM

w,g(S, P ) =
∑

R∈S|g

w(R, g|P ),

with S ∈ P , P a partition on N .

Let Φ denote the Shapley value for games in characteristic function form.
The player-based flexible network allocation rule (Jackson (2005)) is the allocation rule

yPBFN (w) assigning for every player i ∈ N and every graph g ∈ G

yPBFN
i,g (w) =

vw(g)
ŵ(N, gN )

Φi

(
UJ

w

)
,

where
UJ

w(S) = max
g⊆gS

vw(g),

with S ⊆ N . Note that, by definition, the PBFN allocation rule is insensitive to inter-component
allocations.

3 A flexible network approach sensitive to inter-component al-
locations

3.1 An extension of the player-based flexible network allocation rule

Definition 3.1 An allocation rule y is a flexible network rule if for all w ∈W and all g efficient
relative to w:

yi,g(w) = yi,gN (ŵ) ,

for all players i.
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An allocation rule that is flexible network distributes the value of an efficient network as
if agents would start with the complete graph and could reorganize themselves internally by
deleting links (therefore ŵ is taken as a reference).

Definition 3.2 An allocation rule y is weakly additive if for any monotonic w and w′, and
scalars a ≥ 0 and b ≥ 0,

yi,gN

(
aw + bw′

)
= ayi,gN (w) + byi,gN

(
w′
)
,

for all players i, and, if aw − bw′ is monotonic, then

yi,gN

(
aw − bw′

)
= ayi,gN (w)− byi,gN

(
w′
)
,

for all players i.

Note that weak additivity applies “linearity” only on monotonic value functions and fixing
graph structure gN as a reference, as in Jackson (2005). If an allocation rule y is weakly additive
for any graph g and with no restrictions on the monotonicity of w, w′ and aw − bw′, I will say
that y is strongly additive.

Definition 3.3 An allocation rule y is said to satisfy equal treatment of vital players if for wT,g

a basic value function for some g and some T ∈ N |g

yi,ĝ (wT,g) =
{ 1
|T∪N(g)| , if i ∈ T ∪N(g) and g ⊆ ĝ

0, otherwise.

As in Jackson (2005) all players that are necessary in building the network structure to
generate the value of 1 get equal payoffs. Furthermore, a player not in T or in N(g) does not
contribute to obtain the value, therefore obtaining zero payoff. Note that if we restrict our
space of CW value functions to be zero-normalized (i.e., we fix w(T, g) = 0 if |T | = 1) then
T ∪N(g) = N(g). In that case, this axiom is equal to the one introduced by Jackson (2005).

Definition 3.4 An allocation rule y is proportional if for every player i and every value function
w either yi,g(w) = 0 for all g, or for any g and g′ such that vw (g′) 6= 0

yi,g (w)
yi,g′ (w)

=
vw(g)
vw (g′)

.

This is equivalent to proportionality in Jackson (2005). As in his context, this axiom plays
a role in balancing the allocation rule when distributing the value of a non efficient graph.
Applying proportionality means that the allocation rule for any non efficient graph can be
uniquely determined in terms of the allocation rule at an efficient graph (no matter which
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efficient graph is taken as a reference, as all efficient graphs distribute the maximal value in the
same way) and that the loss of value from one graph to another (in particular, from an efficient
graph to a non efficient one) is distributed proportionally across players.

Next theorem characterize the flexible network allocation rule that is not insensitive to inter-
component allocations. In order to state it in a more compact way I will make use of the following
definition. For any given w, let the associated TU-game Uw,g for each possible g be defined as

Uw,g(S) = ŵ
(
S, gS ∪ g|(N\S)

)
,

for all coalitions S ⊆ N . Note that if w presents no externalities across components Uw,g is
equal for all graphs g, namely Uw and could be written as

Uw(S) = ŵ
(
S, gS

)
.

for all coalitions S ⊆ N . Furthermore, if any disconnected agent has a value of zero then

ŵ
(
S, gS ∪ g|(N\S)

)
= max

g⊆gS
vw(g) = UJ

w(S),

for all coalitions S ⊆ N .
Next theorem presents an allocation rule collapsing into the PBFN allocation rule in the

absence of externalities across components, but which is not independent of inter-component
allocations.

Theorem 3.5 Let Φ(Uw,∅) denote the Shapley value of the TU-game [N, Uw,g] defined above
when g = ∅. Then, given any CW value function w, there is a unique flexible network and
proportional allocation rule y satisfying weak additivity and equal treatment of vital players,
namely

yi,g =
vw(g)

ŵ(N, gN )
Φi

(
Uw,∅

)
,

for all players i ∈ N and all graphs g ∈ G.

The proof of this theorem is equivalent to the proof of Theorem 3 in Jackson (2005) and
therefore omitted.

