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Abstract

We analyze a general model of rationing in which agents have baselines, in addition to

claims against the (insufficient) endowment of the good to be allocated. Many real-

life problems fit this extended model (e.g., bankruptcy with prioritized claims, resource

allocation in the public health care sector, water distribution in drought periods). We

introduce (and characterize) a natural class of allocation methods for such problems. Any

method within the class is associated with a rule in the standard rationing model, and we

show that if the latter obeys some properties reflecting principles of impartiality, priority

and solidarity, the former obeys them too.
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1 Introduction

The problem of dividing when there is not enough is one of the oldest problems in the his-

tory of economic thought. Problems of this sort (and possible solutions for them) are already

documented in ancient sources, but their formalization is much more recent. O’Neill (1982)

was indeed the first to introduce a simple model to analyze the problem in which a group of

individuals have conflicting claims over an insufficient amount of a (perfectly divisible) good.1

Such a model, which will be referred here as the standard rationing model, is able to accommo-

date many real-life situations, such as the division of an estate that is insufficient to cover all

the debts incurred by the deceased, the collection of a given tax from taxpayers, the allocation

of equities in privatized firms, the distribution of commodities in a fixed-price setting, sharing

the cost of a public facility, etc. It fails, however, to accommodate more complex rationing

situations, such as those described next, in which not only claims, but also individual rights,

needs, or other objective entitlements, play an important role in the rationing process.

One obvious example comes from actual bankruptcy laws, in which typically some claims

are prioritized. More precisely, bankruptcy codes normally list all claims that should be treated

identically as various categories and assigns to them lexicographic priorities (e.g., Kaminski,

2006). Typically, there exists a category of secured claims (involving, for instance, unpaid

salaries) receiving the highest priority, which implies that those claims are fully honored (if

possible) before allocating the remaining part of the liquidation value among other categories.

One could interpret then that agents with secured claims have a baseline (i.e., a right or an

entitlement) to be considered in the allocation process.

Another instance refers to the case of resource allocation in the public health care sector.

For instance, in the context of allocation of scarce health care resources, it is often argued that

patients’ needs should be given priority in treatment (e.g., Daniels, 1981; Doyal and Gough,

1991; Wiggins, 1998). Although the precise meaning of needs in this context is debated, there

seems to be consensus that it is related to avoidance of serious harm and, hence, that it is

different from a mere want or desire, which seem to be more in line with the concept of claim in

our context.2 On a more practical level, hospital department budgets are typically determined

according to a production target (baseline activity).3 By the end of each year, the actual

1Another important early contribution dealing with this same model is Aumann and Maschler (1985). The

reader is referred to Moulin (2002) or Thomson (2003, 2006) for recent surveys of the sizable related literature.
2See, for instance, Hasman et al., (2006) and Hope et al., (2010).
3The reader is referred to Chalkley and Malcomson (2000) for a general discussion of health care budgeting
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number of services delivered is recorded (the claim). On the basis of these measures, and the

overall health care budget, which typically will not cover the full claim but will often exceed

the budgeted activities, the final department funding is settled by allocating residual funds

according to residual claims.

Other examples refer to protocols for the reduction of pollution (such as the reduction of

greenhouse gas emissions), in which, typically, each party has a specific preferred emissions level

(claim) and historical emission allowances (baselines). Somewhat related are the case of water

distribution in drought periods (where past consumption can be considered as a baseline) or the

so-called river-sharing problem (e.g., Ambec and Sprumont, 2002; Ansink and Weikard, 2010)

which models international agreements for sharing water resources of a river. More precisely, in

the river-sharing problem, a set of agents is located along a river and the river picks up volume

along its course. Each agent extracts water from the river for consumption and/or production.

Thus, each agent has an endowment (baseline) and a claim to river water.

The aim of this paper is to explore a more general model of rationing able to accommodate

all the above situations. The extended model of rationing we analyze here enriches the standard

model described above by assuming the existence of a baselines profile, aimed to complement

the claims profile of a rationing problem.

We take first a direct approach to analyze this new model.4 That is, we single out a natu-

ral class of baseline rationing rules which aims to encompass the real-life rationing situations

mentioned above. In short, rules within this class tentatively allocate each agent with their

baselines and then adjust this tentative allocation by using a standard rationing rule to dis-

tribute the remaining surplus, or deficit, relative to the initial endowment. We focus on the

study of the robustness of the class, by showing that the rules within the class inherit some

important basic properties from the associated standard rationing rules reflecting principles of

impartiality, priority and solidarity.

We then take an axiomatic approach and study the implications of new axioms reflecting

ethical or operational principles in this general context. More precisely, we provide an axiomatic

characterization for the class of baseline rationing rules just described.5

procedures.
4The terminology is borrowed from Thomson (2006).
5There is yet a third approach to rationing problems that we do not consider here: the so-called game

theoretic approach, which consists in modeling rationing problems as a transferable utility game and aims at

identifying the likely outcome of such a game as the solution of the rationing problem. This approach has

been taken, for instance, by Pulido et al., (2002, 2008) to analyze what they call bankruptcy situations with
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The rest of the paper is organized as follows. In Section 2, we describe the basic framework

of the standard rationing model, as well as the new one to address more general (baseline)

rationing problems. In Section 3, we present our family of baseline rationing rules and study

its robustness. In Section 4, we derive the family axiomatically. In Section 5, we complement

the previous study by analyzing an alternative, albeit related, form of baseline rationing. We

conclude in Section 6 with some further insights. For a smooth passage, we defer all the proofs

and provide them in the appendix.

2 Model and basic concepts

2.1 The benchmark framework

We study rationing problems in a variable-population model. The set of potential claimants, or

agents, is identified with the set of natural numbers N. Let N be the set of finite subsets of N,

with generic element N . Let n denote the cardinality of N . For each i ∈ N , let ci ∈ R+ be i’s

claim and c ≡ (ci)i∈N the claims profile.6 A standard rationing problem is a triple consisting of a

population N ∈ N , a claims profile c ∈ Rn
+, and an endowment E ∈ R+ such that

�
i∈N ci ≥ E.

Let C ≡
�

i∈N ci. To avoid unnecessary complication, we assume C > 0. Let DN be the set of

rationing problems with population N and D ≡
�

N∈N DN .

Given a problem (N, c, E) ∈ DN , an allocation is a vector x ∈ Rn satisfying the following

two conditions: (i) for each i ∈ N , 0 ≤ xi ≤ ci and (ii)
�

i∈N xi = E. We refer to (i) as

boundedness and (ii) as balance. A standard rationing rule on D, R : D →
�

N∈N Rn, associates

with each problem (N, c, E) ∈ D an allocation R (N, c, E) for the problem. Each rule R has a

dual rule R∗ defined as R∗ (N, c, E) = c−R (N, c, C − E), for all (N, c, E) ∈ D.

Some classical rules are the constrained equal awards rule, which distributes the endowment

equally among all agents, subject to no agent receiving more than what she claims; the con-

strained equal losses rule, which imposes that losses are as equal as possible, subject to no one

receiving a negative amount; and the proportional rule, which yields awards proportionally to

claims.7

Rules are typically evaluated in terms of the properties (axioms) they satisfy. The literature

references, which is a specific case of our model.
6For each N ∈ N , each M ⊆ N , and each z ∈ Rn, let zM ≡ (zi)i∈M .
7The reader is referred to Moulin (2002) or Thomson (2003, 2006) for their formal definitions as well as for

further details about them.
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has provided a wide variety of axioms for rules reflecting ethical or operational principles

(e.g., Thomson, 2003; 2006). Here we shall concentrate on those formalizing the principles

of impartiality, priority, and solidarity, which have a long tradition in the theory of justice

(e.g., Moreno-Ternero and Roemer, 2006).8

Impartiality refers to the fact that ethically irrelevant information is excluded from the al-

location process. In this context, it is modeled by the axiom of Equal Treatment of Equals,

which requires allotting equal amounts to those agents with equal claims. Formally, a rule

R satisfies equal treatment of equals if, for all (N, c, E) ∈ D, and all i, j ∈ N, we have

Ri (N, c, E) = Rj (N, c, E) , whenever ci = cj.

The principle of priority requires imposing a positive discrimination (albeit only to a certain

extent) towards worse-off individuals. In this context, priority is modeled by the axiom of Order

Preservation, which says that agents with larger claims receive larger awards but face larger

losses too. That is, ci ≥ cj implies that Ri (N, c, E) ≥ Rj (N, c, E) and ci − Ri (N, c, E) ≥

cj − Rj (N, c, E) , for all (N, c, E) ∈ D, all i, j ∈ N . If only the first condition is satisfied then

the axiom is referred to as Order Preservation in Gains. If, on the other hand, only the second

condition is satisfied then the axiom is referred to as Order Preservation in Losses.

