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Progressive and merging-proof taxation∗

Biung-Ghi Ju† Juan D. Moreno-Ternero‡

Abstract

We investigate the implications and logical relations between progressivity (a princi-
ple of distributive justice) and merging-proofness (a strategic principle) in taxation. By
means of two characterization results, we show that these two principles are intimately
related, despite their different nature. In particular, we show that, in the presence of
continuity and consistency (a widely accepted framework for taxation) progressivity im-
plies merging-proofness and that the converse implication holds if we add an additional
strategic principle extending the scope of merging-proofness to a multilateral setting.
By considering operators on the space of taxation rules, we also show that progressivity

is slightly more robust than merging-proofness.
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1 Introduction

In modern welfare states, income tax is a major source of state funds and an essential pol-
icy measure for the enhancement of distributive justice. In the framework introduced by
O’Neill (1982) and Young (1988), we focus on a specific principle of distributive justice,
known as progressivity, which says that, for any pair of agents, the one with higher in-
come should face a tax rate at least as high as the rate the other faces.1 We investigate
the implications of this principle as well as its relation to another principle that prevents
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any gain (tax cut) from strategic merging among taxpayers. This second principle, called
merging-proofness, has been studied in this same context by de Frutos (1999), Ju (2003), Ju
et al. (2007) and Moreno-Ternero (2007), among others, and in similar contexts by Sprumont
(2005) and Moulin (2008), among others.

Merging-proofness is an axiom introduced from a strategic consideration independent of
any principle of distributive justice. However, we find that it is in fact related to the pro-
gressivity principle. Based on two characterization results imposing either progressivity or
merging-proofness, as well as some standard axioms in the literature, we show that (essen-
tially) any progressive tax rule is merging-proof. This is an extra advantage of imposing
progressivity.2 Conversely, we show that a suitable “multilateral” extension of merging-

proofness allows to ensure progressive taxation too.
A recent study by Thomson and Yeh (2008) gives a novel classification of tax rules and

axioms based on operators on the space of tax rules. The robustness of an axiom can be
tested by studying its preservation through the application of operators.3 There is a natural
operator, known as “minimal burden operator”, preserving progressivity but not merging-

proofness. We find an additional, yet mild axiom that helps merging-proofness be preserved.
The other known operators preserve either both or none of the two principles. Thus, our
analysis shows that progressivity is slightly more robust than merging-proofness.

The rest of the paper is organized as follows. In Section 2, we present the model and
basic concepts. In Section 3, we define the axioms. In Section 4, we state and prove the
characterization results and the logical relations between the axioms. In Section 5, we state
and prove our results on operators. We conclude in Section 6 with some further insights. For
a smooth passage, we defer some proofs and provide them in the appendix.

2 Model and basic concepts

We study taxation problems in a variable population model. The set of potential taxpayers,
or agents, is identified with the set of natural numbers N. Let N be the set of finite subsets of
N, with generic element N. We denote by RN

+ the cross-product of |N| copies of R+ indexed
by the members of N.4 For each i ∈ N, let yi ∈ R+ be i’s (taxable) income and y ≡ (yi)i∈N

the income profile. A (taxation) problem is a triple consisting of a population N ∈ N , an
income profile y ∈RN

+, and a tax revenue T ∈R+ such that ∑i∈N yi ≥ T . Let Y ≡∑i∈N yi. To
avoid unnecessary complication, we assume Y = ∑i∈N yi > 0. Let DN be the set of taxation
problems with population N and D ≡

�
N∈N DN .

Given a problem (N,y,T ) ∈ D , a tax profile is a vector x ∈ RN satisfying the following
two conditions: (i) for each i ∈ N, 0 ≤ xi ≤ yi and (ii) ∑i∈N xi = T . We refer to (i) as
boundedness and (ii) as balance.5 A (taxation) rule on D , R : D →

�
N∈N RN , associates

2The most widely referred advantage of progressive taxation, and perhaps the main reason for its ubiquity
in income tax schedules worldwide, is that it typically reduces income inequality. The connection between
progressive taxation and inequality reduction that had long been perceived by a number of authors in the
literature on tax functions (e.g., Musgrave and Thin, 1948; Fellman, 1976; Jakobsson, 1976; Eichhorn et al.,
1984), has also been recently scrutinized and properly established for the framework we analyze here in a
companion paper (Ju and Moreno-Ternero, 2008).

3Preservation of an axiom means that if a rule satisfies an axiom so does the rule obtained by applying the
operator.

4Alternatively, the superscript N may refer to a set pertaining to the agents in N. Which interpretation is
intended should be unambiguous from the context.

5Note that boundedness implies that each agent with zero income pays zero tax.
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with each problem (N,y,T ) ∈D a tax profile R(N,y,T ) for the problem. For each N ∈N ,
each M ⊆ N, and each z ∈ RN , let zM ≡ (zi)i∈M.

We now provide some examples of rules. The head tax distributes the tax burden equally
subject to no agent paying more than her income. The leveling tax equalizes post-tax in-
come across agents subject to no agent being subsidized. The flat tax equalizes tax rates
across agents. These three rules are examples of rules in the following family introduced by
Young (1987).

A rule R is parametric if there is a function f : [a,b]×R+ →R, where a,b ∈R∪{±∞},
such that (i) f is nondecreasing and continuous in the first variable; (ii) for each x ∈ R+,
f (a,x) = 0 and f (b,x) = x; (iii) for each (N,y,T ) ∈D , there is λ ∈ [a,b] such that, for each
i ∈ N, Ri (N,y,T ) = f (λ ,yi). We call f a parametric representation of R.

Parametric representations (also parametric rules) are continuous in revenue but not nec-
essarily in income. When a parametric representation is jointly continuous in both argu-
ments, it is called a continuous parametric representation and the rule represented by it is
called a continuous parametric rule. The three rules mentioned earlier are such rules. They
have the following parametric representations:

• Head tax: f
H(λ ,y) = min{− 1

λ ,y}, for each λ ∈ R− and each y ∈ R+.

• Leveling tax: f
L(λ ,y) = max{y− 1

λ ,0}, for each λ ∈ R+ and each y ∈ R+.

• Flat tax: f
F(λ ,y) = λ · y, for each λ ∈ [0,1] and each y ∈ R+.