3.2 Relaxing equal treatment of vital players and reshaping the flexible net-
work axiom

Let us take a closer look to the axiom of equal treatment of vital players. Recall that a basic
value function wT,g for some graph g and some component T ∈ N |g gives one unit of value only
to agents in T when the graph is g. Nevertheless, agents outside T , although they do not receive
any value according to wT,g, are necessary to generate the minimal structure g in order for T to
obtain such a value of 1. Therefore, for any basic value function wT,g we can classify the players
in N into three different groups:
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1. Players in T , who are assigned the value of 1 when the graph is equal to g and are necessary
to generate value as far as T ⊆ N(g).

2. Players in each component of N(g)\T , who are not allocated the value of 1 but are neces-
sary to generate it (since if g is not formed there is no value to be distributed.)

3. Players in N\ (T ∪N(g)), who are neither allocated the value of one unit nor necessary to
generate it.

Equal treatment of vital players imposes the allocation rule to distribute equally the value
of one unit among players that are either assigned the value or are necessary to generate the
value. One could think in a milder version in which players who intervene equally generating
the value obtain the same payoff. The following definition tries to capture that idea.

Definition 3.6 An allocation rule y is said to satisfy equal treatment of equals if wT,g is a basic
value function for some g and some T ∈ N |g, then there exists a constant cR for any component
R ∈ N |g such that if i ∈ R then

yi,ĝ (wT,g) =
{

cR, if i ∈ T ∪N(g) and g ⊆ ĝ
0, otherwise

Note that if an allocation rule satisfies equal treatment of vital players it satisfies equal
treatment of equals. The axiom of equal treatment of vital players is on one of the extremes
of equal treatment of equals, in which any player that is necessary to generate the value and
any player belonging to the group that is assigned the value are all treated evenly. On the
other extreme lies an allocation rule that would allocate positive payoff only to the players that
are assigned the value. Next definition proposes a family of allocation rules satisfying equal
treatment of equals.

Definition 3.7 Let the allocation rule y satisfying

yi,g =
vw(g)

ŵ(N, gN )
Φi (Uw,g∗) ,

for all players i ∈ N and all graphs g ∈ G, be the “g∗-flexible network rule.”

Intuitively, g∗ is the graph structure taken as a reference when a coalition S computes its
possibilities in case of disagreement and split from N\S. This choice of g∗ is constant across
networks g and across agents i, meaning that the graph structure g∗ taken as reference outside
is common to any coalition S. Finally, note that if g∗ = ∅ then we obtain the flexible network
allocation rule.

Proposition 3.8 Fix any graph g∗ ∈ G. The “g∗-flexible network rule” satisfies flexible net-
work, proportionality, weak additivity and equal treatment of equals.
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The choice of g∗ will determine how the values of each of the cR in the definition of equal vital
of equals are related. From Theorem 3.5 if g∗ = ∅ then all cR take the same value. Intuitively,
g∗ is the graph structure taken as a reference when a coalition S computes its possibilities in
case of disagreement and split with N\S. This choice of g∗ is constant across networks g and
across agents i, meaning that the graph structure g∗ taken as reference outside is common to
any coalition S.

From an “a posteriori” point of view, a coalition S planning to deviate and stay on its own
from a graph g should assume that players outside S will cooperate as in g| (N\S). In such a
case, the graph structure outside taken as reference cannot be constant anymore, and the flexible
network axiom has to be reshaped a bit.

Definition 3.9 An allocation rule y is a sensitive flexible network rule if for all w ∈W and all
g efficient relative to w:

yi,g(w) = yi,g (ŵ) ,

for all players i.

An allocation rule that is sensitive flexible network distributes the value as if agents were
allowed to reorganize internally. The difference here is in the graph that is taken as a reference.
Note that at an efficient graph g the total value to be distributed vw (g) is already optimal
by definition. So even in the ideal flexible world, where ŵ is taken as a reference, the grand
coalition cannot do better than they do at the efficient network. Following the argument in
Jackson (2005), we should not expect reorganizations at the grand coalition level. But, if
there are externalities across components and an efficient network has more than one more
component, the members of one component could have incentives to reorganize internally once
the efficient network structure has been formed. A sensitive flexible network allocation rule in
an efficient network distributes the maximal value as if (i) players are allowed to reorganize
themselves internally and (ii) they assume that the rest of agents are organized as in that
efficient network. If there are no externalities across components the network structure outside
does not matter and the difference between these two axioms (flexible network and sensitive
flexible network) vanishes. The examples next section will illustrate how these two axioms on
network flexibility differ. Next definition introduces a mild notion of proportionality that will
be used in combination with the sensitive flexible network axiom.

Definition 3.10 An allocation rule y is proportional with respect to the optimal if for every
player i and every value function w either yi,g(w) = 0 for all g, or for any g with v̂w(g) 6= 0

yi,g (w)
yi,g (ŵ)

=
vw(g)

ŵ (N, gN )
.

Recall that, in a sensitive flexible network allocation rule, whenever players arrive to an
efficient graph g they obtain the same payoff as in the situation when they face the monotonic
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cover ŵ instead of w. This does not necessarily mean that all efficient networks distribute the
value in the same way. Proportionality with respect to the optimal means that players are
treated symmetrically in the loss of value resulting from being in a non efficient graph. The
difference with the notion of proportionality is that the loss of value is measured comparing w
and ŵ in the same graph, and not comparing the actual values of two different graphs.