The principle of solidarity, with a long tradition in the axiomatic literature, can be modeled

in various related ways. Resource Monotonicity says that when there is more to be divided,

other things being equal, nobody should lose. Formally, a rule R is resource monotonic if, for

each (N, c, E) ∈ D and (N, c, E �) ∈ D such that E ≤ E �, then R(N, c, E) ≤ R(N, c, E �). Claims

Monotonicity says that if an agent’s claim increases, ceteris paribus, she should receive at least

as much as she did initially. Formally, a rule R is claims monotonic if, for all (N, c, E) ∈ D and

all i ∈ N , ci ≤ c�i implies Ri(N, (ci, cN\{i}), E) ≤ Ri(N, (c�i, cN\{i}), E). A related property says

that if an agent’s claim and the endowment increase by the same amount, the agent’s award

should increase by at most that amount. Formally, a rule satisfies Linked Monotonicity if, for

all (N, c, E) ∈ D and i ∈ N , Ri(N, (ci + ε, cN\{i}), E + ε) ≤ Ri(N, c, E) + ε.

Population monotonicity is a relevant solidarity property in the context of a variable popula-

tion. It says that if new claimants arrive, each claimant initially present should receive at most

as much as she did initially. Equivalently, if some claimants leave but there still is not enough to

honor all of the remaining claims, each remaining claimant should receive at least as much as she

8In what follows, we only consider properties that are either punctual (i.e., applying to a rule for each

problem separately, point by point) or relational (i.e., linking the recommendations made by the rule for a finite

set of different problems that are related in a certain way).
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did initially. Formally, R is population monotonic if for all (N, c, E) ∈ D and (N �, c�, E) ∈ D

such that N ⊆ N � and c�N = c, then Ri (N �, c�, E) ≤ Ri (N, c, E), for all i ∈ N . A related

property says that if new claimants arrive and the endowment increases by the sum of their

claims, then each claimant initially present should receive at least as much as she did initially.

Formally, a rule R satisfies Resource-and-Population Monotonicity if for all (N, c, E) ∈ D and

(N �, c�, E) ∈ D such that N ⊆ N � and c�N = c, then Ri (N, c, E) ≤ Ri

�
N �, c�, E +

�
N �\N c�j

�
,

for all i ∈ N .

The next axiom also amounts to simultaneous changes in the endowment and the population.

It says that the arrival of new agents should affect all the incumbent agents in the same direction.

In other words, agents cannot benefit from a change (either in the available wealth or in the

number of agents) if someone else suffers from it. Formally, a rule R satisfies Resource-and-

Population Uniformity if for all (N, c, E) ∈ D and (N �, c�, E �) ∈ D such that N ⊆ N � and c�N = c,

then, either Ri (N �, c�, E �) ≤ Ri (N, c, E), for all i ∈ N, or Ri (N �, c�, E �) ≥ Ri (N, c, E), for all i ∈

N . This axiom implies resource monotonicity. As a matter of fact, it also satisfies the following

axiom that relates the solution of a given problem to the solutions of the subproblems that

appear when we consider a subgroup of agents as a new population and the amounts gathered

in the original problem as the available endowment. Consistency requires that the application

of the rule to each subproblem produces precisely the allocation that the subgroup obtained

in the original problem.9 More formally: A rule R is consistent if, for all (N, c, E) ∈ D, all

M ⊂ N, and all i ∈ M, we have Ri (N, c, E) = Ri(M, cM , EM), where EM =
�

i∈M Ri(N, c, E).

It turns out that consistency and resource monotonicity together imply resource-and-population

uniformity.

To conclude with this section, let us mention that, for any given property P , P∗ is the

dual property of P if for each rule R, R satisfies P if and only if its dual rule P∗ satisfies

P∗. A property is said to be self-dual if it coincides with its dual. Equal treatment of equals,

order preservation, consistency, and resource monotonicity are self-dual properties. Claims

monotonicity and linked monotonicity, population monotonicity and resource-and-population

monotonicity, and order preservation in gains and order preservation in losses are pairs of dual

properties (e.g., Thomson, 2006).

9See Thomson (1996) for an excellent survey of the many applications that have been made on the idea of

consistency.
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2.2 The extended framework

We now enrich the model to account for individual baselines that will be part of the rationing

process. An extended rationing problem (or problem with baselines) will be a tuple consisting of

a population N ∈ N , a baselines profile b ∈ Rn
+, a claims profile c ∈ Rn

+, and an endowment E ∈

R+ such that
�

i∈N ci ≥ E. We denote by EN the set of extended problems with population N

and E ≡
�

N∈N EN . For each extended problem (N, b, c, E) ∈ E , let �b denote the corresponding

truncated baseline vector, i.e., �b = {�bi}i∈N , where �bi = min{bi, ci}, for all i ∈ N . For ease of

notation, let �B =
�

i∈N
�bi.

Given an extended problem (N, b, c, E) ∈ EN , an (extended) allocation is a vector x ∈ Rn

satisfying the following two conditions: (i) for each i ∈ N , 0 ≤ xi ≤ ci and (ii)
�

i∈N xi = E.

An extended rationing rule on E , S : E →
�

N∈N Rn, associates with each extended problem

(N, b, c, E) ∈ E an (extended) allocation x = S (N, b, c, E) for the problem.

3 The direct approach to baseline rationing

3.1 Baseline rationing rules

This paper will focus on a natural way of defining extended rationing rules from standard

rationing rules. In words, extended rules will be constructed such that agents are first allocated

their truncated baselines, and then the resulting deficit or surplus is further allocated using a

standard rationing rule to the resulting standard problem after embedding baselines into claims.

More specifically, a potential deficit is allocated according to the amounts already received by

the agents while a potential surplus is allocated according to the gap between their claims and

what has already been allocated to them. We shall refer to the extended rules, so constructed,

under the term baseline rationing rules.

Formally,

�R (N, b, c, E) =





�b−R(N,�b, �B − E) if E ≤ �B
�b + R(N, c−�b, E − �B) if E ≥ �B

(1)

We shall refer to �R as the baseline rationing rule induced by (standard rationing rule) R.
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Figure 1: Baseline rationing rules in the two-claimant case. This figure illustrates how

baseline rationing rules behave for N = {1, 2}, and b, c ∈ RN
+ , with ci > bi, for i = 1, 2. If the

endowment is Ex > b1 + b2, then the proposed solution x can be decomposed as b + (x − b) where

x − b is to be interpreted as the solution for the standard rationing problem arising after adjusting

claims (and endowment) down by the baselines, which implies that b is the new origin, i.e., x =

b+R(N, c−b, Ex−b1−b2). If, however, Ey < b1 +b2 then the proposed solution y can be decomposed

as b − (b − y) where b − y is to be interpreted as the solution for the standard rationing problem

arising after replacing claims by baselines and the endowment by the difference between the aggregate

baseline and the original endowment, i.e., b− y = R(N, b, b1 + b2 − Ey).

Note that, if b = 0, then �R ≡ R. More interestingly, note that, for any standard rationing rule R,

and any extended problem (N, b, c, E), the induced baseline rationing rule results in an allocation x

satisfying

xi ≤ �bi for all i ∈ N if and only if E ≤ �B,

xi ≥ �bi for all i ∈ N if and only if E ≥ �B.

In other words, baseline rationing rules impose a rationing of the same sort for each individual and

the whole society according to the profile of baselines.

It is not difficult to show that the following expression is equivalent to (1).

�R (N, b, c, E) =





R∗(N,�b, E) if E ≤ �B
�b + R(N, c−�b, E − �B) if E ≥ �B

(2)

It follows from (2) that if each individual baseline is exactly one half of each individual claim, then

the baseline rationing rule induced by the constrained equal losses rule described above would solve
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the extended problem as the so-called Talmud rule (e.g., Aumann and Maschler, 1985) would solve

the original standard problem. Similarly, the rule induced by the constrained equal awards rule would

solve the extended problem as the so-called Reverse Talmud rule (e.g., Chun et al., 2001) would solve

the original standard problem. If instead of one half, baselines are any other fixed proportion of claims,

θ ∈ (0, 1), then the rule induced by the constrained equal losses rule would solve the extended problem

as the corresponding member of the so-called TAL-family of rules (e.g., Moreno-Ternero and Villar,

2006) would solve the original standard problem, whereas the rule induced by the constrained equal

awards rule would solve the extended problem as the corresponding member of the so-called Reverse

TAL-family (e.g., van den Brink et al., 2008) would solve the original standard problem. Thus, the

family of baseline rationing rules presented here can provide rationale for a wide variety of existing

standard rationing rules.