3 Axioms

We now define our two main axioms.
Progressivity postulates that, for any pair of agents, the one with higher income should

face a tax rate at least as high as the rate the other faces.

Progressivity. For each (N,y,T ) ∈ D and each i, j ∈ N, if 0 < yi ≤ y j, Ri(N,y,T )/yi ≤
R j(N,y,T )/y j.

Our second axiom prevents a rule from being manipulated by a pair of agents through
merging their incomes.

Merging-proofness. For each (N,y,T ) ∈D and each pair i, j ∈ N with i �= j, if y
� ∈ RN\{ j}

+
is such that y

�
i
= yi +y j and y

�
N\{i, j} = yN\{i, j}, Ri (N,y,T )+R j (N,y,T )≤ Ri(N\{ j},y�,T ).6

We will investigate logical relations between the two axioms. We will invoke some of
the following standard axioms in the process.7

First, any two agents with equal incomes should pay equal taxes.

Equal treatment of equals. For each (N,y,T ) ∈ D and each pair i, j ∈ N with yi = y j,
Ri (N,y,T ) = R j(N,y,T ).

6We consider only pairwise merging. This restriction is for simplicity and without loss of generality. The
same results are obtained considering merging incomes of more than two agents into the total income of a
single representative agent. We consider later multiple representative agents and formulate a stronger axiom.
This axiom is much stronger as we show in Lemma 2 and Proposition 2.

7We refer readers to Thomson (2003, 2006) for a detailed discussion of these axioms.
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Next is the stronger requirement that tax payments should not depend on the names of
taxpayers.

Anonymity. For each (N,y,T ) ∈ D , each N
� ∈ N , each bijection π : N → N

�, and each
i ∈ N, Rπ(i)(N�,(yπ(i))i∈N ,T ) = Ri(N,y,T ).

The next axiom expresses the robustness of a rule under the departure of some agents
with their contributions. Apply the rule to a problem and imagine some agents paying their
tax contributions and leaving. The axiom says that if we revise the situation and apply the
rule to it, it should assign to each of the remaining agents the same contribution as it had
originally.

Consistency. For each (N,y,T )∈D , and each M⊂N, if x = R(N,y,T ) then xM = R(M,yM,∑i∈M xi).

Finally, the next axiom says that small changes in incomes or revenue do not produce a
jump in tax payments.

Continuity. For each N ∈N , each (N,y,T ) ∈DN and each sequence {(N,yn,T n) : n ∈ N}
in DN , if (yn,T n) converges to (y,T ) then R(N,yn,T n) converges to R(N,y,T ).

4 Characterizations and logical relations among axioms

We will show that among rules satisfying consistency and continuity, progressivity implies
merging-proofness. This follows from the characterizations of two families of rules imposing
either progressivity or merging-proofness. The following lemma is useful for the characteri-
zations, as well as for establishing the converse implication that merging-proofness, together
with an additional axiom extending its scope to a multilateral setting, also implies progres-

sivity.

Lemma 1. Merging-proofness and consistency together imply anonymity.

The proof is provided in the appendix.
The next two properties of parametric representations are crucial in our characterization.

A parametric representation f : [a,b]×R+ → R is superhomogeneous in income if for each
λ ∈ [a,b], each y0 ∈ R+, and each α ≥ 1, f (λ ,αy0) ≥ α f (λ ,y0).8 A parametric repre-
sentation f : [a,b]×R+ → R is superadditive in income if for each λ ∈ [a,b] and each pair
y0,y�0 ∈ R+, f

�
λ ,y0 + y

�
0
�
≥ f (λ ,y0)+ f

�
λ ,y�0

�
.9

Proposition 1. Let R be a rule satisfying consistency and continuity. Then:
1. R is progressive if and only if it has a continuous parametric representation that is super-

homogeneous in income.

2. R is merging-proof if and only if it has a continuous parametric representation that is

superadditive in income.
10

8It is worth noting that, although there might be different representations of a parametric rule, superhomo-
geneity in income is invariant; that is, either every representation is superhomogeneous in income or none of
them is.

9Like superhomogeneity, superadditivity in income is also invariant with respect to the choice of the repre-
sentation.

10This strengthens Theorem 2 in Ju (2003) by dropping equal treatment of equals.
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Proof. Statement 1. Note that progressivity implies equal treatment of equals. Young (1987,
Theorem 1) shows that the continuous parametric rules are the only rules satisfying consis-

tency, equal treatment of equals, and continuity. Thus, using Young’s result, we just need
to show that a parametric rule is progressive if and only if it has a parametric representation
that is superhomogeneous in income. Let R be a parametric rule and f : [a,b]×R+ → R
a parametric representation of R. Assume that R is progressive. Let λ ∈ [a,b], y0 > 0
and α ≥ 1. Let T

λ ≡ f (λ ,y0) + f (λ ,αy0) and N ≡ {1,2}. Then, R(N,(y0,αy0),T λ ) =
( f (λ ,y0), f (λ ,αy0)). By progressivity, f (λ ,y0)/y0≤ f (λ ,αy0)/(αy0). Thus α f (λ ,y0)≤
f (λ ,αy0), which shows that f is superhomogeneous in income. Conversely, assume that f

is superhomogeneous in income. Let (N,y,T ) ∈D and i, j ∈ N be such that 0 < yi ≤ y j. Let
λ ∈ [a,b] be such that R(N,y,T ) = ( f (λ ,yi))i∈N

. Then, by superhomogeneity, f
�
λ ,y j

�
=

f (λ ,
y j

yi
· yi)≥

y j

yi
· f (λ ,yi). Thus

R j (N,y,T )
y j

=
f (λ ,y j)

y j

≥ f (λ ,yi)
yi

=
Ri (N,y,T )

yi

,

which shows the progressivity of R. ♦
Statement 2. Ju (2003) shows that a parametric rule is merging-proof if and only if it has

a parametric representation that is superadditive in income. From here, Young’s result and
Lemma 1 conclude the proof. ♦

As a consequence of Proposition 1, a logical relation between progressivity and merging-

proofness can be established.

Corollary 1. Let R be a rule satisfying consistency and continuity. If R is progressive then

R is merging-proof.