Definition 3.11 Let the allocation rule y satisfying

yi,g =
vw(g)

ŵ(N, gN )
Φi (Uw,g) ,

for all players i ∈ N and all graphs g ∈ G, be called the “sensitive flexible network rule.”

Proposition 3.12 The “sensitive flexible network rule” satisfies sensitive flexible network, pro-
portionality with respect to the optimal, weak additivity and equal treatment of equals.

As I said above, it is easy to see that the allocation rule in Theorem 3.5, and the two
alternative flexible network allocation rules collapse to the PBFN allocation rule defined before
in the case of no externalities, i.e., when w(S, g) = w(S, g′) if g|S = g′|S. Nevertheless, they
give different predictions when there are externalities across components, as neither of them are
insensitive to inter-component allocations. The key for understanding how these externalities
change the payoff scheme recommended by these allocation rules is in the definition of the game
Uw,g(S) for any given coalition S. Note that the surplus that a coalition can extract is the best
network they could choose internally depends on what the others are doing. Each of the three
allocation rules respectively assume (i) they are fully disconnected, driven by the axiom of equal
treatment of equals defined as in Jackson (2005), (ii) they are connected as in an “a-priori”
common belief g∗, or (iii) they fix it to be equal to the actual network. Next section builds on
an example borrowed from Jackson (2005).

4 Examples

The following example, borrowed from Jackson (2005) will place face to face the Myerson value,
the PBFN allocation rule and the new allocation rules suggested above.

4.0.1 An example

Example 1. (Example 1, Jackson (2005)) Let N = {1, 2, 3}. In order to place the players on the
possible graphs over N I will use the following convention:
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Consider the following value functions v and v′. Let v take values v(g) equal to 1 when g
is either {12}, {23}, or {12, 23}; and 0 otherwise, and let v′ take values v′ (g) equal to 1 for all
graphs different to the empty graph. Assuming that the value of an isolated agent is normalized
to 0 the CW value functions w and w′ that generate v and v′, respectively, are defined as follows.
For every g ∈ G and for every S ∈ N |g:

w (S, g) =
{

1, if S = {1, 2} , if S = {2, 3} , or if S = {1, 2, 3} and g = {12, 23} ,
0, otherwise,

and

w′ (S, g) =
{

0, if |S| = 1,
1, otherwise.

Figures 1 and 2 show the payoffs recommended by the Myerson value for w and for w′,
respectively, while Figures 3 and 4 show the payoffs resulting from the PBFN allocation rule
for w and for w′. For each graph the payoff to each of the players is written just above the
corresponding node, following the convention previously defined.
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FIGURE 1: The Myerson value for w
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FIGURE 2: The Myerson value for w′
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FIGURE 3: The PBFN allocation rule for w
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FIGURE 4: The PBFN allocation rule for w′

Jackson (2005) compares the Myerson value in w and w′ to illustrate the idea that Myerson
is insensitive to alternative networks. So let us compare Figures 1 and 2. The argument stated
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in Jackson (2005) is mainly that the fact that the Myerson value yields the same payoffs in w and
w′ for graph {12, 23} shows the insensitivity of the Myerson value. The careful reader will realize
that the reason why the Myerson value is equal for both value functions in that particular graph
is because the values w and w′ are equal for all graphs that are subsets of {12, 23}. If the value
w changes for a subgraph of {12, 23} the Myerson value will give a different recommendation.
Therefore, the Myerson value is in fact sensitive to any subgraph, although it is not sensitive
to all alternative graphs. The flexible network approach includes information coming from
networks that are not necessarily subgraphs.

Let us focus now on Figures 3 and 4. As I just said, information about networks that are not
necessarily subnetworks is included in the way the value is allocated: The recommendation is
different for w than for w′ in the network {12, 23}. On the other hand, players should be clever
enough to realize the best way to organize themselves. Recall that the flexible network axiom
implicitly assumes that agents will a-priori organize themselves into an efficient structure. This
combined with proportionality imposes that the value should be allocated in the same way at
all efficient networks, given that those are the ones that should be arising if networks are fully
flexible. This payoff allocation is re-scaled proportionally at any of the other networks, which
will result in the same payoff scheme for any network with the same total value. So the total
value of a network is more relevant for the PBFN allocation rule than the network possibilities
of coalitions that are not the grand coalition.