3.2 Robustness to baseline rationing

As mentioned above, baseline rationing rules associate to an existing standard rule an extended rule.

A natural question that arises from that is whether the extended rules so constructed inherit the

properties of the original standard rules. We shall say that a standard axiom is robust to baseline

rationing if whenever a standard rule R satisfies it, then the induced baseline rationing rule �R satisfies

the corresponding extended version of the axiom.10 Note that, as mentioned above, if b = 0, then

�R ≡ R. Thus, saying that “a property is robust to baseline rationing” is indeed equivalent to saying

that “a standard rationing rule R satisfies a property if and only if �R satisfies the extended version of

such property”.

Our first result says that many of the well-known axioms in the benchmark framework are not

robust to baseline rationing.

Theorem 1 If a property is not self-dual then it is not robust to baseline rationing.

Contrary to what one might have guessed from the statement of Theorem 1, not all self-dual

properties are robust to baseline rationing either. An obvious counterexample is equal treatment of

equals, which will not be satisfied by an induced baseline rationing rule if two agents with equal claims

10For ease of exposition, we skip the straightforward definitions of the extended versions of each axiom intro-

duced above. Just as an illustration, we say, for instance, that an extended rule S satisfies claims monotonicity

if for each (N, b, c, E) , (N, b, c�, E) ∈ E such that ci ≤ c�i for some i ∈ N , and c�N\{i} ≡ cN\{i}, we have

that Si(N, b, c, E) ≤ Si(N, b, c�, E). As for variable-population axioms, we say, for instance, that an extended

rule S satisfies consistency if for each (N, b, c, E) ∈ E and M ⊂ N , �R(M, bM , cM ,
�

i∈M xi) = xM , where

x = �R (N, b, c, E).
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may have different baselines. Nevertheless, it turns out that some other important self-dual properties

are indeed robust.

Theorem 2 The following statements hold:

• Resource monotonicity is robust to baseline rationing.

• Consistency is robust to baseline rationing.

• Resource-and-population uniformity is robust to baseline rationing.

Our next step is to explore whether pairs of dual properties are robust to baseline rationing. As

before, an obvious counterexample arises: order preservation, which is equivalent to the pair formed

by order preservation in gains and order preservation in losses, will not be satisfied by an induced

baseline rationing rule if baselines may not be ordered as claims. Nevertheless, some other pairs are

indeed robust to baseline rationing, either by themselves or assisted by an additional robust property,

as shown in the next results.11

Theorem 3 The pair formed by claims monotonicity and linked monotonicity is robust to baseline

rationing.

In words, Theorem 3 says that if a standard rationing rule R satisfies claims monotonicity and

linked monotonicity, then the induced baseline rationing rule �R satisfies the corresponding two ex-

tended properties.

Theorem 4 The pair formed by population monotonicity and resource-and-population monotonicity

is robust to baseline rationing, if assisted by resource monotonicity.

In other words, Theorem 4 says that if a standard rationing rule R satisfies resource monotonic-

ity, population monotonicity, and resource-and-population monotonicity then the induced baseline

rationing rule �R satisfies the corresponding three extended properties.

To conclude with this section, we focus on equal treatment of equals and order preservation which,

as mentioned above, are not robust to baseline rationing. It turns out that they are (partially) robust,

provided we impose additional (mild) conditions on baselines. More precisely, we say that baselines

and claims are uniformly impartial if whenever ci = cj then bi = bj . We say that baselines are ordered

like claims if whenever ci ≤ cj then bi ≤ bj . Finally, we say that claim-baseline differences are ordered

like claims if whenever ci ≤ cj then ci − bi ≤ cj − bj .

11The terminology is borrowed from Hokari and Thomson (2008).
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Proposition 1 The following statements hold:

• If baselines and claims are uniformly impartial then equal treatment of equals is robust to baseline

rationing.

• If baselines are ordered like claims and R is order preserving then �R is order preserving in gains.

• If baselines and claim-baseline differences are ordered like claims then order preservation is

robust to baseline rationing.

4 The axiomatic approach to baseline rationing

In the previous section, we introduced a natural class of rules for the extended setting of rationing

with baselines and focussed on how this class performs with respect to some basic axioms from the

standard rationing model. In this section, we take a different approach to baseline rationing. We now

provide some (new) axioms conveying natural ways of taking baselines into account, while designing

the rationing scheme, and study their implications. As we shall show, a combination of these axioms

will lead to a characterization of the family of baseline rationing rules presented above.

Our first axiom requires baselines to be disregarded to the extent that they are above claims.12

Formally, an extended rule S satisfies baseline truncation if, for each (N, b, c, E) ∈ E , S(N, b, c, E) =

S(N,�b, c, E). The rationale for this idea is that as no agent can get more than her claim, as stated in

the definition of (extended) rules, baselines above that level should be considered irrelevant.

The second axiom requires to disregard the amount of a claim exceeding its corresponding baseline,

whenever all truncated baselines cannot be covered. Formally, an extended rule S satisfies truncation

of excessive claims if, for each (N, b, c, E) ∈ E such that E ≤ �B, S(N, b, c, E) = S(N, b,�c, E), where

�cj = min{cj , bj}, for all j ∈ N . The rationale for this idea is somewhat related to the rationale for

the previous one. Namely, as not all baselines can be honored, no agent will achieve more than her

baseline and, thus, the portion of their claims above their baselines should be considered irrelevant.

The third axiom is somewhat polar to the previous one as it refers to a situation where all truncated

baselines can be covered. It states that, in such a case, if an individual’s claim and baseline are

increased by an amount ki, and so does the endowment, then such increase in the endowment should

go to that individual while others remain unaffected. Formally, an extended rule S satisfies baseline

invariance if for each (N, b, c, E) ∈ E such that E ≥ �B, and k ∈ Rn
+ such that kj ≤ min{cj , bj}, for

all j ∈ N , then S(N, b, c, E) = k + S(N, b− k, c− k, E −
�

i∈N ki). In particular, the axiom says that,

for the cases in which all truncated baselines can be covered, the rationing problem can be solved in

12This property is reminiscent of the so-called independence of irrelevant claims axiom introduced by Dagan

(1996) for the standard rationing model.
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two stages; the first one amounts to grant all agents a fixed amount, and the second one amounts to

solve the resulting problem after adjusting down baselines, claims and endowment.13

Finally, we consider a fourth axiom dealing with the two polar cases of non-informative baselines,

and inspired by the notion of self-duality from the standard model of rationing. It states that a rule

should allocate awards for a problem with null baselines in the same way as it allocates losses for the

corresponding problem in which baselines are equal to claims. Formally, an extended rule S satisfies

polar baseline self-duality if, for each (N, c,E) ∈ D, S(N, 0, c, E) = c− S(N, c, c, C − E).14

As the next theorem shows, these four axioms together characterize our family of baseline rationing

rules introduced above.

Theorem 5 An extended rationing rule satisfies Baseline Truncation, Truncation of Excessive Claims,

Baseline Invariance and Polar Baseline Self-Duality if and only if it is a baseline rationing rule.

As shown in the appendix, Theorem 5 is tight. It turns out that the first three axioms of its

statement characterize the family of extended rules arising from using (possibly) different standard

rules when �B ≥ E or �B ≤ E. More precisely, let us define the family of generalized baseline rationing

rules by

�RT (N, b, c, E) =






�b−R(N,�b, �B − E) if E ≤ �B
�b + T (N, c−�b, E − �B) if E > �B

,

where R and T are standard (rationing) rules. Then, we have the following:

Proposition 2 An extended rationing rule satisfies Baseline Truncation, Truncation of Excessive

Claims and Baseline Invariance if and only if it is a generalized baseline rationing rule.

5 Further insights on baseline rationing

We start this section presenting an alternative to the axiom of polar baseline self-duality, in order

to deal with the two polar cases of non-informative baselines. More precisely, the axiom of polar

baseline equivalence states that a problem with null baselines and the corresponding problem in

which baselines are equal to claims should be allocated identically. Formally, an extended rule S

13This is somehow reminiscent of the composition from minimal rights axiom in the standard rationing model

(e.g., Dagan, 1996).
14Note that the standard definition of self-duality does not make sense in the present case as there is no clear

definition of a loss when both baselines and claims are in play. That is why we restrict the notion only to the

two polar cases of non-informative baselines.
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satisfies polar baseline equivalence if, for each (N, c,E) ∈ D, S(N, 0, c, E) = S(N, c, c, E). The

rationale for this axiom is that non-informative baselines should be treated identically.

The following extended rules satisfy this axiom.

