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"Sooner or later if a guy sits in the General Assembly for ten years, I think it is crazy
not to think that he is gonna make at least one judgement on, maybe, his principle...[But]
what good is it for me to sit there and vote what I feel would be my principle - in terms of
the philosophy that I would have on how government ought to be run relating to an issue -
and I voted against my constituency and voted my political philosophy, and then still when
they took the tally, I was still on the losing side?...When you are really in a position where
you can make it happen, then it would be rewarding enough to say, "I�ll see you guys later;
beat me in an election!" I don�t care whatever it is, that is where it makes it worthwhile.
Otherwise you are crazy, in my estimation."
A pro-Equal Rights Amendment legislator in Why we lost the ERA, by Jane J. Mansbridge
(p. 162).

1 Introduction

A group of agents has to decide whether to accept or to reject a proposal. Each agent is
either in favor or against the proposal (we suppose no agent is indi¤erent). Agents vote in
favor or against the proposal and if the number of agents in favor is greater to certain quota,
the proposal is accepted. In this simple context, the decision adopted when all agents vote
according to their true opinion is called the socially optimal decision. However, it is not
unusual to �nd situations where agents are not truthful when the decision does not depend
on their votes. In fact, in these situations, the vote of the agents can be guided by their
desire to coincide with the vote of certain number of agents instead of by their true opinion
(as our pro-Equal Rights Amendment legislator from the initial quote, these agents will make
the same reasoning when voting: why confront others, voting following my philosophy if I
cannot obtain any gain doing so?). The tendency of agents to adapt their vote to the vote
of other agents is known as conformity. We call minimal conformity to the minimal number
of agents that voters want to coincide with in situations where their vote does not determine
the decision. This minimal conformity number can take any value from one to n; the number
of agents.
In this paper, we study the consequences that agents vote considering not only their true

opinion about the proposal but also the vote of the rest of the voters. We refer to these
agents as conformists. In contrast, when voters only consider their opinion when voting, we
call them independents.
First, we consider a situation in which agents vote simultaneously. When all agents are in-

dependents, the unique equilibrium is announcing their true opinion and the socially optimal
decision is obtained. The question that arises is: when all agents are conformists, announc-
ing the true opinion is also the unique equilibrium strategy1? Do new equilibrium strategies
emerge? In such a case, we check whether the decision associated to any equilibrium when
all agents are conformists coincide with the socially optimal decision.
When all agents are conformists, we show that for any required quota to accept the

proposal, there are undominated Nash equilibria where the decision does not coincide with

1In the simultaneous version of the game the equilibrium concept that we use is weakly undominated
Nash equilbirum while in the sequential version it is the subgame perfect Nash equilibrium.
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the socially optimal decision. This result holds for any minimal conformity. Surprisingly,
for certain quotas, announcing the true opinion is not even a strategy equilibrium. Our
next step is to ask ourselves whether there is a number of independents which makes that
the decision adopted in every equilibrium coincides with the socially optimal decision. The
answer is yes. We show that the minimum number of independents depends on the total
number of agents, the required quota to accept the proposal and the minimal conformity.
This allow us to make a double exercise of comparative static analysis: compare the di¤erent
quotas in terms of the minimal number of independents required to obtain the socially
optimal decision or given certain quota, study how the minimal number of independents
evolve as the minimal conformity changes. When we compare the required quotas to accept
the proposal, we �x the minimal conformity and the total number of agents and �nd that
the less demanding quota in terms of independents is unanimity to accept the proposal. The
next less demanding quota is the majority. After majority, the greater is the quota, the
greater the required minimal number of independents. To study the performance of each
quota when the minimal conformity changes, given the number of agents, n, we �nd that the
minimum number of independents decreases as the minimal conformity moves away from n

2
:

In the corporate world, we �nd some examples in which the regulator makes the pres-
ence of independent agents explicit and essential when taking decisions. One example is
the Dodd-Frank law2, passed by the US Congress in 2010. We mention some institutions
a¤ected by this law. For the Remuneration Committees, the Dodd-Frank establishes more
requirements when hiring external consultants in retributive matters. In the case of credit
rating agencies, the Dodd-Frank requires that at least half of the members of the Nation-
ally Recognize Statistical Ratings Organizations boards (NRSROB) be independent, with
no �nancial stake in credit ratings. For compensation committees, the Dodd-Frank requires
including only independent directors who have authority to hire compensation consultants in
order to strengthen their independence from the executives they are rewarding or punishing.
Finally, we consider a situation in which agents vote sequentially. We show that for

any required quota to accept the proposal, in any subgame perfect Nash equilibrium, the
decision is socially optimal regardless of the number of conformist and independent agents,
the minimal conformity and the sequence in which agents vote.
Next section contains a revision of the literature regarding the conformity phenomenon.