The flexible network allocation rule characterized in Theorem 3.5 and the one proposed in
Definition 3.7 follow very closely the spirit of the PBFN allocation rule. As opposed to the
PBFN allocation rule, both change when the structure of externalities given by w changes, even
when the value function that is induced, vw, stays the same. The allocation rule proposed in
Definition 3.11 goes one step further and allows for different payoffs schemes in networks that
distribute the same total value. These effects are captured by allowing a different assumption
than the one taken in Jackson (2005) about the surplus that a coalition can achieve, as explained
at the end of the previous section. In order to illustrate this point, let us take a look at a new
CW value function w̃ that also induces v as a value function. Recall that v takes values v(g)
equal to 1 when g is either {12}, {23}, or {12, 23}; and 0 otherwise. It is easy to check that,
in case of no externalities, as in w stated before, all allocation rules in Theorem 3.5, and in
Definitions 3.7 and 3.11 are equal to the PBFN shown in Figure 2.

Let w̃ be another CW value function that also induces v taking the following values:

w̃ (S, g) =


1, if |S| = 2, or g = {12, 23}
−1, if S = {2} and g = {13},
0, otherwise,

As w̃({2}, {1, 3}) = −1 6= w̃({2}, {∅}) = 0 one can say that w̃ presents externalities across com-
ponents. Figures 5 and 6 show the payoffs recommended by the flexible network allocation rule
and the gN -flexible network allocation rule, respectively. Given the simplicity of this example,
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the sensitive flexible network rule recommends the same payoff scheme as the one shown in
Figure 5.
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FIGURE 5: The (sensitive) flexible network allocation rule for w̃

q q
q

q q
q

q q
q

q q
q

q q
q

q q
q

q q
q

q q
q

�
�
�
� A

A
A
A

�
�
�
�A
A
A
A �

�
�
� A

A
A
A �

�
�
�A
A
A
A

0

0

0 1/2

0

1/2 1/2

0

1/2 0

0

0

1/2

0

1/2 0

0

0 0

0

0 0

0

0

FIGURE 6: The gN -flexible network allocation rule for w̃

In order to see the intuition of how these two allocation rules have readjusted their recom-
mendations note the following features of the value functions v and w̃. The value function v as
proposed by Jackson (2005) (with a corresponding w without externalities) captures the idea
that player 2 is extremely powerful or able to generate value, as compared to agents 1 and 3,
who, without player 2, would not extract any surplus. But if the structure of the externalities
works according to w̃ the PBFN allocation rule will recommend the same payoff scheme, as it
is independent of intra-component allocations. Note that in the case of w̃ there are two effects.
First, when looking at one player coalitions, the main difference is that player 2 is weaker in the
structure where she is disconnected facing players 1 and 3 being connected: She would generate
a value of −1 as opposed to values of 0 for the other two players in the equivalent network struc-
tures. When we look at two-player coalitions, according to w̃, if players 1 and 3 get together
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they can also extract a value equal to 1, as do 1 and 2 together or 2 and 3. This means that all
two-player coalitions can do as equally good. Finally, the grand coalition is as good in w̃ as in
w.

If we take a look at the allocation rule in Figure 5, which is the allocation rule stated in
Theorem 3.5 and in Definition 3.11, the possibilities of player 2 are measured assuming that (i)
players 1 and 3 are not connected, since the empty graph is fixed as the reference outside in
Theorem 3.5, or (ii) the network structure for players 1 and 3 is the same as in the graph for
which the value is to be allocated, for the rule in Definition 3.11. In this latter case the weakest
position for player 2, when players 1 and 3 are connected, is not considered as those graphs have
zero value. Furthermore, all two-player coalitions can extract a value of 1. Therefore, player 2
has the same possibilities for extracting value as 1 and 3, and therefore receives the same payoff
in the allocation rules stated in Theorem 3.5 and in Definition 3.11. The allocation rule in
Figure 6, which is the one stated in Definition 3.7 for g∗ = gN , recommends no payoff for player
2. The reason is that the possibilities for player 2 alone when deviating from a given network
are the worst, given that, for such an allocation rule, players 1 and 3 are assumed to be fully
connected. Again, all two player coalitions are equivalent and the grand coalition is as good as
in the previous value function w. Therefore, the allocation rule in Figure 6 recommends much
less payoff for player 2 than the one in Figure 5.

Next example shows how the sensitive flexible network allocation rule changes for networks
having a different total value available.

Example 2.
Let ˜̃w be another CW value function taking the following values:

˜̃w (S, g) =


1, if |S| = 2 or {12, 23} ⊆ g,
−1, if S = {2} and g = {13},
0, otherwise,

The only different with respect to the previous CW value function w̃ is that the value the
grand coalition can extract if fully connected equals 1 instead of zero. The reader can check that
(i) the allocation rule in Theorem 3.5 recommends 1/3 for all players in any efficient graph and
0 in any non efficient graph and (ii) the allocation rule in Definition 3.7 for g∗ = gN recommends
1/2 for players 1 and 3 and 0 for player 2 in any efficient graph and 0 in any non efficient graph.
The allocation rule in Definition 3.11 allocates as shown in Figure 7.
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FIGURE 7: The sensitive flexible network allocation rule for ˜̃w

As in the case of w̃, player 2 is weaker in the structure where she is disconnected facing
players 1 and 3 being connected than players 1 and 3 in equivalent situations, and all two-player
coalitions can do as equally good.