�R (N, b, c, E) =





R(N,�b, E) if E ≤ �B
�b + R(N, c−�b, E − �B) if E ≥ �B

(3)

The rules so constructed follow closely the spirit underlying two important properties in the ax-

iomatic approach to the standard rationing problem, known as composition up and composition down,

which pertain to the way rules react to tentative allocations of wrong estimations of the endowment

(e.g., Moulin, 2000; Thomson, 2003). For this reason, we shall refer to these rules as composition

rationing rules.

It follows from (3) that if each individual baseline is exactly one half of each individual claim, then

the composition rationing rule induced by the constrained equal losses rule described above would

solve the extended problem as the so-called Piniles rule (e.g., Thomson, 2003) would solve the original

standard problem. Similarly, the rule induced by the constrained equal awards rule would solve the

extended problem as the dual of the Piniles rule would solve the original standard problem.

In turns out that the composition rationing rules are the only generalized baseline rationing rules

satisfying the axiom of polar baseline equivalence. Formally,

Proposition 3 An extended rationing rule satisfies Baseline Truncation, Truncation of Excessive

Claims, Baseline Invariance and Polar Baseline Equivalence if and only if it is a composition rationing

rule.

We shall say that a standard axiom is robust to composition rationing if whenever a standard rule

R satisfies it, then the induced baseline rationing rule �R satisfies the corresponding extended version

of the axiom. It turns out that much of the above analysis for baseline rationing rules can be extended

to composition rationing rules, as summarized in the following result.

Proposition 4 The following statements hold:

• Resource monotonicity, consistency, and resource-and-population uniformity are robust to com-

position rationing.

• The pair formed by claims monotonicity and linked monotonicity is robust to composition ra-

tioning.

• The pair formed by population monotonicity and resource-and-population monotonicity is robust

to composition rationing, if assisted by resource monotonicity.
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• If baselines and claims are uniformly impartial then equal treatment of equals is robust to com-

position rationing.

• If baselines are ordered like claims and R is order preserving then �R is order preserving in gains.

• If baselines and claim-baseline differences are ordered like claims then order preservation is

robust to composition rationing.

6 Final remarks

We have explored in this paper an extended framework to analyze general rationing problems in

which agents have claims over the (insufficient) endowment, but also relevant baselines for the alloca-

tion process. An individual baseline can be interpreted as an objective entitlement (as in budgeting

situations), a right (as in the case of unpaid salaries in bankruptcy situations), or as a measure of

needs (as in health care prioritization). We have introduced a natural family of (extended) rationing

rules and argued that this family encompasses a series of real-life rationing situations. It is somewhat

surprising that with little or no structure on the arbitrarily chosen baseline profiles this family still

proves relatively robust in preserving a series of well known and desirable properties from the standard

rationing model.

Our contribution is somehow reminiscent of a route previously explored for cooperative models of

bargaining. A variety of studies has extended Nash’s original bargaining model by means of specifying

an additional reference point to the disagreement point, which plays a role in the bargaining solution.

Such a reference point can be interpreted as a status quo, as a first step towards the final compromise,

or simply as a vector of claims (e.g., Gupta and Livne, 1988; Thomson, 1994). It is the obvious

counterpart to the baselines profile in our setting.

Our model is also related to another extension of the standard rationing model that has been

recently considered to account for multi-issue rationing problems, i.e., rationing problems in which

claims refer to different issues (e.g., Kaminski, 2006; Ju et al., 2007; Moreno-Ternero, 2009). The

multi-issue rationing model departs from the standard model by assuming vectors of claims (rather

than single claims), each indicating the individual claim for a given issue. Thus, our model could be

seen as a specific instance of the multi-issue rationing model in which only two issues are considered.

The distinguishing feature, however, that we endorse here is to provide an asymmetric role to the two

issues, considering baselines as “rights” that might eventually arise in a first-step tentative allocation,

and claims as means to finally settle them.

We believe that our work can also shed some light in the search of a dynamic rationale for some

classical rationing rules. More precisely, imagine we consider a sequence of rationing problems (in-
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volving the same group of agents), at different periods of time, whose period-wise solutions might not

only be determined by the data of the rationing problem at such period, but also by the solutions in

previous periods. A plausible way to start approaching this issue would be by assuming that, at each

period, the corresponding rationing problem is enriched by an index summarizing the amounts each

agent obtained in the previous period. If so, we would just be providing an alternative interpretation

for the baselines profile that we consider in our model. Needless to say that it would be interesting

to go beyond this point and, ultimately, to provide a dynamic rationale for some classical rationing

rules, as recently done by Fleurbaey and Roemer (2010) for the three canonical axiomatic bargaining

solutions.

Finally, it is worth mentioning that an alternative model of baseline rationing, in which baselines

are assumed to be an endogenous component of a standard rationing problem, can also be considered.

The analysis of such endogenous baselines, and their connections to the study of operators for the

space of (standard) rationing rules (e.g., Thomson and Yeh, 2008), as well as to the concept of lower

bounds in rationing problems (e.g., Moreno-Ternero and Villar, 2004) is undertaken in a companion

paper (Hougaard et al., 2011).

7 Appendix: Proofs of the results

7.1 Proof of Theorem 1

Let P be a property and P∗ be its dual. Let R be a rule satisfying P, but not P∗. Then, R∗, the dual

rule of R, satisfies P∗ but not P.

If P is “punctual” then there exists a problem (N, c,E) ∈ D for which R∗ violates P. We then

consider the corresponding extended problem (N, b, c, E) ∈ E in which b = c. It then follows that

�R(N, b, c, E) = R∗(N, c,E) and hence we conclude that �R violates P .

If P is “relational” a similar argument can be applied. For ease of exposition, we assume that P

only involves a finite collection of problems. Formally, if R∗ violates P then there exists a collection of

problems {(N j , cj , Ej)}j=1,...,k ⊂ D for which P is violated. Now, consider the corresponding extended

problems {(N j , bj , cj , Ej)}j=1,...,k ⊂ E where, for each j = 1, . . . , k,

bj
i =





maxl=1,...,k{cl

i}, if i ∈
�

l=1,...,k N l

cj
i if i ∈ N j \

�
l=1...k N l

It is straightforward to show that, for each j = 1, . . . , k, �R(N j , bj , cj , Ej) = R∗(N j , cj , Ej), from where

it follows that �R violates P.
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7.2 Proof of Theorem 2

Resource monotonicity. Let R be a rule satisfying resource monotonicity. Let (N, c,E), (N, c,E�) ∈

D be two problems such that E < E�. Let b ∈ Rn be a baseline profile and let �bj = min{bj , cj} for

all j ∈ N , and �B =
�

j∈N min{bj , cj}. Finally, let i ∈ N be a given agent. The aim is to show that

�Ri(N, b, c, E) ≤ �Ri(N, b, c, E�). To do so, we distinguish three cases.

Case 1. E < E� ≤ �B.

In this case, �Ri(N, b, c, E) = R∗
i (N,�b, E) and �Ri(N, b, c, E�) = R∗

i (N,�b, E�). Now, as resource

monotonicity is a self-dual property, it follows that R∗ satisfies resource monotonicity too and hence

R∗
i (N,�b, E) ≤ R∗

i (N,�b, E�), as desired.

Case 2. �B ≤ E < E�.

In this case,

�Ri(N, b, c, E) = �bi + Ri(N, c−�b, E − �B) ≤ �bi + Ri(N, c−�b, E� − �B) = �Ri(N, b, c, E�),

where the inequality follows from the fact that R satisfies resource monotonicity.

Case 3. E < �B < E�.

In this case, the definition of baseline rationing guarantees that �Ri(N, b, c, E) ≤ �bi ≤ �Ri(N, b, c, E�).

Consistency. Let R be a rule satisfying consistency. Let (N, c,E) ∈ D and b ∈ Rn
+. Let

x = �R(N, b, c, E). The aim is to show that, for any M ⊂ N ,

�R(M, bM , cM ,
�

i∈M

xi) = xM .

Fix M ⊂ N and let E� =
�

i∈M xi and �B� =
�

j∈M min{bj , cj}. Thus, E ≤ �B if and only if E� ≤ �B�.

We then distinguish two cases.

Case 1. E ≤ �B.

In this case, xi = �bi − Ri(N,�b, �B − E) for all i ∈ N , and thus �B� − E� =
�

i∈M Ri(N,�b, �B − E).

Therefore, �Ri(M, bM , cM , E�) = �bi − Ri(M,�bM , �B� − E�) for all i ∈ M . Now, as R is consistent, it

follows that Ri(N,�b, �B − E) = Ri(M,�bM , �B� − E�), for all i ∈ M , which concludes the proof of this

case.

Case 2. E ≥ �B.

In this case, xi = �bi+Ri(N, c−�b, E− �B) for all i ∈ N , and thus �B�−E� =
�

i∈M Ri(N, c−�b, E− �B).