In Section 3, we present the model and a basic result using undominated Nash equilibrium.
In Section 4, we determine the number of independent agents that guarantees the socially
optimal decision. In Section 5, we study the sequential version of the problem. Some
concluding remarks are given in Section 6. Appendix A and B present the proofs of the
results in Section 4 and Section 5, respectively.

2 Previous Research

Social psychologists start to study conformity in the 1930s. Asch (1951), conducts a con-
formity experiment in the laboratory to show the degree to which the own individual�s vote

2A brief summary of the Dodd-Frank law can be found in http://www.banking.senate.gov/public/_�les/
070110_Dodd_Frank_Wall_Street_Reform_comprehensive_summary_Final.pdf
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could be persuaded by the vote of a majority within a group. During the experiment, a group
of agents is asked, one at a time, to match a line of a speci�c length to one of three lines
(the answer being obvious). Among the agents, only one participant is not an accomplice
of the researcher. The aim is to see whether this agent would vote in the same way as the
rest of the members of the group, despite it being the wrong answer. Results show that,
on average, about a third of the tested subjects conform to the wrong judgement. Deutsch
and Gerard (1955) shows that the conformity e¤ect is weaker when agents�reports are se-
cret, although they observe that even in anonymous choices several individuals conform to
the wrong choice of the others (see also Hogg and Vaughan, 2009). Besides, Deutsch and
Gerard (1955) identi�es two types of social in�uence: informational and normative. The
former refers to updating an opinion taking into account others�opinions, whereas the latter
describes the behavior of stating an opinion that �ts with the group choice.
The agents of our model do have a clear and de�ned opinion, so we limit our study to

the normative version of conformity. In fact, we introduce conformity in the preferences of
the agents by considering that agents want their message to coincide with the messages of
other agents. Dutta and Sen (2012) also de�nes agents�preferences based on the decision
and the messages of the rest of the agents. In their model, agents strictly prefer to report
the "true" state rather than a "false" state when reporting the former leads to an outcome
which is at least as preferred to the outcome obtained when reporting the latter. Then, their
agents are what they call "partially honest" agents. On the contrary, our agents are not
necessarily partially honest. A conformist agent strictly prefers to conform to the opinion
of some reference groups when her message does not have any in�uence on the decision,
regardless of whether her message corresponds with her true opinion or not.3

In the literature, there are many papers analyzing conformity both from a normative and
an informational perspective, and assuming that conformity is either exogenous or endoge-
nous. Among the normative studies, Bernheim (1994) analyzes a model of social interaction
where agents�preferences are based on two characteristics: an "intrinsic" utility (derived
from consumption), and status (popularity, esteem or respect within a group). Status is
then taken as an endogenous conformity measure. He shows that when status is su¢ ciently
important relative to intrinsic utility, many individuals conform to a single, homogeneous
standard of behavior, despite heterogeneous preferences. Bernheim (1994) also �nds that
small departures from the norm can seriously impair agents�popularity. Besides, the author
identi�es the role of independent agents, as he �nds a group of agents whose preferences are
extreme enough to refuse to conform.
Luzzati (1999) deals with the problem of how to model social in�uence. It models con-

formity exogenously within the standard theoretical framework for the issue of voluntary
contributions, even though he acknowledges that conformism can be partially endogenised
within economic models (e.g. conformism as a lack of information). Luzzati (1999) intro-
duces a penalty term to the traditional utility function that depends on the distance between
the individual choice and the "prevailing social choice". According to Luzzati (1999), what
social psychology rather seems to suggest is that agents, although they sometimes consciously

3We acknowledge that it could be very natural to think that when agents have di¤erent groups to conform
to, they prefer to conform to those whose message coincide with their opinion. Our results hold under this
assumption.
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use conformism as a strategy, are more truly (unconsciously) conformist.
Herrera and Martinelli (2006) departs from the idea that participation in elections is

a group activity. Herrera and Martinelli (2006) borrows from Glaeser et al. (1996) the
fact that most citizens imitate the behavior of a group to which they belong, while some
act independently. Herrera and Martinelli (2006) also considers two type of agents in their
model: conformist and independent agents. Herrera and Martinelli (2006) presents a model
in which leaders are interested in in�uencing citizens and, therefore, the election outcome.
It uses a type of conformity that is called "identi�cation" to study the voter turnout and
the winning margin depending on the strength or weakness of social interactions.
Among the informational studies, Rivas and Rodríguez-Alvarez (2014) also considers