As discussed before, the allocation rule in Definition 3.7 recommends zero payoff to player 2
given that the weakest position for player 2 is relevant. If we take a look at the allocation rule in
Figure 7 such weakest position for player 2 is considered only when players 1 and 3 are connected
in the graph where the value is allocated. The only graph with strictly positive value and where
1 and 3 are connected is the complete graph. There, the allocation rule distributes the value in
the same way as the rule proposed in Definition 3.7. For the rest of efficient networks the value
is distributed evenly since the weakest position for player 2 is not taken into account. Recall
that in all those graphs players 1 and 3 are disconnected already.

5 A component-wise flexible network approach

Recall that a graph g can be efficient, and nevertheless, not be stable for some of the components
it induces, as far as there are externalities across components and the set of components, N |g,
is not a singleton. Therefore, fixing the allocation rule for graphs which are efficient is not easy
to sustain in the case where components could also have “flexibility” and reorganize themselves,
for example taking as given what the rest of components are doing. The best possibility a
given component T has in a given g depends on the value ŵ (T, g) itself, which is in general
different from what it gets in w(T, g) even when g is efficient. This idea is captured in the
following version for the flexible network property, called CW flexible network. Since flexibility
is adapted component-wise, so are the axioms of additivity, equal treatment of vital players and
proportionality.

Definition 5.1 An allocation rule y is a CW flexible network rule if for all w ∈ W and all g
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stable for some of its components T ∈ N |g relative to w:

yi,g(w) = yi,g (ŵ) ,

for all players i ∈ T .

We fix the allocation rule for graphs that are stable for a given component T , instead of for
efficient graphs, to be equal to the allocation rule in the situation where ŵ, the monotonic cover
of w, is distributed. As in the argument of the sensitive flexible network axiom, by doing that
we assume that (i) given any graph each component is reorganizing in its best way, as in ŵ,
and (ii) given that the values for T are equal in w than in ŵ the participating players in T will
obtain the same payoff in both situations.

Fix T ⊆ N , define GT ⊆ G as the set of graphs g on N where (i) T is a component in g, and
(ii) T is fully connected inside. Formally,

GT =
{
g ∈ G such that g = gT ∪ g| (N\T )

}
.

Recall that weak additivity takes gN as a reference. In trying to get a component-wise version
of weak additivity, GT is going to be fix as the reference, since it is the set of graphs such that
players in T are fully connected, but players outside T could be connected anyway. I introduce
now a component-wise version of weak additivity.

Definition 5.2 An allocation rule y is CW weakly additive if for any T ⊆ N , any monotonic
w and w′, and scalars a ≥ 0 and b ≥ 0:

yi,g

(
aw + bw′

)
= ayi,g (w) + byi,g

(
w′
)
,

for all players i ∈ T and all g ∈ GT , and, if aw − bw′ is monotonic, then

yi,g

(
aw − bw′

)
= ayi,g (w)− byi,g

(
w′
)
,

for all players i ∈ T and all g ∈ GT .

Recall that weak additivity applies “linearity” only on monotonic value functions and fixing
graph structure gN as a reference. Here, we fix the set of graphs GT given any T , as a reference.
Note that for monotonic value functions the best internal structure (in terms of surplus) for a
coalition T is the complete graph, independently of what players in N\T are doing.

Definition 5.3 An allocation rule y is said to satisfy CW equal treatment of vital players if
wT,g is a basic value function for some g and some T ∈ N |g and

yi,ĝ (wT,g) =
{ 1
|T | , if i ∈ T and g ⊆ ĝ

0, otherwise
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This axiom states that only the players in the component generating the value in the basic
value function can obtain a positive payoff, and they do so equally. In other words, no transfers
are allowed from one component to another. Note that an allocation rule satisfying CW equal
treatment of vital players satisfies equal treatment of equals where cR = 0 whenever R 6= T .

Definition 5.4 An allocation rule y is CW proportional with respect to the optimal if for every
player i and every value function w either yi,g(w) = 0 for all g ∈ G and i ∈ N , or for any g and
T ∈ N |g with ŵ(T, g) 6= 0

yi,g (w)
yi,g (ŵ)

=
w(T, g)

ŵ (T, gT ∪ g| (N\T ))
,

for i ∈ T .

An allocation rule satisfying the four properties defined just above follows the spirit of
sensitive flexible network defined in the previous section. If a network g is stable for one of
its components then the payoff has to correspond to what they would get even if the rest of
agents are organizing their best way possible at any given network. The flexibility is therefore
component-wise, as well as the analysis of the possibilities. Therefore, it is even more sensitive
than the previous case. CW proportional with respect to the optimal implies that the allocation
rule distributes exactly the value of a component among the participants of that component, in
other words, there are no transfers of value among different components.

Given a T ∈ N |g we define the TU-game UT
w,g as

UT
w,g(S) = ŵ

(
S, gS ∪ g|(T\S) ∪ g|(N\T )

)
,

for every S ⊆ T .