Therefore, �Ri(M, bM , cM , E�) = �bi +Ri(M, cM −�bM , E�− �B�) for all i ∈ M . Now, as R is consistent, it

follows that Ri(N, c−�b, E − �B) = Ri(M, cM −�bM , E� − �B�), for all i ∈ M , which concludes the proof

of this case.

Resource-and-population uniformity follows from the first two statements and the relation-

ship among the axioms described in Section 2.
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7.3 Proof of Theorem 3

Let R be a rule satisfying claims monotonicity and linked monotonicity. Our aim is to show that �R

satisfies the extended versions of the two properties.

Claims monotonicity. Let (N, c,E), (N, c�, E) ∈ D be two problems such that, for some i ∈ N ,

ci ≤ c�i, whereas cN\{i} ≡ c�N\{i}. Let b ∈ Rn
+ be a baseline profile and let �bj = min{bj , cj} for all

j ∈ N , �b�j = min{bj , c�j} for all j ∈ N , �B =
�

j∈N
�bj , and �B� =

�
j∈N

�b�j .15 The aim is to show that

�Ri(N, b, c, E) ≤ �Ri(N, b, c�, E). (4)

We distinguish several cases:

Case 1. E ≤ �B.

In this case, �Ri(N, b, c, E) = R∗
i (N,�b, E) and �Ri(N, b, c�, E) = R∗

i (N,�b�, E) = R∗
i (N, (�bN\{i},�b�i), E).

As R satisfies linked monotonicity, it follows that R∗ satisfies claims monotonicity, from where we

obtain (4).

Case 2. E ≥ �B�.

In this case, �Ri(N, b, c, E) = �bi + Ri(N, c−�b, E − �B), and

�Ri(N, b, c�, E) = �b�i + Ri(N, c� −�b�, E − �B�) = �b�i + Ri(N, ((c−�b)N\{i}, c
�
i −�b�i), E − �B −�b�i +�bi).

Let ε = �b�i −�bi ≥ 0. Then, (4) is equivalent to

Ri(N, c−�b, E − �B) ≤ ε + Ri(N, ((c−�b)N\{i}, c
�
i −�b�i), E − �B − ε). (5)

We then distinguish three subcases.

Case 2.1. bi > c�i.

Here, �bi = ci < c�i = �b�i (and thus ε = c�i − ci). Then, (5) becomes

Ri(N, ((c−�b)N\{i}, 0), E − �B) ≤ ε + Ri(N, ((c−�b)N\{i}, 0), E − �B − ε).

Now, by claims monotonicity (of R),

Ri(N, ((c−�b)N\{i}, 0), E − �B) ≤ Ri(N, ((c−�b)N\{i}, ε), E − �B).

And, by linked monotonicity (of R),

Ri(N, ((c−�b)N\{i}, ε), E − �B) ≤ ε + Ri(N, ((c−�b)N\{i}, 0), E − �B − ε),

which concludes the proof in this case.

Case 2.2. c�i ≥ bi ≥ ci.

15Note that �b�N\{i} ≡ �bN\{i}, �b�i ≥ �bi and thus, �B� ≥ �B.
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Here, �bi = ci ≤ bi = �b�i (and thus ε = bi − ci). Then, (5) becomes

Ri(N, ((c−�b)N\{i}, 0), E − �B) ≤ bi − ci + Ri(N, ((c−�b)N\{i}, c
�
i − bi), E − �B − bi + ci).

Now, by claims monotonicity (of R),

Ri(N, ((c−�b)N\{i}, 0), E − �B) ≤ Ri(N, ((c−�b)N\{i}, c
�
i − ci), E − �B).

And, by linked monotonicity (of R),

Ri(N, ((c−�b)N\{i}, c
�
i − ci), E − �B) ≤ ε + Ri(N, ((c−�b)N\{i}, c

�
i − ci − ε), E − �B − ε),

which concludes the proof in this case.

Case 2.3. ci > bi.

Here, �bi = bi = �b�i (and thus ε = 0), from where (5) trivially follows as a consequence of the fact

that R satisfies claims monotonicity.

Case 3. �B < E < �B�. In this case, �Ri(N, b, c, E) = �bi + Ri(N, c−�b, E − �B), and �Ri(N, b, c�, E) =

R∗
i (N,�b�, E) = �b�i −Ri(N, (�bN\{i},�b�i), �B� − E). Thus, in order to prove (4), it suffices to show that

Ri(N, (�bN\{i},�b�i), �B� − E) + Ri(N, c−�b, E − �B) ≤ �b�i −�bi (6)

Note that Case 3 implies that �bi = ci (otherwise, �bi = bi and hence �B = �B�). Thus, by boundedness,

Ri(N, c − �b, E − �B) = 0. Also, by balance and boundedness, Ri(N, (�bN\{i}),�b�i, �B� − E) ≤ �B� − E =

�B − E +�b�i −�bi ≤ �b�i −�bi, from where (6) follows.

Linked monotonicity. Let (N, c,E) ∈ D and i ∈ N . Let b ∈ Rn
+ be a baseline profile and

let �bj = min{bj , cj} for all j ∈ N , and �B =
�

j∈N min{bj , cj}. Let ε > 0, �b�i = min{bi, ci + ε} and

�B� = �B +�b�i −�bi. Then, �b�i ≤ �bi + ε and �B ≤ �B� ≤ �B + ε. The aim is to show that

�Ri(N, b, (ci + ε, cN\{i}), E + ε) ≤ �Ri(N, b, c, E) + ε (7)

We distinguish several cases:

Case 1. E ≤ �B� − ε.

In this case, �Ri(N, b, c, E) = R∗
i (N,�b, E) and �Ri(N, b, (ci + ε, cN\{i}), E + ε) = R∗

i (N,�b�, E + ε) =

R∗
i (N, (�b�i,�b−i), E + ε). By claims monotonicity (of R∗), R∗

i (N,�b�, E + ε) ≤ R∗
i (N, (�bi + ε,�b−i), E + ε).

By linked monotonicity (of R∗), R∗
i (N, (�bi + ε,�b−i), E + ε) ≤ R∗

i (N,�b, E) + ε, from where (7) follows.

Case 2. E ≥ �B.

In this case, �Ri(N, b, c, E) = �bi + Ri(N, c − �b, E − �B) and �Ri(N, b, (ci + ε, cN\{i}), E + ε) = �b�i +

Ri(N, (ci + ε, cN\{i})− (�b�i,�b−i), E + ε− �B�). As (E − ε− �B�)− (E − �B) = ε− (�b�i −�bi) and (ci + ε−
�b�i)− (ci −�bi) = ε− (�b�i −�bi), (7) follows from linked monotonicity (of R).
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Case 3. �B� − ε < E < �B.

In this case, �Ri(N, b, (ci + ε, cN\{i}), E + ε) = �b�i + Ri(N, (ci + ε − �b�i, (c − �b)−i), E + ε − �B�), and

�Ri(N, b, c, E) = �b�i −Ri(N,�b, �B − E). Thus, (7) becomes

ε−�b�i +�bi ≥ Ri(N,�b, �B − E) + Ri(N, (ci + ε−�b�i, (c−�b)−i), E + ε− �B�) (8)

Now, by balance and boundedness, the right hand side of (8) is bounded above by �B−E +E +ε− �B�,

which is precisely the left hand side of (8).

7.4 Proof of Theorem 4

Let R be a rule satisfying resource monotonicity, population monotonicity and resource-and-population

monotonicity. By Theorem 2, �R satisfies the extended property of resource monotonicity. Our aim

is to show that �R also satisfies the extended properties of population monotonicity and resource-and-

population monotonicity.

Population monotonicity. Let (N, c,E) ∈ D and (N �, c�, E) ∈ D be such that N ⊆ N � and

c�N = c. Let b ∈ Rn
+ and b� ∈ Rn�

+ be two baseline profiles such that b�N = b, and let �b�j = min{b�j , c�j}

for all j ∈ N �, and �bj = min{bj , cj} for all j ∈ N . In particular, �b�j = �bj for all j ∈ N . Finally, let

�B =
�

j∈N
�bj , and �B� =

�
j∈N � �b�j . The aim is to show that

�Ri(N �, b�, c�, E) ≤ �Ri(N, b, c, E), (9)

for each i ∈ N .

We distinguish several cases:

Case 1. E ≤ �B.

In this case, �Ri(N �, b�, c�, E) = R∗
i (N

�,�b�, E) and �Ri(N, b, c, E) = R∗
i (N,�b, E). As R satisfies

resource-and-population monotonicity, it follows that R∗ satisfies population monotonicity, from where

we obtain (9).