Proof. It suffices to show that superhomogeneity in income implies superadditivity in in-
come. To do so, let y0 and y

�
0 be such that 0 < y0 ≤ y

�
0. Let α ≡ (y0 + y

�
0)/y

�
0. Then, by

superhomogeneity, f
�
λ ,αy

�
0
�
≥ α f

�
λ ,y�0

�
, that is, f

�
λ ,y0 + y

�
0
�
/
�
y0 + y

�
0
�
≥ f (λ ,y�0)/y

�
0.

Thus, f (λ ,y0+y
�
0)≥ f (λ ,y�0)+

y0
y
�
0

f (λ ,y�0). By superhomogeneity, f

�
λ ,

y
�
0

y0
y0

�
≥ y

�
0

y0
f (λ ,y0),

thus y0
y
�
0

f (λ ,y�0)≥ f (λ ,y0). Hence f (λ ,y0 + y
�
0)≥ f (λ ,y�0)+ f (λ ,y0) , which shows that f

is superadditive in income.

Remark 1. Without consistency and continuity, the logical relation between progressivity

and merging-proofness in Corollary 1 does not hold, as shown by Example 1 in Section 5.

Note that any convex function f : R → R, whose graph passes through the origin, is
superhomogeneous. Hence by Proposition 1 and Corollary 1, any rule with a continuous
parametric representation that is convex in income is progressive and merging-proof. As
mentioned above, both the leveling tax and the flat tax have such representations. Thus,
they are both progressive and merging-proof. The same argument applies to two other clas-
sical tax rules proposed by Cohen-Stuart and Cassel (formulated as rules in our model by
Young, 1988).

Corollary 1 shows that, among rules satisfying consistency and continuity, progressivity

implies merging-proofness. However, the converse does not hold.11 To fully understand the
11An example of a rule satisfying merging-proofness but violating progressivity can be provided upon re-

quest.
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logical relation and, in particular, how much weaker than progressivity merging-proofness
is, we search for a condition that fills the gap between the two axioms. We accomplish this
aim through the next investigation of “multilateral merging” and, more precisely, the non-
manipulability axiom that arises when we focus on the special case in which agents merging
have uniform incomes.

Merging-proofness pertains to merging the incomes of two agents, or any set of agents
in its standard formulation, into the total income of a “single” representative. One may well
consider the possibility of “multiple” representatives instead. That is, merging incomes of a
set of agents into incomes of a proper “subset” of agents with the total income unchanged.
Such merging is said to be multilateral. The next axiom says that no group of agents can
reduce their total tax payment through multilateral merging.

Multilateral Merging-Proofness. For each (N,y,T ) ∈D , each S ⊆ N and each non-empty
S
� ⊆ N\S, if (αi)i∈S

∈ ∆|S| and y
� ∈ RN\S

�

+ are such that for each i ∈ S, y
�
i
= yi + αi ∑ j∈S� y j,

and y
�
N\[S∪S�] = yN\[S∪S�], then ∑i∈S Ri (N,y,T )+∑ j∈S� R j(N,y,T )≤ ∑i∈S Ri(N\S

�,y�,T ).

Evidently, this axiom implies merging-proofness. It turns out to be much stronger as we
show that multilateral merging-proofness, together with consistency, implies the following
dual axiom of merging-proofness that has also been frequently considered in the literature
(e.g., de Frutos (1999), Ju (2003), Ju et al. (2007) and Moreno-Ternero (2007)):

Splitting-Proofness. For each (N,y,T ) ∈D and each pair i, j ∈ N with i �= j, if y
� ∈ RN\{ j}

+
is such that y

�
i
= yi + y j and y

�
N\{i, j} = yN\{i, j}, Ri (N,y,T )+R j (N,y,T )≥ Ri(N\{ j},y�,T ).

Lemma 2. Multilateral merging-proofness and consistency together imply splitting-proofness.

Proof. Let R be a rule satisfying multilateral merging-proofness and consistency. Let (N,y,T )∈
D . For ease of notation, assume, without loss of generality, that N ≡ {1,2, . . . ,n} and
consider the problem in which agents 1 and 2 merge their incomes into 1’s income, i.e.,
(N\{2},(y1+y2,y3, . . . ,yn),T )∈D . Note that (N,y,T ) is obtained after agent 1 in (N\{2},(y1+
y2,y3, . . . ,yn),T ) splits her income y1 +y2 into y1 and y2. We aim to show that R1 (N,y,T )+
R2 (N,y,T )≥ R1(N\{2},(y1 +y2,y3, . . . ,yn),T ). To do so, let us consider the auxiliary prob-
lem in which agents 1 and 2 transfer their incomes to a new agent n + 1, but do not leave,
i.e., (N ∪ {n + 1},(0,0,y3, . . . ,yn,y1 + y2),T ) ∈ D . The multilateral merger of the incomes
of 1, 2, and n+1 into the incomes y1 and y2 of 1 and 2 yields (N,y,T ). Thus, applying multi-

lateral merging-proofness to this auxiliary problem and the original one, as well as invoking
boundedness, we obtain

R1(N,y,T )+R2(N,y,T )≥ Rn+1(N∪{n+1},(0,0,y3, . . . ,yn,y1 + y2),T ). (1)

On the other hand, by consistency,

Rn+1(N∪{n+1},(0,0,y3, . . . ,yn,y1 +y2),T ) = Rn+1({3, . . . ,n+1},(y3, . . . ,yn,y1 + y2) ,T ).
(2)

Because multilateral merging-proofness implies merging-proofness, Lemma 1 guarantees
that R satisfies anonymity, which implies that

Rn+1({3, . . . ,n+1},(y3, . . . ,yn,y1 + y2) ,T ) = R1(N\{2},(y1 + y2,y3, . . . ,yn),T ). (3)
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Combining (1)-(3), we get R1 (N,y,T )+R2 (N,y,T )≥ R1(N\{2},(y1 +y2,y3, . . . ,yn),T ), as
desired. Since the argument would have also worked for any other pair of agents, instead of
1 and 2, we have just shown that R satisfies splitting-proofness.

As a result, we have the following:

Proposition 2. A rule satisfies multilateral merging-proofness and consistency if and only if

it is the flat tax.