Theorem 5.5 There is a unique CW flexible network, CW proportional with respect to the
optimal allocation rule y satisfying CW weak additivity and CW equal treatment of vital players,
namely

yi(w, g) =
w(T, g)

ŵ(T, gT ∪ g|(N\T ))
Φi

(
UT

w,g

)
,

for every i ∈ T , with T ∈ N |g, given any g ∈ G and w ∈W .

The proof of this theorem is similar to the one in Theorem 3.5 and therefore omitted.

Consider again Example 2 in the previous section. Figures 8 and 9 show, respectively, the
Myerson value and the CW flexible network allocation rule for ˜̃w.
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FIGURE 8: The Myerson value for ˜̃w
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FIGURE 9: The component-wise flexible network allocation rule for ˜̃w

For one-link networks the possibilities considered by the CW flexible network allocation rule
as the same as the ones considered by the Myerson value: each component can only deviate by
disconnecting the two members. Therefore, both allocation rules in Figures 8 and 9 yield the
same prediction. For networks with more than one link the CW flexible network rule gives the
same recommendation as the sensitive flexible network rule. Note that for all those networks,
the grand coalition is the only component. The Myerson value, as mentioned before, takes into
account information contained only in subnetworks when computing the possibilities for the
players. Therefore, it yields more extreme recommendations than the CW or sensitive flexible
network rules.
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6 Concluding Remarks

The focus of this paper has been twofold. First, I suggest a flexible network approach that (i)
takes inter-component allocation information into account when this information, written as a
CW value function w, is available, and (ii) revises network flexibility from a component-wise
point of view, as opposed to taking the total population as a reference in the definition of flexible
network. If we want the flexible network approach to get a flavor of “stability” as notions of
the core or VN-M stable sets do have in the context of TU-games, we can redefine flexibility
as in the definition of CW flexible network. Three final comments. First, the Myerson value is
characterized as the only allocation rule satisfying strong additivity and CW equal treatment
of vital players, therefore showing that either additivity or CW equal treatment of vital players
has to be relaxed. Second, I would like to put the flexible network approach in perspective
with respect to the axiom of fairness, introduced by Myerson (1977). A small remark about the
notion of stability closes this discussion.

6.1 Another characterization for the Myerson value

The following axiomatic characterization of the Myerson value is well known in the literature
(See Myerson (1977), Jackson and Wolinsky (1996), Feldman (1996) and Navarro (2007).)

Definition 6.1 (Myerson (1977)) An allocation rule y is called component efficient if given any
value function w ∈W ∑

i∈S

yi,g(w) = w (T, g) ,

for every graph g ∈ G and every component T ∈ N |g.

Definition 6.2 (Myerson (1977)) An allocation rule y is called fair if given any value function
w

yi,g(w)− yi,g\ij(w) = yj,g(w)− yj,g\ij(w),

for every graph g ∈ G and every link ij ∈ g.

The Myerson value is the unique allocation rule satisfying component efficiency and fairness.
Recall that an allocation rule y (i) is strong additive if for any w and w′, and any scalars

a ≥ 0 and b ≥ 0:
y(aw + bw′) = ay(w) + by(w′).

and (ii) satisfies CW equal treatment of vital players if wT,g is a basic value function for some
g and some T ∈ N |g, then

yi,ĝ (wT,g) =
{ 1
|T | , if i ∈ T and g ⊆ ĝ

0, otherwise
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Theorem 6.3 The unique allocation rule satisfying strong additivity and CW equal treatment
of vital players is the Myerson value.

The proof of Theorem 6.3 is in the appendix. It consists on two parts: (1) strong additivity
and CW equal treatment of vital players define a unique allocation rule, and (2) any allocation
rule which is component efficient and fair also satisfies strong additivity and CW equal treatment
of vital players. Therefore the Myerson value is the unique allocation rule satisfying both
properties.

It is indeed not new or surprising that the Myerson value embeds a notion of additivity
and equal treatment2. What may be new (at least to me is) is the fact that both fairness and
component efficient are needed in order to imply both strong additivity and CW equal treatment
of vital players. Bad news are that strong additivity and CW equal treatment of vital players
are both too strong and define a unique allocation rule, being this one the Myerson value.

As noted by Jackson (2005), the Myerson value cannot be “fully” flexible network. Therefore,
one has to relax either the notion of additivity or the notion of CW equal treatment of vital
players in order to explore the consequences of a flexible network approach. Note that in the
allocation rule characterized in Theorem 3.5 additivity is relaxed and CW equal treatment of
vital players is substituted by the opposite case of equal treatment of equals, namely equal
treatment of vital players. In the allocation rules proposed in Definition 3.7 and Definition
3.11 both axioms (additivity and CW equal treatment of vital players) are relaxed. In the last
allocation rule proposed here the choice has been to relax only the additivity constraint.

6.2 Fairness behind the flexible-network approach

Let me first introduce a new notion of fairness that will be the one satisfied by some of the
flexible network allocation rules seen along this paper.