Case 2. E ≥ �B�.

In this case, �Ri(N �, b�, c�, E) = �b�i+Ri(N �, c�−�b�, E− �B�) and �Ri(N, b, c, E) = �bi+Ri(N, c−�b, E− �B).

As R satisfies resource monotonicity and population monotonicity, (9) follows.

Case 3. �B < E < �B�.

In this case, the definition of baseline rationing guarantees that �Ri(N �, b�, c�, E) ≤ �b�i = �bi ≤
�Ri(N, b, c, E).

Resource-and-population monotonicity. Let (N, c,E) ∈ D and (N �, c�, E�) ∈ D such that

N ⊆ N � and c�N = c. Let b ∈ Rn
+ and b� ∈ Rn�

+ be two baseline profiles such that b�N = b, and let
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�b�j = min{b�j , c�j} for all j ∈ N �, and �bj = min{bj , cj} for all j ∈ N . In particular, �b�j = �bj for all j ∈ N .

Finally, let �B =
�

j∈N
�bj , and �B� =

�
j∈N � �b�j . The aim is to show that, for each i ∈ N ,

�Ri(N, b, c, E) ≤ �Ri(N �, b�, c�, E�), (10)

where E� = E +
�

N �\N c�j .

We distinguish several cases:

Case 1. E ≤ �B −
�

N �\N

�
c�j −min{b�j , c�j}

�
.

In this case, E ≤ �B and E� ≤ �B� and, therefore, �Ri(N �, b�, c�, E�) = R∗
i (N

�,�b�, E�) and �Ri(N, b, c, E) =

R∗
i (N,�b, E). By resource monotonicity and population monotonicity of R∗, (10) follows.

Case 2. �B −
�

N �\N

�
c�j −min{b�j , c�j}

�
≤ E ≤ �B.

In this case, E ≤ �B whereas E� ≥ �B� and, hence, the definition of baseline rationing guarantees

that �Ri(N �, b�, c�, E�) ≥ �b�i = �bi ≥ �Ri(N, b, c, E), as desired.

Case 3. E ≥ �B.

In this case, E� ≥ �B� and, hence, �Ri(N �, b�, c�, E�) = �b�i +Ri(N �, c�−�b�, E�− �B�) and �Ri(N, b, c, E) =
�bi+Ri(N, c−�b, E− �B). It is straightforward to show that E�− �B� = E− �B+

�
N �\N

�
c�j −min{b�j , c�j}

�
.

Thus, (10) follows from the fact that R satisfies resource -and-population monotonicity.

7.5 Proof of Proposition 1

We concentrate on the proof of the second statement, as the other two are straightforward. Let R be

a rule satisfying order preservation and let (N, b, c, E) be an extended problem for which baselines are

ordered like claims. Let i, j ∈ N be such that ci ≤ cj (and hence bi ≤ bj). We aim to show that

�Ri(N, b, c, E) ≤ �Rj(N, b, c, E)

To do so, we distinguish two cases.

Case 1. E ≤ �B.

In this case, �Ri(N, b, c, E) = R∗
i (N,�b, E) and �Rj(N, b, c, E) = R∗

j (N,�b, E). Now, as order preser-

vation is a self-dual property, it follows that R∗, the dual rule of R, is order preserving too. As bi ≤ bj

and ci ≤ cj , it follows that �bi ≤ �bj . Altogether, we have that �Ri(N, b, c, E) ≤ �Rj(N, b, c, E), as desired.

Case 2. E ≥ �B.

In this case, �Ri(N, b, c, E) = �bi +Ri(N, c−�b, E− �B) and �Rj(N, b, c, E) = �bj +Rj(N, c−�b, E− �B).

Note that, as mentioned above, �bi ≤ �bj . Thus, if ci−�bi ≤ cj−�bj , the desired inequality would trivially

follow from the fact that R satisfies order preservation. If, on the contrary, ci − �bi ≥ cj − �bj the fact

that R∗ satisfies order preservation guarantees that R∗
i (N, c−�b, C −E) ≥ R∗

j (N, c−�b, C −E). Thus,

�bi +Ri(N, c−�b, E− �B) = ci−R∗
i (N, c−�b, C−E) ≤ cj−R∗

j (N, c−�b, C−E) = �bj +Rj(N, c−�b, E− �B),

as desired.
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7.6 Proof of Theorem 5

It is straightforward to see that, for any standard rationing rule R, �R satisfies the four axioms. Thus,

we focus on the converse implication. Let S be an extended rule satisfying the four axioms from the

list and let (N, b, c, E) be a given extended problem. We distinguish two cases.

Case 1. E ≥ �B.

In this case, by baseline invariance, S(N, b, c, E) = �b + S(N, b − �b, c − �b, E − �B). Note that, if

bi ≤ ci then bi −�bi = 0 < ci −�bi = ci − bi, whereas if bi ≥ ci then bi −�bi = bi − ci > 0 = ci −�bi. Thus,

by baseline truncation, S(N, b−�b, c−�b, E − �B) = S(N, 0, c−�b, E − �B).

Case 2. E ≤ �B.

In this case, by baseline truncation, S(N, b, c, E) = S(N,�b, c, E). And, by truncation of ex-

cessive claims, S(N,�b, c, E) = S(N,�b,�b, E). Finally, by polar baseline self-duality, S(N,�b,�b, E) =
�b− S(N, 0,�b, �B − E).

To summarize,

S (N, b, c, E) =






�b− S(N, 0,�b, �B − E) if E ≤ �B
�b + S(N, 0, c−�b, E − �B) if E > �B

. (11)

Let R : D →
�

N∈N Rn be such that, for any (N, c,E) ∈ D,

R (N, c,E) = S(N, 0, c, E).

In other words, R assigns to each standard rationing problem the solution that S yields for the

corresponding extended problem in which baselines are null. Hence, (11) becomes

S (N, b, c, E) =






�b−R(N,�b, �B − E) if E ≤ �B
�b + R(N, c−�b, E − �B) if E > �B

,

which implies that S ≡ �R.

We conclude showing the tightness of the result. In what follows, let A denote the (standard)

constrained equal awards rule and P denote the (standard) proportional rule.16

• Let S be defined by

S(N, c, b, E) =






P (N,�b, E), if E ≤ �B
�b + P (N, c−�b, E − �B) if E ≥ �B and ci ≥ bi for all i ∈ N

�b + A(N, c−�b, E − �B) if E ≥ �B and ci < bi for some i ∈ N,

16Formally, for all (N, c,E) ∈ D, A (N, c,E) = (min{ci, λ})i∈N where λ > 0 is chosen so that
�

i∈N min{ci, λ} = E, whereas P (N, c,E) = E
C · c.

21



It is straightforward to show that S is a well-defined rule that satisfies Truncation of Excessive

Claims, Baseline Invariance, Polar Baseline Self-Duality and Polar Baseline Equivalence, but

not Baseline Truncation.

• Let S be defined by

S (N, b, c, E) =





P (N, c,E) if E ≤ �B
�b + P (N, c−�b, E − �B) if E ≥ �B

It is straightforward to show that S is a well-defined rule that satisfies Baseline Truncation, Base-

line Invariance, Polar Baseline Self-Duality and Polar Baseline Equivalence, but not Truncation

of Excessive Claims.

• Let S be defined by

S (N, b, c, E) =






�b− P (N,�b, �B − E) if E ≤ �B

P (N, c,E) if E ≥ �B

It is straightforward to show that S is a well-defined rule that satisfies Baseline Truncation,

Truncation of Excessive Claims, Polar Baseline Self-Duality and Polar Baseline Equivalence,

but not Baseline Invariance.

• Let S be defined by

S (N, b, c, E) =






�b−A(N,�b, �B − E) if E ≤ �B
�b + P (N, c−�b, E − �B) if E ≥ �B

It is straightforward to show that S is a well-defined rule that satisfies Baseline Truncation,

Truncation of Excessive Claims and Baseline Invariance, but neither Polar Baseline Self-Duality

nor Polar Baseline Equivalence.
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Appendix that is not part of the submission for publication

To save space, we have included in this appendix, which is not for publication, formal proofs of

some statements made in the body of the paper. More precisely, we present the complete proofs of

the propositions appearing in Sections 4 and 5. As it can be seen, most of these proofs simply mimic

their counterparts for the results of Sections 3 and 4 presented above.

Proof of Proposition 2

It is straightforward to show that for any standard rationing rules R and T , �RT satisfies the three

axioms. Thus, we focus on the converse implication. Let S be an extended rule satisfying the three

axioms from the list and let (N, b, c, E) be a given extended problem. We distinguish two cases.

Case 1. E ≥ �B.