di¤erent types of agents, being the objective voters what we have categorized as indepen-
dents and, as Herrera and Martinelli (2006), distinguishes between leaders and followers
(conformists). Rivas and Rodríguez-Alvarez (2014) shows that the introduction of a leader
a¤ects information revealed by followers, who misreport the information to conform to the
leader. Buechel et al. (2015) studies a model of opinion formation in a social network frame-
work including leaders, conformist and honest agents. As in our model, agents express their
decision according to their true opinions and their preferences for conformity. Buechel et al.
(2015) obtains that reducing prominence of individuals increases the accuracy of information
aggregation.
In the literature, there are other papers studying voting procedures involving di¤erent

quotas. Maggi and Morelli (2006) presents a model with a self-enforcing voting system.
It concludes that unanimity is the optimal system if there is no external enforcement and
majority rule is the ex-ante e¢ cient rule. Buchanan and Tullock (1962) also supports the
use of unanimity. The idea of considering other quotas apart from simple majority and
unanimity rule appears also in Feddersen and Pesendorfer (1998), which suggest to combine
a super-majority rule with a larger jury for cases where they want to reduce the probability
of convicting the innocent.

3 The model and the basic result

Let N = f1; :::; ng be any �nite set of agents. Let capital letters C; S � N denote subsets
of agents while lower case letters c; s denote their cardinality. This group of agents have to
decide whether to accept or to reject a proposal. We refer to the true opinion of agent
i 2 N as ti 2 f0; 1g, where ti = 0 stands for agent i rejecting the proposal and ti = 1 for
accepting the proposal. Let t = (t1; :::; tn) 2 f0; 1gn be a list of true opinions. True opinions
will be denoted in two possible ways. When they are part of a given list of opinions, we will
use the notation ti 2 f0; 1g to denote that this is the true opinion of agent i in the pro�le. In
other cases, we want to have a name for a given true opinion, and we will use superscripts,
i.e. t0i stands for agent i 2 N against the proposal. We also write t1C , and t

0
C , when ti = 1

and ti = 0; respectively, for any i 2 C and C � N , t1 = (t11; :::; t1n) when all agents prefer 1
to 0 and t0 = (t01; :::; t

0
n) when all agents prefer 0 to 1.

In order to accept or reject the proposal, we ask agents to vote in favor or against such
a proposal. Therefore, agents will be asked to announce a message in this sense.

5



A pro�le of messages is denoted by m 2 M where M is the set of messages. For any
agent i 2 N and any pro�le of messages m 2 M , let mi denote the message of agent i and
m�i 2M�i = �j2NnfigMj the messages of all agents except i.
In most of the paper, we assume that agents vote simultaneously4. Then, Mi = f0; 1g

is the set of messages for agent i 2 N , where mi = 0 means that agent i votes against the
proposal and mi = 1 that agent i votes in favor of the proposal. As for the list of opinions,
pro�les of messages will be denoted in two possible ways. When they are part of a given
pro�le of messages, we use the notation mi 2Mi to denote that this is the message of agent
i in the pro�le. In other cases, we want to have a name for a given message, and we will use
superscripts, i.e. m0

i stands for agent i 2 N voting against the proposal. We will also write
m1
S when mi = 1 for all i 2 S and S � N , m1 = (m1

1; :::;m
1
n) and m

0 = (m0
1; :::;m

0
n).

The proposal is accepted if a given number of agents are in favor of the proposal and is
rejected otherwise. Let q 2 f1; 2; ::; ng be the required number of agents for the proposal to
be accepted. Therefore, q is a mapping from M to f0; 1g. Given any quota q, the socially
optimal decision would be the decision obtained as a result of applying q to the pro�le of
messages m where mi = ti for any i 2 N , (i.e., the decision obtained when all agents are
truthful and the number of agents needed to accept the proposal is q).
The description of the preferences is more complicated in our case than in the standard

case. The complication arises since the preferences of our agents depend not only on the
decision taken but also on the pro�le of messages announced by the agents. Let f0; 1g �M
be the set of alternatives, and (x;m) 2 f0; 1g �M be an alternative where x stands for the
decision taken and m for the pro�le of messages.

Example 1 Let N = f1; 2; 3g. Then f0; 1g � M = f(0; 0; 0; 0); (0; 0; 0; 1); (0; 1; 1; 0);
(0; 1; 1; 1); (0; 0; 1; 0); (0; 1; 0; 0); (0; 1; 0; 1); (0; 0; 1; 1); (1; 0; 0; 0); (1; 0; 0; 1); (1; 1; 1; 0); (1; 1; 1; 1);
(1; 0; 1; 0); (1; 1; 0; 0); (1; 1; 0; 1); (1; 0; 1; 1)g.