Definition 6.4 An allocation rule y is called fair in relative terms if for every graph g ∈ G and
every link ij ∈ g such that vw(g) 6= 0 and vw (g\ij) 6= 0:

yi,g

vw(g)
−

yi,g\ij

vw (g\ij)
=

yj,g

vw(g)
−

yj,g\ij

vw (g\ij)
. (2)

2Matthew O. Jackson has already remarked that fact in private communications and presentations at seminars
and conferences. Anne van den Nouweland (1993) has a characterization of the Myerson value (in a more restricted
environment) in terms of additivity, component efficiency, superfluous arc property and point anonymity, where
the superfluous arc property and point anonymity could be embedded in the idea of equal treatment of vital
players here.
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By fairness in relative terms one restricts attention to allocation rules where, for each link
in a graph, both players should lose or win the same percentage of total wealth from severing
this link. Note that (2) is equivalent to

yi,g − yj,g

vw(g)
=

yi,g\ij − yj,g\ij

vw (g\ij)
,

which means that the inequality between these two individuals, expressed in relative terms to
the total wealth to be divided, is the same independently of the fact that this link is present or
not. Note that this does not mean that the inequality between these two individuals remains
constant for all graphs.

The reader may check that the PBFN allocation rule and the allocation rules introduced in
Theorem 3.5, in Definition 3.7 and in Definition 3.11 are fair in relative terms, although they
are not component efficient. The CW flexible network allocation rule introduced in Theorem
5.5 is not always fair in relative terms, since Figure 9 serves as a counterexample, although it
is always component efficient. As said before, the flexible network approach in Theorem 3.5 is
incompatible with component efficiency. The key is in the axiom of equal treatment of vital
players.

As a conclusion, it seems that the Shapley value computations when taking the total pop-
ulation as a reference, and not component by component, triggers some sort of fairness. By
making those Shapley value computations component by component, imposes some rigidity.
This rigidity is not caused by fairness, but by component efficiency.

6.3 Stability of a graph vs. efficiency

As a final remark let me comment on the definition of stability of a graph (for one of its
components and with respect to the CW value function w). Recall that, given a CW value
function w, a graph g is stable for one of its components T if w(T, g) = ŵ

(
T, gT ∪ g| (N\T )

)
.

Following the argument that this notion may be better than the notion of efficiency when taking
an “a-posteriori” flexible network approach, one may think of defining, for a given CW value
function w, a set of graphs g with the property of being stable for all of its components (CW
stability). Formally, given a CW value function w a graph g is called CW stable if for all T in
N |g if w(T, g) = ŵ

(
T, gT ∪ g| (N\T )

)
. It is easy to see that the empty graph is always a CW

stable graph, since no further internal reorganizations are possible.
As expected, efficiency and CW stability are in general unrelated. Consider the following

examples with four agents. The value of a component is written next to it whenever this value
is different from zero (in other words, all the values that are not appearing on the Figures are
equal to 0).
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FIGURE 10

It is easy to see that (i) all the graphs containing any of the graphs shown in Figure 10 are
neither efficient nor CW stable, and (ii) all the graphs containing none of the graphs shown in
Figure 10 are not efficient, but they are CW stable.
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FIGURE 11

As the case in Figure 10, (i) all the graphs not shown in Figure 11 containing any structure
of positive value are neither efficient nor CW stable, and (ii) all the graphs that do not contain
a structure of positive value are not efficient, but they are CW stable.

As I said before, any graph g where some of its components are singletons is stable with
respect to these ones. Therefore, the empty graph is always CW stable, as all its components
are singletons. Although this solves the problem of existence, i.e., there always exists a graph
which is CW stable, it already tells us that a CW stable graph may not efficient. But are there
efficient graphs which are CW stable?

It is easy to see that, although in general they are independent notions, (i) if w presents no
externalities across components the set of efficient graphs is a subset of the set of CW stable
graphs, and (ii) the empty graph can be the unique CW stable graph, as Figure 12 illustrates.
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FIGURE 12

Note that, by definition of CW stability, components are allowed to reorganize internally,
but not to merge to players outside the component. If we would allow components to merge then
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one can use a similar technique to the one developed in Pápai (2004) and write each possible
network structure as a node in a directed graph. An arc joining two different network structures
means that one component of the origin would like to go to the end of the arc. In the example
shown in Figure 13 we could write it as follows.

r r

r rr r

r r
r r

r rr r

r r
-

?

�

6

1

1

1

1

1

33 1

1

1

1

1

Efficient

FIGURE 13

There would not be any CW stable graph if the notion of stability allows merging, since the
directed graph has a cycle structure. As in Pápai (2005), having a tree-structure in the directed
graphs constructed as in the example suffices to warrantee existence of this more restricted
notion. It may be of interest to explore the conditions on the value function w to have at least
one CW stable graph, where in this more restrictive notion it may be efficient too. This is
a question related to network formation problems, and not to the allocation of the value of a
network, and is therefore beyond the scope of this paper.