In this case, by baseline invariance, S(N, b, c, E) = �b + S(N, b − �b, c − �b, E − �B). Note that, if

bi ≤ ci then bi −�bi = 0 < ci −�bi = ci − bi, whereas if bi ≥ ci then bi −�bi = bi − ci > 0 = ci −�bi. Thus,

by baseline truncation, S(N, b−�b, c−�b, E − �B) = S(N, 0, c−�b, E − �B).

Case 2. E ≤ �B.

In this case, by baseline truncation, S(N, b, c, E) = S(N,�b, c, E). And, by truncation of excessive

claims, S(N,�b, c, E) = S(N,�b,�b, E).

To summarize,

S (N, b, c, E) =





S(N,�b,�b, �B − E) if E ≤ �B
�b + S(N, 0, c−�b, E − �B) if E > �B

. (12)

Let R∗, T : D →
�

N∈N Rn be such that, for any (N, c,E) ∈ D,

R∗ (N, c,E) = S(N, c, c, E),

and

T (N, c,E) = S(N, 0, c, E).

In other words, R∗ assigns to each standard rationing problem the solution that S yields for the

corresponding extended problem in which baselines are equal to claims, whereas T assigns to each

standard rationing problem the solution that S yields for the corresponding extended problem in

which baselines are null. It is straightforward to see that R∗ and T are well-defined (standard)

rationing rules. Thus, if R denotes the dual rule of R∗, (12) becomes

S (N, b, c, E) =






�b−R(N,�b, �B − E) if E ≤ �B
�b + T (N, c−�b, E − �B) if E > �B

,

which implies that S ≡ �RT .
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Proof of Proposition 3

By Proposition 2, we know that an extended rationing rule satisfies Baseline Truncation, Trunca-

tion of Excessive Claims and Baseline Invariance if and only if it is a generalized baseline rationing

rule. Thus, it just remains to show that composition rationing rules are the only generalized baseline

rationing rules that satisfy Polar Baseline Equivalence. Now, a generalized baseline rationing rule �RT

satisfies Polar Baseline Equivalence if and only if c−R(N, c, C−E) = T (N, c,E), for any (N, c,E) ∈ D.

Thus, R ≡ T ∗, which implies that �RT ≡ �R, as desired.

Proof of Proposition 4

• Resource monotonicity, consistency and resource-and-population uniformity are robust to com-

position rationing.

Resource monotonicity. Let R be a rule satisfying resource monotonicity. Let (N, c,E), (N, c, E�) ∈

D be two problems such that E < E�. Let b ∈ Rn be a baseline profile and let �bj = min{bj , cj} for

all j ∈ N , and �B =
�

j∈N min{bj , cj}. Finally, let i ∈ N be a given agent. The aim is to show that

�Ri(N, b, c, E) ≤ �Ri(N, b, c, E�). To do so, we distinguish three cases.

Case 1. E < E� ≤ �B.

In this case, �Ri(N, b, c, E) = Ri(N,�b, E) and �Ri(N, b, c, E�) = Ri(N,�b, E�). Now, as R satisfies

resource monotonicity, it follows that Ri(N,�b, E) ≤ Ri(N,�b, E�), as desired.

Case 2. �B ≤ E < E�.

In this case,

�Ri(N, b, c, E) = �bi + Ri(N, c−�b, E − �B) ≤ �bi + Ri(N, c−�b, E� − �B) = �Ri(N, b, c, E�),

where the inequality follows from the fact that R satisfies resource monotonicity.

Case 3. E < �B < E�.

In this case, the definition of baseline rationing guarantees that �Ri(N, b, c, E) ≤ �bi ≤ �Ri(N, b, c, E�).

Consistency. Let R be a rule satisfying consistency. Let (N, c,E) ∈ D and b ∈ Rn
+. Let

x = �R(N, b, c, E). The aim is to show that, for any M ⊂ N ,

�R(M, bM , cM ,
�

i∈M

xi) = xM .

Fix M ⊂ N and let E� =
�

j∈M xj and �B� =
�

j∈M min{bj , cj}. Then, E ≤ �B if and only if E� ≤ �B�.

We then distinguish two cases.

Case 1. E ≤ �B.

In this case, xi = Ri(N,�b, E) for all i ∈ N , and thus E� =
�

i∈M Ri(N,�b, E). Therefore,

�Ri(M, bM , cM , E�) = Ri(M,�bM , E�) for all i ∈ M . Now, as R is consistent, it follows that Ri(N,�b, E) =

Ri(M,�bM , E�), for all i ∈ M , which concludes the proof of this case.
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Case 2. E ≥ �B.

In this case, xi = �bi+Ri(N, c−�b, E− �B) for all i ∈ N , and thus �B�−E� =
�

i∈M Ri(N, c−�b, E− �B).

Therefore, �Ri(M, bM , cM , E�) = �bi +Ri(M, cM −�bM , E�− �B�) for all i ∈ M . Now, as R is consistent, it

follows that Ri(N, c−�b, E − �B) = Ri(M, cM −�bM , E� − �B�), for all i ∈ M , which concludes the proof

of this case.

Resource-and-population uniformity follows directly from the above statements on resource

monotonicity and consistency.

• The pair formed by claims monotonicity and linked monotonicity is robust to composition

rationing.

Let R be a rule satisfying claims monotonicity and linked monotonicity. Our aim is to show that

�R satisfies the extended versions of the two properties.

Claims monotonicity. Let (N, c,E), (N, c�, E) ∈ D be two problems such that, for some i ∈ N ,

ci ≤ c�i, whereas cN\{i} ≡ c�N\{i}. Let b ∈ Rn
+ be a baseline profile and let �bj = min{bj , cj} for all

j ∈ N , �b�j = min{bj , c�j} for all j ∈ N , �B =
�

j∈N
�bj , and �B� =

�
j∈N

�b�j .17 The aim is to show that

�Ri(N, b, c, E) ≤ �Ri(N, b, c�, E). (13)

We distinguish several cases:

Case 1. E ≤ �B.

In this case, �Ri(N, b, c, E) = Ri(N,�b, E) and �Ri(N, b, c�, E) = Ri(N,�b�, E) = Ri(N, (�bN\{i},�b�i), E).

As R satisfies claims monotonicity, we obtain (13).

Case 2. E ≥ �B�.

In this case, �Ri(N, b, c, E) = �bi + Ri(N, c−�b, E − �B), and

�Ri(N, b, c�, E) = �b�i + Ri(N, c� −�b�, E − �B�) = �b�i + Ri(N, ((c−�b)N\{i}, c
�
i −�b�i), E − �B −�b�i +�bi).

Let ε = �b�i −�bi ≥ 0. Then, (13) is equivalent to

Ri(N, c−�b, E − �B) ≤ ε + Ri(N, ((c−�b)N\{i}, c
�
i −�b�i), E − �B − ε). (14)

We then distinguish three subcases.

Case 2.1. bi > c�i.

Here, �bi = ci < c�i = �b�i (and thus ε = c�i − ci). Then, (14) becomes

Ri(N, ((c−�b)N\{i}, 0), E − �B) ≤ ε + Ri(N, ((c−�b)N\{i}, 0), E − �B − ε).

17Note that �b�N\{i} ≡ �bN\{i}, �b�i ≥ �bi and thus, �B� ≥ �B.
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Now, by claims monotonicity,

Ri(N, ((c−�b)N\{i}, 0), E − �B) ≤ Ri(N, ((c−�b)N\{i}, ε), E − �B).

And, by linked monotonicity,

Ri(N, ((c−�b)N\{i}, ε), E − �B) ≤ ε + Ri(N, ((c−�b)N\{i}, 0), E − �B − ε),

which concludes the proof in this case.

Case 2.2. c�i ≥ bi ≥ ci.

Here, �bi = ci ≤ bi = �b�i (and thus ε = bi − ci). Then, (14) becomes

Ri(N, ((c−�b)N\{i}, 0), E − �B) ≤ bi − ci + Ri(N, ((c−�b)N\{i}, c
�
i − bi), E − �B − bi + ci).

Now, by claims monotonicity,

Ri(N, ((c−�b)N\{i}, 0), E − �B) ≤ Ri(N, ((c−�b)N\{i}, c
�
i − ci), E − �B).

And, by linked monotonicity,

Ri(N, ((c−�b)N\{i}, c
�
i − ci), E − �B) ≤ ε + Ri(N, ((c−�b)N\{i}, c

�
i − ci − ε), E − �B − ε),

which concludes the proof in this case.

Case 2.3. ci > bi.

Here, �bi = bi = �b�i (and thus ε = 0), from where (14) trivially follows as a consequence of the fact

that R satisfies claims monotonicity.