Proof. It is straightforward to show that the flat tax satisfies multilateral merging-proofness

and consistency. Conversely, let R be a consistent rule satisfying multilateral merging-

proofness. In particular, R satisfies merging-proofness. Now, by Lemma 2, R also satisfies
splitting-proofness. It follows from Ju et al., (2007, Theorem 9) that R is the flat tax.

We have therefore shown that among the consistent rules, multilateral merging-proofness

is much stronger than progressivity. A technical relaxation of it, however, focusing on a
special type of multilateral merging, will turn out to fill the gap between progressivity and
merging-proofness. For each y ∈ RN

+ and each S ⊆ N, yS is uniform if for each pair i, j ∈ S,
yi = y j. For each (N,y,T ) ∈ D , each S ⊆ N and each non-empty S

� ⊆ N\S, we say that
y
� ∈RN\S

�

+ is obtained from y through a uniformity preserving (multilateral) merge in S∪S
� if

the two profiles have the same incomes on N\ [S∪S
�] , and both yS∪S� and y

�
S

are uniform with
the same total income (∑i∈S∪S� yi = ∑i∈S y

�
i
). That is, y

�
N\[S∪S�] = yN\[S∪S�] and there is y0 ∈R+

such that, for each i ∈ S∪S
�, yi = y0 and, for each i ∈ S, y

�
i
= yi + |S�|y0/|S| = y0

�
|S�|+|S|

|S|

�
.

Focusing on uniformity preserving merges, we define:

Uniformity Preserving Multilateral Merging-Proofness. For each (N,y,T ) ∈ D , each
S⊆N and each non-empty S

� ⊆N\S, if y
� is obtained from y through a uniformity preserving

merge of agents in S∪S
�, then ∑i∈S Ri (N,y,T )+∑ j∈S� R j(N,y,T )≤ ∑i∈S Ri(N\S

�,y�,T ).

An implicit assumption made in our formulation of multilateral merging-proofness (also
present in the formulation of “reallocation-proofness” studied widely in numerous models;
see Ju et al., 2007) is that a group of agents who successfully manipulate tax allocations,
and reduce their total tax payment, can always share the tax cut so that they all benefit. The
validity of this assumption depends on how capable agents are of reaching a cooperative
agreement to share the tax cut. Uniformity preserving merges are a special type of merges
where this assumption is arguably most valid. The reason being that in this case all agents in-
volved in a merge are equal ex-ante and ex-post, and so the equal division of the total benefit
from the merge constitutes a focal agreement to be reached, provided they accept the basic
equal treatment principle. Thus, uniformity preserving multilateral merging-proofness can
be considered as a natural weakening of multilateral merging-proofness, when guaranteeing
a post-manipulation agreement is important.

Now we are ready to state our next result:

Proposition 3. Let R be a rule satisfying consistency and continuity. Then, the following

statements are equivalent:
1. R satisfies progressivity;
2. R satisfies merging-proofness and uniformity preserving multilateral merging-proofness;
3. R has a continuous parametric representation that is superhomogeneous in income.

7



Proof. By Proposition 1, it only remains to show that statements 2 and 3 are equivalent.
First, let R be a consistent and continuous rule that satisfies merging-proofness and uniformity

preserving multilateral merging-proofness. By merging-proofness and Lemma 1, R satisfies
equal treatment of equals. Then, by Young (1987, Theorem 1), R is a continuous parametric
rule. Let f : [a,b]×R+ → R be a representation of R. Then, we show that, for each λ ∈
[a,b], f (λ , ·) is superhomogeneous. By continuity, we only have to prove that for each
y0 ≥ 0 and each pair of integers l,m with m ≥ l > 0, f (λ ,my0/l) ≥ m f (λ ,y0)/l. Suppose,
by contradiction, that there exist λ ∈ (a,b), y0 > 0, and m > l > 0 such that

f (λ ,my0/l) < m f (λ ,y0)/l. (4)

Since f is nondecreasing in the first variable (and f (a,y0) = 0), there is λ∗ ∈ (a,λ ] such that
f (λ∗,y0) = f (λ ,y0) and for each λ � ∈ (a,λ∗), f (λ �,y0) < f (λ∗,y0). Let N ≡ {1, . . . , l, l +
1, . . . ,m,m+1}, S ≡ {1, . . . , l}, and S

� ≡ {l +1, . . . ,m}. Let y ∈ RN
+ be such that y1 = · · · =

ym = ym+1 = y0. Let y
� ≡ (y�1, . . . ,y

�
l
,y�

m+1) be such that y
�
1 = · · · = y

�
l
= my0/l and y

�
m+1 =

y0. Let T ≡ l f (λ∗,my0/l)+ f (λ∗,y0), x ≡ R(N,y,T ), and x
� ≡ R(N\S

�,y�,T ). Clearly, x
� ≡

( f (λ∗,y�i))i∈N\S� . Since, by (4), f (λ∗,my0/l) ≤ f (λ ,my0/l) < m f (λ ,y0)/l = m f (λ∗,y0)/l,
then

T = l f (λ∗,my0/l)+ f (λ∗,y0) < m f (λ∗,y0)+ f (λ∗,y0) . (5)

Since f (·,y0) is nondecreasing, there is λ0 < λ∗ such that m f (λ0,y0)+ f (λ0,y0) = T. Then
x≡ ( f (λ0,yi))i∈N and, therefore, xm+1 = f (λ0,ym+1) = f (λ0,y0) < f (λ∗,y0) = x

�
m+1. Since

N\{m+1} = S∪ S
� and ∑i∈N\S� x

�
i
= T = ∑i∈N xi, then ∑i∈S x

�
i
< ∑i∈S∪S� xi, contradicting

uniformity preserving multilateral merging-proofness.
Conversely, let R be a rule admitting a continuous parametric representation that is su-

perhomogeneous in income. Then, by Corollary 1, R is merging-proof. Thus, it only re-
mains to show that R satisfies uniformity preserving multilateral merging-proofness. Let
(N,y,T ) ∈ D , S ⊆ N and S

� ⊆ N\S be such that for each i ∈ S ∪ S
�, yi = y0, for each

i ∈ S, y
�
i
= yi +(|S�|/|S|)y0(= (|S∪S

�|/|S|)y0, and y
�
N\S

= yN\[S∪S�]. Let λ ∈ [a,b]. Define
T ≡ ∑i∈S f (λ ,y�

i
)+∑i∈N\[S∪S�] f (λ ,y�

i
). Then, by superhomogeneity,

T ≡ ∑
i∈S

f (λ ,y�
i
)+ ∑

i∈N\[S∪S�]
f (λ ,y�

i
) = ∑

i∈S

f

�
λ ,

|S∪S
�|

|S| y0

�
+ ∑

i∈N\[S∪S�]
f (λ ,yi)

≥ ∑
i∈S

|S∪S
�|

|S| f (λ ,y0)+ ∑
i∈N\[S∪S�]

f (λ ,yi) (6)

= |S∪S
�| f (λ ,y0)+ ∑

i∈N\[S∪S�]
f (λ ,yi) = ∑

i∈N

f (λ ,yi).