Appendix

Proof of Theorem 6.3

I first show that strong additivity and CW equal treatment of vital players define a unique
allocation rule, and afterwards, that an allocation rule that is component efficient and fair
(therefore, the Myerson value) satisfies strong additivity and CW equal treatment of vital players.

Lemma 6.3.1. There is a unique allocation rule satisfying strong additivity and CW equal
treatment of vital players.

Proof of Lemma 6.3.1. Note that, by definition of basic CW value functions, any CW value
function w ∈ W can be written in a unique way as a linear combination of all possible basic
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value functions. By strong additivity of an allocation rule y,

y(w) =
∑

g∈G, T∈N |g

cT,g y (wT,g) ,

where cT,g denotes the constant multiplying wT,g in the unique linear combination for w. By
CW equal treatment of vital players, each of the y (wT,g) is uniquely determined, and therefore
so is y(w). This completes the proof of Lemma 6.3.1.

Lemma 6.3.2. The Myerson value, denoted m(w), satisfies strong additivity.

Proof of Lemma 6.3.2. Assume not. This means that there exist games w1 and w2, both in
W , and at least one graph g ∈ G such that

mi,g (w1 + w2) 6= mi,g (w1) + mi,g (w2) , (3)

for some player i ∈ N . It is easily seen that such an i has to be connected in g, otherwise,
by component efficiency, both expressions should hold equal. This implies that a g where the
inequality in (3) holds has to have at least one link.

Take g to be a minimal graph such that (3) holds. This means that for all l ∈ g:

mi,g\l (w1 + w2) = mi,g\l (w1) + mi,g\l (w2) . (4)

Let w = w1 + w2 and let j denote a player to whom i is directly connected to in g. We know
that such a j exists since i has to be connected in g. As the Myerson value is fair,

mi,g(w)−mi,g\ij(w) = mj,g(w)−mj,g\ij(w), (5)

mi,g(w1)−mi,g\ij(w1) = mj,g(w1)−mj,g\ij(w1), (6)

and
mi,g(w2)−mi,g\ij(w2) = mj,g(w2)−mj,g\ij(w2). (7)

From (4), (5),(6) and (7),

mi,g(w)−mi,g(w1)−mi,g(w2) = mj,g(w)−mj,g(w1)−mj,g(w2),

for j directly connected to i. Note that this implies that the equality holds true even for j
indirectly connected to i. Therefore, we can define ∆T (w, w1, w2) := mi,g(w) − mi,g(w1) −
mi,g(w2), where T is the component in N |g to where i belongs. But as the Myerson value is
component efficient,

|T | ∆T (w, w1, w2) =
∑
i∈T

(mi,g(w)−mi,g(w1)−mi,g(w2)) = w(T, g)− w1(T, g)− w2(T, g) = 0,
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since w = w1+w2. Therefore, mi,g(w)−mi,g(w1)−mi,g(w2) = 0, a contradiction. This completes
the proof of Lemma 6.3.2.

Lemma 6.3.3. The Myerson value satisfies CW equal treatment of vital players.

Proof of Lemma 6.3.3. Let wT,g be a basic value function. For any graph g′ such that g * g′

all components are worth 0 in all subgraphs of g′, so it is easily checked that in all those graphs
the Myerson value gives 0 to every player. Take now g′ such that g = g′. It is easily seen that
at g′ = g the Myerson value recommends 0 for players out of T and equal payoffs for agents
in T (as, by fairness, deleting a link in g|T would give both participating players 0 payoff).
Consider now any pair (R, g′) with R ∈ N |g′ such that (i) g ⊆ g′ and R ⊆ T and (ii) g′\g has k
links. Assume by induction that, for any graph ĝ with g ⊆ ĝ and such that ĝ\g has k − 1 links,
all players in T get 1

|T | and players not in T get 0 payoff. I will show that the Myerson value
recommends equal payoffs for agents in T and 0 payoff for agents outside T in g′ too.

Note that, by fairness of the Myerson value, any two players in T directly connected in g
would get equal payoffs: Deleting one link in g|T gives 0 payoffs to both of them and deleting
one link in g̃ not in g gives, by the induction assumption, 1

|T | to both of them. Any player not in
T directly connected in g′ to a player in T gets the payoff that would correspond to the player
in T minus 1

|T | : By fairness and by induction assumption, deleting their link gives zero to the
player not in T and 1

|T | to the player in T . Thus, the component of g′, namely R, that contains
T distributes a value of 1, with all players in T obtaining equal payoff t and all players in R\T
obtaining t− 1

|T | . By component efficiency of the Myerson value,

|T |t + [|R| − |T |]
[
t− 1
|T |

]
= 1,

which implies that t = 1
|T | , and therefore all players outside T receive 0 payoffs in g′. This

completes the proof of Lemma 6.3.3.

As the Myerson value satisfies both strong additivity and CW equal treatment of vital players,
and these two axioms define a unique allocation rule, the Myerson value is the unique allocation
rule satisfying strong additivity and CW equal treatment of vital players. This completes the
proof of Theorem 6.3. �
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