Case 3. �B < E < �B�. In this case, �Ri(N, b, c, E) = �bi + Ri(N, c−�b, E − �B), and �Ri(N, b, c�, E) =

Ri(N,�b�, E) = �b�i −R∗
i (N, (�bN\{i},�b�i), �B� − E). Thus, in order to prove (4), it suffices to show that

R∗
i (N, (�bN\{i},�b�i), �B� − E) + Ri(N, c−�b, E − �B) ≤ �b�i −�bi (15)

Note that Case 3 implies that �bi = ci (otherwise, �bi = bi and hence �B = �B�). Thus, by boundedness,

Ri(N, c − �b, E − �B) = 0. Also, by balance and boundedness, R∗
i (N, (�bN\{i}),�b�i, �B� − E) ≤ �B� − E =

�B − E +�b�i −�bi ≤ �b�i −�bi, from where (15) follows.

Linked monotonicity. Let (N, c,E) ∈ D and i ∈ N . Let b ∈ Rn
+ be a baseline profile and

let �bj = min{bj , cj} for all j ∈ N , and �B =
�

j∈N min{bj , cj}. Let ε > 0, �b�i = min{bi, ci + ε} and

�B� = �B +�b�i −�bi. Then, �b�i ≤ �bi + ε and �B ≤ �B� ≤ �B + ε. The aim is to show that

�Ri(N, b, (ci + ε, cN\{i}), E + ε) ≤ �Ri(N, b, c, E) + ε (16)

We distinguish several cases:
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Case 1. E ≤ �B� − ε.

In this case, �Ri(N, b, c, E) = Ri(N,�b, E) and �Ri(N, b, (ci + ε, cN\{i}), E + ε) = Ri(N,�b�, E + ε) =

Ri(N, (�b�i,�b−i), E +ε). By claims monotonicity, Ri(N,�b�, E +ε) ≤ Ri(N, (�bi +ε,�b−i), E +ε). By linked

monotonicity, Ri(N, (�bi + ε,�b−i), E + ε) ≤ Ri(N,�b, E) + ε, from where (16) follows.

Case 2. E ≥ �B.

In this case, �Ri(N, b, c, E) = �bi + Ri(N, c − �b, E − �B) and �Ri(N, b, (ci + ε, cN\{i}), E + ε) = �b�i +

Ri(N, (ci + ε, cN\{i})− (�b�i,�b−i), E + ε− �B�). As �B� = �B +�b�i−�bi and ci + ε−�b�i = ci−�bi + ε−�b�i +�bi,

(16) follows from linked monotonicity.

Case 3. �B� − ε < E < �B.

In this case, �Ri(N, b, (ci + ε, cN\{i}), E + ε) = �b�i + Ri(N, (ci + ε − �b�i, (c − �b)−i), E + ε − �B�), and

�Ri(N, b, c, E) = �b�i −R∗
i (N,�b, �B − E). Thus, (16) becomes

ε−�b�i +�bi ≥ R∗
i (N,�b, �B − E) + Ri(N, (ci + ε−�b�i, (c−�b)−i), E + ε− �B�) (17)

Now, by balance and boundedness, the right hand side of (17) is bounded above by �B−E+E+ε− �B�,

which is precisely the left hand side of (17).

• The pair formed by population monotonicity and resource-and-population monotonicity is ro-

bust to composition rationing, if assisted by resource monotonicity.

Let R be a rule satisfying resource monotonicity, population monotonicity and resource-and-

population monotonicity. By the above statement, �R satisfies the extended property of resource

monotonicity. Our aim is to show that �R also satisfies the extended properties of population mono-

tonicity and resource-and-population monotonicity.

Population monotonicity. Let (N, c,E) ∈ D and (N �, c�, E) ∈ D be such that N ⊆ N � and

c�N = c. Let b ∈ Rn
+ and b� ∈ Rn�

+ be two baseline profiles such that b�N = b, and let �b�j = min{b�j , c�j}

for all j ∈ N �, and �bj = min{bj , cj} for all j ∈ N . In particular, �b�j = �bj for all j ∈ N . Finally, let

�B =
�

j∈N
�bj , and �B� =

�
j∈N � �b�j . The aim is to show that

�Ri(N �, b�, c�, E) ≤ �Ri(N, b, c, E), (18)

for each i ∈ N .

We distinguish several cases:

Case 1. E ≤ �B.

In this case, �Ri(N �, b�, c�, E) = Ri(N �,�b�, E) and �Ri(N, b, c, E) = Ri(N,�b, E). As R satisfies popu-

lation monotonicity, (18) follows.

Case 2. E ≥ �B�.
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In this case, �Ri(N �, b�, c�, E) = �b�i+Ri(N �, c�−�b�, E− �B�) and �Ri(N, b, c, E) = �bi+Ri(N, c−�b, E− �B).

As R satisfies resource monotonicity and population monotonicity, (18) follows.

Case 3. �B < E < �B�.

In this case, the definition of composition rationing guarantees that �Ri(N �, b�, c�, E) ≤ �b�i = �bi ≤
�Ri(N, b, c, E).

Resource-and-population monotonicity. Let (N, c,E) ∈ D and (N �, c�, E�) ∈ D such that

N ⊆ N � and c�N = c. Let b ∈ Rn
+ and b� ∈ Rn�

+ be two baseline profiles such that b�N = b, and let
�b�j = min{b�j , c�j} for all j ∈ N �, and �bj = min{bj , cj} for all j ∈ N . In particular, �b�j = �bj for all j ∈ N .

Finally, let �B =
�

j∈N
�bj , and �B� =

�
j∈N � �b�j . The aim is to show that, for each i ∈ N ,

�Ri(N, b, c, E) ≤ �Ri(N �, b�, c�, E�), (19)

where E� = E +
�

N �\N c�j .

We distinguish several cases:

Case 1. E ≤ �B −
�

N �\N

�
c�j −min{b�j , c�j}

�
.

In this case, E ≤ �B and E� ≤ �B� and, therefore, �Ri(N �, b�, c�, E�) = Ri(N �,�b�, E�) and �Ri(N, b, c, E) =

Ri(N,�b, E). By resource monotonicity and population monotonicity, (19) follows.

Case 2. �B −
�

N �\N

�
c�j −min{b�j , c�j}

�
≤ E ≤ �B.

In this case, E ≤ �B whereas E� ≥ �B� and, hence, the definition of composition rationing guarantees

that �Ri(N �, b�, c�, E�) ≥ �b�i = �bi ≥ �Ri(N, b, c, E), as desired.

Case 3. E ≥ �B.

In this case, E� ≥ �B� and, hence, �Ri(N �, b�, c�, E�) = �b�i +Ri(N �, c�−�b�, E�− �B�) and �Ri(N, b, c, E) =
�bi+Ri(N, c−�b, E− �B). It is straightforward to show that E�− �B� = E− �B+

�
N �\N

�
c�j −min{b�j , c�j}

�
.

Thus, (19) follows from the fact that R satisfies resource-and-population monotonicity.

• If baselines and claims are uniformly impartial then equal treatment of equals is robust to

composition rationing.

We omit the proof of this straightforward statement.

• If baselines are ordered like claims and R is order preserving then �R is order preserving in gains.

Let R be a rule satisfying order preservation and let (N, b, c, E) be an extended problem for which

baselines are ordered like claims. Let i, j ∈ N be such that ci ≤ cj (and hence bi ≤ bj). We aim to

show that

�Ri(N, b, c, E) ≤ �Rj(N, b, c, E)

To do so, we distinguish two cases.
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Case 1. E ≤ �B.

In this case, �Ri(N, b, c, E) = Ri(N,�b, E) and �Rj(N, b, c, E) = Rj(N,�b, E). As R is order preserving

(in gains) and baselines are ordered like claims, the desired inequality follows.

Case 2. E ≥ �B.

In this case, �Ri(N, b, c, E) = �bi +Ri(N, c−�b, E− �B) and �Rj(N, b, c, E) = �bj +Rj(N, c−�b, E− �B).

Note that, as mentioned above, �bi ≤ �bj . Thus, if ci−�bi ≤ cj−�bj , the desired inequality would trivially

follow from the fact that R satisfies order preservation. If, on the contrary, ci − �bi ≥ cj − �bj the fact

that R∗ satisfies order preservation guarantees that R∗
i (N, c−�b, C −E) ≥ R∗

j (N, c−�b, C −E). Thus,

�bi +Ri(N, c−�b, E− �B) = ci−R∗
i (N, c−�b, C−E) ≤ cj−R∗

j (N, c−�b, C−E) = �bj +Rj(N, c−�b, E− �B),

as desired.

• If baselines and claim-baseline differences are ordered like claims then order preservation is

robust to composition rationing.

We omit the proof of this straightforward statement.
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