Therefore, there is λ0 ∈ [a,b] such that λ0≥ λ and ∑i∈N f (λ0,yi)= T. Then, ∑i∈N\[S∪S�] f (λ0,yi)≥
∑i∈N\[S∪S�] f (λ ,yi) = ∑i∈N\[S∪S�] f (λ ,y�

i
), which implies ∑i∈S f (λ0,yi) + ∑ j∈S� f

�
λ0,y j

�
≤

∑i∈S f (λ ,y�
i
). Since R(N,y,T )≡ ( f (λ0,yi))i∈N and R(N\{S

�},y�,T )≡ ( f (λ ,y�
i
))i∈N\{S�}, then

∑i∈S Ri (N,y,T )+∑ j∈S� R j (N,y,T )≤ ∑i∈S Ri (N\S
�,y�,T ) .
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5 Robustness of the axioms

We now study the robustness of our two main axioms by analyzing operators on the space of
rules. An axiom is said to be preserved under an operator if any rule that satisfies the axiom
is mapped by the operator into a rule that also satisfies the axiom. Considering the next
operator introduced by Thomson and Yeh (2008), we will show that progressivity is slightly
more robust than merging-proofness.

Given a problem (N,y,T ) and an agent i ∈ N, suppose T −∑ j∈N\{i} y j > 0. Then this
part of the revenue cannot be covered even if everyone other than i pays her full income.
Thus this part can be viewed as the minimal burden imposed on agent i. For each i ∈ N, let
mi(N,y,T ) ≡ min{0,T −∑ j �=i y j} be i’s minimal burden. Let m(N,y,T ) ≡ (mi(N,y,T ))i∈N

and M(N,y,T ) ≡ ∑N mi(N,y,T ). The minimal-burden operator associates with each rule R

the rule R
m defined by the following two-step payment procedure. For each problem, first

each agent pays her minimal burden; second, each agent pays his tax according to R applied
to the revised problem obtained by reducing agents’ incomes by their minimal burdens and
the tax revenue by the sum of the minimal burdens. That is, for each (N,y,T ) ∈D ,

R
m(N,y,T )≡ m(N,y,T )+R(N,y−m(N,y,T ),T −M(N,y,T )).

The next proposition shows that progressivity is more robust to the minimal-burden op-
erator than merging-proofenss.

Proposition 4. The minimal-burden operator preserves progressivity. However, it does not

preserve merging-proofness.

The proof of the statement regarding progressivity is provided in the appendix. Exam-
ple 1 below shows that the minimal-burden operator does not preserve merging-proofness.

Example 1. For each (N,y,T ) ∈ D , let R(N,y,T ) coincide with the leveling tax R
L when

T ≥ 10 and with the flat tax R
F when T < 10. Since both the leveling tax and the flat tax are

merging-proof, R is also merging-proof. However, R
m is not merging-proof. To show this,

consider the problem (N,y,T ) = ({1,2,3},(5,55,100),70). Then,

R
m (N,y,T ) = (0,0,10)+R

L ({1,2,3},(5,55,90),60) =
�

0,
25
2

,
115
2

�
.

Consider now the problem that results when agents 2 and 3 merge their incomes and are
represented by agent 3, i.e., (N\{2},y�,T ) = ({1,3},(5,155),70). Then,

R
m

�
N\{2},y�,T

�
= (0,65)+R

F ({1,3},(5,90),5) =
�

5
19

,
1325
19

�
.

Consequently,
R

m

3 (N\{2},y�,T ) < R
m

2 (N,y,T )+R
m

3 (N,y,T ) ,

which shows that R
m is not merging-proof.

Note that R is progressive. By Proposition 4, so is R
m. Therefore, R

m is an example
showing that progressivity does not imply merging-proofness, as claimed in Remark 1.

For rules satisfying the following mild axiom, however, we show that the minimal-burden
operator preserves merging-proofness. Suppose that an agent donates part of her income and

9



that the donation is used to finance tax revenue. Then both the donor’s income and the tax
revenue go down by the amount of the donation. The next axiom says that the donor’s total
payment (tax plus donation) should not be lower than her total payment without donation.

No Donation Paradox.12 For each (N,y,T ) ∈D , each i ∈ N and each t ∈ [0,min{T,yi}],

Ri (N,y,T )≤ t +Ri (N,(yi− t,y−i) ,T − t) .

Note that the rule in Example 1 violates no donation paradox. To show this, consider the
problem (N,y,T ) = ({1,2},(3,15),11). Then, R(N,y,T ) = (0,11) and R(N,(3,13),9) =
(27/16,117/16). Thus, R2 (N,y,T ) = 11 > 2+117/16 = 2+R2 (N,(3,13),9).

Most of the well-known rules satisfy no donation paradox, which shows that it is indeed
a mild condition. Nevertheless, it is enough to guarantee that the minimal-burden operator
preserves merging-proofness, as shown in the next result.

Proposition 5. Within the family of rules satisfying no donation paradox, the minimal-

burden operator preserves merging-proofness.

The proof is provided in the appendix.

6 Concluding remarks

We have shown an intimate connection between the ethical principle of progressive taxation
and the strategic principle of merging-proofness. Our results give rise to dual byproducts,
which also reveal an intimate connection between the dual notions of these two principles;
namely, regressivity (for any pair of agents, the one with lower income should face a tax rate
at least as high as the rate the other faces) and splitting-proofness.13

Formally, for any given rule R, the dual rule of R, denoted as R
∗, associates with each

(N,y,T )∈D , R
∗(N,y,T )≡ y−R(N,y,Y−T ). A rule is self-dual if it coincides with its dual.

For any given property α, α∗ is the dual property of α if for each rule R, R satisfies α if
and only if its dual rule R

∗ satisfies α∗. Consistency, continuity and anonymity are self-dual
properties (see Table 3.2 in p.229 of Thomson, 2006). Progressivity and regressivity are dual
to each other; so are splitting-proofness and merging-proofness (e.g., de Frutos, 1999). It is
not difficult to show that changing the direction of the inequalities in the definitions of mul-

tilateral merging-proofness and uniformity perserving multilateral merging-proofness, we
can define their dual properties: multilateral splitting-proofness and uniformity preserving

multilateral splitting-proofness. It is known that a rule is characterized by a set of proper-
ties if and only if its dual rule is characterized by the corresponding set of dual properties
(e.g., Herrero and Villar, 2001). Similarly, if α and β are two properties and α∗ and β ∗ are
their corresponding dual properties, α implies β if and only if α∗ implies β ∗ (e.g., Moreno-
Ternero and Villar, 2006). Combining all these facts with our main results, we obtain the

12In the problem of adjudicating conflicting claims, this axiom is introduced by Thomson and Yeh (2008). It
is the dual of "claims monotonicity" (see p.100 and p.161 in Thomson, 2006). See also Moreno-Ternero (2006)
and Moreno-Ternero and Villar (2006)

13
Regressivity may not be an interesting property from a fairness point of view. Nevertheless, it is an almost

ubiquitous feature in the optimal taxation literature, initiated by Mirrlees (1971), whose classical model, which
assumes agents with identical preferences (on consumption and working time) but with different earning abil-
ities, typically prioritizes the labour-discouraging effects of the income tax over its hypothetical redistributive
benefit.
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next corollary:

Corollary 2. The following statements hold:
1. Splitting-proofness and consistency together imply anonymity.

2. A consistent and continuous rule satisfies regressivity (splitting-proofness) if and only if

it has a continuous parametric representation that is subhomogeneous (subadditive) in in-

come.
14

3. Within the domain of rules satisfying consistency and continuity, regressivity implies

splitting-proofness.

4. Multilateral splitting-proofness and consistency together imply merging-proofness.

5. A rule satisfies multilateral splitting-proofness and consistency if and only if it is the flat

tax.

6. A rule satisfies regressivity if and only if it satisfies splitting-proofness and uniformity

preserving multilateral splitting-proofness.

Besides obtaining logical relations between these principles, and their implications, we
have also studied their robustness to the so-called minimal-burden operator. We have shown
that progressivity is slightly more robust than merging-proofness, as we find an additional but
mild axiom that helps the latter to be preserved by the operator. Three other operators have
been considered in the literature (e.g., Thomson and Yeh, 2008) but none of them allows us
to distinguish between the two principles. More precisely, both progressivity and merging-

proofness are preserved under the so-called convexity operator (which maps a list of rules
into the convex combination of these rules) whereas none of them is preserved under the
so-called duality operator (which maps each rule into its dual rule), or under the so-called
truncation operator (which maps each rule R into the rule defined, for each problem, by
applying R after each income has been truncated at the tax revenue). Regarding the dual
notions, it is a straightforward consequence of the previous results that both regressivity

and splitting-proofness are preserved under the convexity operator whereas none of them
are preserved under the duality operator, or under the minimal-burden operator. In this
case, it is the truncation operator that allows us to distinguish between both axioms. The
truncation operator preserves regressivity but not splitting-proofness. Splitting-proofness can
be preserved after the addition of income monotonicity (if an agent increases her income,
ceteris paribus, she cannot pay less taxes), the dual property of no donation paradox.15

Finally, we acknowledge that our analysis has focused on the simplest model of tax-
ation that exists in the literature. This model, introduced by O’Neill (1982), provides an
extremely useful framework to discuss ethical and strategic principles although it has some
shortcomings as a model of taxation. It is left for further research to extend our results to a
more general model of taxation in which incomes would result from economic choices and
negative taxation (i.e., subsidies) would be allowed. An instance of such a model has been
recently studied by Fleurbaey and Maniquet (2006), who look for the optimal tax on the
basis of efficiency and fairness principles (and under incentive-compatibility constraints). In
their model, agents have unequal skills (and, therefore, unequal earning abilities) and het-
erogeneous preferences over consumption and leisure (and, therefore, unequal labour time

14A parametric representation f : [a,b]×R+ → R is subhomogeneous in income if for each λ ∈ [a,b], each
y0 ∈R+, and each α ≥ 1, f (λ ,αy0)≤ α f (λ ,y0). A parametric representation f : [a,b]×R+ →R is subaddi-

tive in income if for each λ ∈ [a,b] and each pair y0,y�0 ∈ R+, f (λ ,y0 + y
�
0)≤ f (λ ,y0)+ f (λ ,y�0). It is worth

noting that both properties are also invariant with respect to the choice of the representation.
15This follows from our Propositions 4 and 5, and Theorem 6 in Thomson and Yeh (2008).
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1 2 3
a a

a a 0
a a

0 a a

a a

(a) Income profiles

1 2 3
x1 x2
x1 x2 0

x
�
2 x

�
3

0 x
�
2 x

�
3

x1 x2

(b) Tax profiles

Table 1: Proof of Lemma 1.

choices).

A Proofs

Proof. [Proof of Lemma 1] Chambers and Thomson (2002, Lemma 3) show that con-

sistency and equal treatment of equals together imply anonymity. Thus, we only have to
show that merging-proofness and consistency imply equal treatment of equals. Now, since
equal treatment of equals is lifted by consistency from the two-agent case (e.g., Hokari and
Thomson (2008, Theorem 1)), we can restrict ourselves to that case. More precisely, let
(N,y,T ) ∈D where N = {i, j} and yi = y j = a. We prove in two steps that the tax amounts
of i and j in this problem are the same.

Step 1. For each k∈N\{i, j}, R j({i, j},(a,a),T )= R j({ j,k},(a,a),T ) and Ri({i, j},(a,a),T )=
Rk({ j,k},(a,a),T ).

Without loss of generality, suppose i = 1, j = 2, and k = 3. Let x ≡ R(N,y,T ) (the
problem (N,y,T ) is illustrated in the first row of Table 1-a, whereas x is illustrated in the
first row of Table 1-b) and x

� ≡ R({2,3},(a,a),T ). Consider now the problem in which
agent 3, with zero income, joins the original problem (N,y,T ). Then, we get the three-agent
problem (N�,(a,a,0),T ), where N

� ≡ {1,2,3} (second row of Table 1-a). By boundedness,
R3(N�,(a,a,0),T ) = 0. By balance and consistency, RN(N�,(a,a,0),T ) = R(N,y,T ) (sec-
ond row of Table 1-b). When agents 1 and 3 in this three-agent problem merge their incomes
into the income of agent 3, we obtain a new problem ({2,3},(a,a),T ) (third row of Ta-
ble 1-a) and, by merging-proofness, x

�
3 ≥ x1. The reverse inequality x

�
3 ≤ x1 is obtained after

using the symmetric argument as above, switching the roles of agents 1 and 3 (start from
({2,3},(a,a),T ), the third row of Table 1-a, and work through the problems in the fourth
and the last rows applying the same reasoning as above).

Step 2. Ri({i, j},(a,a),T ) = R j({i, j},(a,a),T ).
Let k, l ∈ N\{i, j} be such that k �= l. Applying Step 1 twice, first to the two problems

({k, l},(a,a),T ) and ({i, l},(a,a),T ) and then to the two problems, ({i, l},(a,a),T ) and
({i, j},(a,a),T ), we obtain

Rk({k, l},(a,a),T ) = Ri({i, l},(a,a),T ) = Ri({i, j},(a,a),T ).

Now switching the order of i and j above and applying Step 1 twice more, we obtain

Rk({k, l},(a,a),T ) = R j({ j, l},(a,a),T ) = R j({i, j},(a,a),T ).
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Therefore, Ri({i, j},(a,a),T ) = R j({i, j},(a,a),T ).16

Proof. [Proof of Proposition 4] Let R be a rule satisfying progressivity. Let (N,y,T ) ∈ D
and x

m≡R
m(N,y,T ). Assume, without loss of generality, that N = {1,2, ...,n} and y1≤ y2≤

· · · ≤ yn. Let k ∈ N be the first agent whose minimal burden is strictly positive, i.e., yk−1 ≤
Y −T < yk. Then, m1 (N,y,T ) = · · · = mk−1(N,y,T ) = 0 < mk (N,y,T ) ≤ mk+1 (N,y,T ) ≤
· · · ≤ mn (N,y,T ). For each i ≥ k, mi (N,y,T ) = yi −Y + T . Let y

� ≡ y−m(N,y,T ) =
(y1, . . . ,yk−1,Y −T, . . . ,Y −T ) and T

� ≡ T −∑n

i=1 mi (N,y,T ) = T −∑n

i=k
(yi−Y +T ). Let

x
� ≡ R(N,y�,T �). Then

x
m

i
=

�
x
�
i

if i≤ k−1;
yi−Y +T + x

�
i

if i≥ k. (7)

Let i, j ∈ N be such that yi ≤ y j. There are three cases.

Case 1: yi ≤ y j < yk. By progressivity of R at (N,y�,T �), x
m

i
/yi = x

�
i
/y
�
i
≤ x

�
j
/y
�
j
= x

m

j
/y j.

Case 2: yk ≤ yi ≤ y j. By equal treatment of equals of R at (N,y�,T �) (implied by the pro-

gressivity of R), x
�
i
= x

�
j
= a. By boundedness, x

�
i
= x

�
j
= a ≤ Y − T and so Y − T − x

�
i
=

Y −T − x
�
j
= Y −T −a≥ 0. Therefore, since yi ≤ y j,

x
m

i

yi

=
yi−Y +T + x

�
i

yi

= 1− Y −T −a

yi

≤ 1− Y −T −a

y j

=
y j−Y +T + x

�
j

y j

=
x

m

j

y j

.

Case 3: yi < yk ≤ y j. By progressivity of R at (N,y�,T �),

x
�
i

yi

≤
x
�
j

Y −T
. (8)

Now, since Y −T < y j and, by boundedness, x
�
i
≤ yi, then x

�
i

�
y j−Y +T

�
≤ yi

�
y j−Y +T

�
.

Rearranging, we get

x
�
i
≤

yi(y j−Y +T )+ x
�
i
(Y −T )

y j

. (9)

Therefore, combining (8) and (9),

x
m

i

yi

=
x
�
i

yi

≤
yi(y j−Y +T )+ x

�
i
(Y −T )

yiy j

≤
y j−Y +T + x

�
j

y j

=
x

m

j

y j

.

To prove Proposition 5, we need the following additional axiom and lemma.
No donation paradox and merging-proofness together imply the following useful prop-

erty, as shown in the next lemma. The property says that after an agent i donates her income
to the taxation authority, the total payment faced by any pair of agents involving i should not
be lowered.

16It is clear from the proof that a much weaker version of consistency, known as null (incomes) consistency
(after agents with zero income disappear, the tax amounts of others should not be affected; also called limited
consistency by Thomson 2006; see also Ju et al. 2007) would suffice to prove equal treatment of equals for two-

agent problems. However, to obtain equal treatment of equals for a general population and also anonymity, we
appeal to the results by Chambers and Thomson (2002) and Hokari and Thomson (2008), where full consistency
plays a critical role. Hence, (full) consistency in our result cannot be replaced with the weaker axiom of null
consistency.
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Donation-Proofness. For each (N,y,T ) ∈D and each pair i, j ∈ N with T ≥ yi,

Ri (N,y,T )+R j (N,y,T )≤ yi +R j

�
N\{i},yN\{i},T − yi

�
.

Lemma 3. Merging-proofness and no donation paradox together imply donation-proofness.

Proof. Let R be a rule satisfying merging-proofness and no donation paradox. Let (N,y,T )∈
D and i, j ∈ N such that T ≥ yi. By merging-proofness,

Ri(N,y,T )+R j(N,y,T )≤ R j(N\{i},
�
yi + y j,yN\{i, j}

�
,T ).

By no donation paradox, applied to agent j with donation yi at
�
N\{i},

�
yi + y j,yN\{i, j}

�
,T

�
,

R j(N\{i},
�
yi + y j,yN\{i, j}

�
,T )≤ yi +R j(N\{i},

�
y j,yN\{i, j}

�
,T − yi).

Combining the two inequalities, we obtain

Ri (N,y,T )+R j (N,y,T )≤ yi +R j

�
N\{i},yN\{i},T − yi

�
,

which shows donation-proofness.

Now we are ready to prove Proposition 5.

Proof. [Proof of Proposition 5] Let R be a rule satisfying no donation paradox and merging-

proofness. By Lemma 3, R satisfies donation-proofness. Let (N,y,T ) ∈D . Assume, without
loss of generality, that N = {1,2, ...,n} and y1 ≤ y2 ≤ · · · ≤ yn. Let k ∈ N be the first agent
whose minimal burden is strictly positive, i.e., k is such that yk−1 ≤ Y −T < yk. Let i, j ∈ N

and ŷ ∈ RN\{i}
+ be such that ŷ j = yi + y j and ŷN\{i, j} = yN\{i, j}. Let x ≡ R(N,y,T ) and

x̂ ≡ R(N\{i}, ŷ,T ). Let x
m ≡ R

m(N,y,T ) and x̂
m ≡ R

m(N\{i}, ŷ,T ). We show next that
x

m

i
+ x

m

j
≤ x̂

m

j
.

Let M ≡ M (N,y,T ) and M̂ ≡ M (N\{i}, ŷ,T ). Let y
� ≡ (y1, . . . ,yk−1,Y −T, . . . ,Y −T )

and x
� ≡ R(N,y�,T −M). We distinguish five cases.

Case 1: yi + y j ≤ Y − T. Then yi,y j ≤ Y − T and so x
m

i
= x

�
i

and x
m

j
= x

�
j
. Note that M =

M̂. Then, R
m

j
(N\{i}, ŷ,T ) equals j’s award under R at the problem obtained from y

� after
merging i and j’s incomes. Therefore, by merging-proofness of R, x

m

i
+ x

m

j
≤ x̂

m

j
.

Case 2: yi,y j > Y −T . Without loss of generality, suppose yi ≤ y j. In this case,

x
m

i
+ x

m

j
=





yi− (Y −T )+Ri(N,y1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)

+y j− (Y −T )+R j(N,y1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)



 ,

x̂
m

j
= yi + y j− (Y −T )+R j(N\{i},y1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �

n−k

,T − M̂).
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Since M̂ = M +Y −T , then, by donation-proofness,

Ri(N,y1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)+R j(N,y1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)

≤ (Y −T )+R j(N\{i},y1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k

,T − M̂).

Therefore, x
m

i
+ x

m

j
≤ x̂

m

j
.

Case 3: yi ≤ Y −T < y j. Note that M̂ = M + yi and

x
m

i
+ x

m

j
=





Ri(N,y1, . . . ,yi−1,yi,yi+1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)+ y j− (Y −T )

+R j(N,y1, . . . ,yi−1,yi,yi+1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)



 ,

x̂
m

j
= yi + y j− (Y −T )+R j(N\{i},y1, . . . ,yi−1,yi+1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �

n−k+1

,T − M̂).

Then, by donation-proofness applied to agents i and j,




Ri(N,y1, . . . ,yi−1,yi,yi+1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)

+R j(N,y1, . . . ,yi−1,yi,yi+1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)





≤ yi +R j(N\{i},y1, . . . ,yi−1,yi+1, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T − M̂).

Therefore, x
m

i
+ x

m

j
≤ x̂

m

j
.

Case 4: y j ≤ Y −T < yi. Note that M̂ = M + y j and

x
m

i
+ x

m

j
=





yi− (Y −T )+Ri(N,y1, . . . ,y j, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)

+R j(N,y1, . . . ,y j, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)



 ,

x̂
m

j
= yi + y j− (Y −T )+R j(N\{i},y1, . . . , Y −T

↑
jth income

, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k

,T − M̂).

By merging-proofness applied to agents i and j,




Ri(N,y1, . . . ,y j, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)

+R j(N,y1, . . . ,y j, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)





≤ R j(N\{i},y1, . . . ,y j +Y −T

↑
jth income

, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k

,T −M).
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By no donation paradox applied to agent j with donation y j,

R j(N\{i},y1, . . . ,y j +Y −T

↑
jth income

, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k

,T −M)

≤ y j +R j(N\{i},y1, . . . , Y −T
↑

jth income

, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k

,T − M̂).

Combining the two inequalities, we obtain




Ri(N,y1, . . . ,y j, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)

+R j(N,y1, . . . ,y j, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)





≤ y j +R j(N\{i},y1, . . . , Y −T
↑

jth income

, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k

,T − M̂),

which implies x
m

i
+ x

m

j
≤ x̂

m

j
.

Case 5: yi,y j ≤ Y −T and yi + y j > Y −T . Then M̂ = M +T − (Y − (yi + y j)) and

x
m

i
+ x

m

j
=





Ri(N,y1, . . . ,yi, . . . ,y j, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)

+R j(N,y1, . . . ,yi, . . . ,y j, . . . ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M),





x̂
m

j
= T − (Y − (yi + y j))+R j(N\{i},y1, . . . , Y −T

↑
jth income

, · · · ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T − M̂).

By merging-proofness applied to agents i and j,

x
m

i
+ x

m

j
≤ R j(N\{i},y1, . . . , yi + y j

↑
jth income

, · · · ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M).

Since T − M̂ = T −M− (T − (Y − (yi + y j))), then applying no donation paradox to j with
donation T − (Y − (yi + y j)),

R j(N\{i},y1, . . . , yi + y j

↑
jth income

, · · · ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T −M)

≤ T − (Y − (yi + y j))+R j(N\{i},y1, . . . , Y −T
↑

jth income

, · · · ,yk−1,Y −T, . . . ,Y −T� �� �
n−k+1

,T − M̂).

Therefore, x
m

i
+ x

m

j
≤ x̂

m

j
.
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