Let Ri be the set of all possible preference relations for agent i 2 N de�ned on f0; 1g�M
satisfying re�exivity, transitivity and completeness. Let Ri 2 Ri be a preference relation for
agent i 2 N , and R = (R1; :::; Rn) 2 �i2NRi be an admissible preference pro�le.
We introduce two properties regarding agents� preference relations. We call the �rst

property, sel�shness. We say that an agent�s preference relation satis�es sel�shness if, when
comparing two di¤erent pairs of alternatives, she prefers that alternative where the decision
matches her opinion, whatever the decision is.

De�nition 1 Agent i�s preference relation Ri 2 Ri is sel�sh if for any true opinion, ti 2
f0; 1g and for any (x;m); (x0;m0) 2 f0; 1g �M such that x = ti and x0 6= ti, we have that
(x;m)Pi(x

0;m0).

Example 2 Let N = f1; 2; 3g. Let (x;m) and (x0;m0) 2 f0; 1g �M be such that x = 0
and x0 = 1. Let ti = 1 for some i 2 N . If Ri 2 Ri satis�es sel�shness we have that,
(x0;m0)Pi(x;m).

4Section 5 analyzes a sequential version of the game.
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In order to introduce the second property, we need some additional notation. We �rst
introduce the idea of a committee structure. A committee structure for a voter consists
of all subsets of voters that she takes into account. We assume that if a subset of agents
belongs to an agent�s committee structure, then any set with equal or higher cardinality also
belongs to her committee structure. Admittedly, alternative committee structures can be
contemplated but we think that the one we propose is quite canonical5.

De�nition 2 A committee structure for agent i, W h
i is a set of subsets of agents satisfying:

- For any C 2 W h
i , i 2 C and

- If C 2 W h
i and C

0 is such that jC 0j � jCj then C 0 2 W h
i and

- h is the cardinality of H, where jCj � jHj for any C 2 W h
i .

Example 3 Let N = f1; 2; 3; 4g. W 3
1 = ff1; 2; 3g; f1; 2; 4g; f1; 3; 4g; f1; 2; 3; 4gg and W 4

1 =
ff1; 2; 3; 4gg are two admissible committee structures for agent 1.

We call the second property, conformity relative to a committee structure. GivenW h
i , we

say that an agent�s preference relation satis�es conformity relative to W h
i if, when comparing

two di¤erent pairs of alternatives with identical decision, she prefers the alternative where
the number of agents with the same message as her is greater or equal to h. We refer to h
as the minimal conformity.

Before presenting this concept, we de�ne when two agents conform.

De�nition 3 For any m 2 �i2NMi, any i; j 2 N , we say that agent i conforms to agent
j if and only if mi = mj.

De�nition 4 Given a committee structure W h
i , agent i�s preference relation satis�es con-

formity relative toW h
i if, for any true opinion ti 2 f0; 1g, any (x;m); (x;m0) 2 f0; 1g�M ,

we have (x;m)Pi(x;m0) if and only if fj 2 N : such that mi = mjg 2 W h
i , but fj 2 N : such

that m0
i = m

0
jg =2 W h

i .

The following example clari�es these concepts for the case of three agents. We present
two committee structures for agent 1, W 2

1 with minimal conformity h = 2 andW
3
1 with min-

imal conformity h = 3. When the preference relation of agent 1 satis�es conformity relative
to W 2

1 ; agent 1 has to conform at least to agent 2 or agent 3. If the preference relation of
agent 1 satis�es conformity relative to W 3

1 ; agent 1 has to conform to agent 2 and agent 3:

5We thank Kenneth Shepsle for proposing us an interesting alternative committee structure. An agent
i may want to conform to agent j and, at the same time, he does not want to conform to agent k. Note
that in this case the identity of the agents play an important role and there can be many ways to de�ne a
committee structure.
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Example 4 Let N = f1; 2; 3g and (x;m) and (x;m0) 2 f0; 1g�M be such that m = (0; 1; 0)
and m0 = (1; 0; 0).
For committee structure W 2

1 = ff1; 2g; f1; 3g; f1; 2; 3gg, we have that fj 2 N : such that
mj = m1g = f1; 3g, fj 2 N : such that m0

j = m
0
1g = f1g, f1g =2 W 2

1 and f1; 3g 2 W 2
1 . If R1

satis�es conformity relative to W 2
1 we have that, (x;m)P1(x;m

0) for any t1 2 f0; 1g.
For committee structure W 3

1 = ff1; 2; 3gg, we have that fj 2 N : such that mj = m1g =
f1; 3g and fj 2 N : such that m0

j = m
0
1g = f1g; f1; 3g =2 W 3

1 and f1g =2 W 3
1 . If R1 satis�es

conformity relative to W 3
1 we have that, (x;m

0)I1(x;m) for any t1 2 f0; 1g.

Once de�ned conformity relative to a committee structure, we are able to distinguish
among a conformist and an independent agent. A conformist agent takes into account at
least the message of one more agent before voting. However, an independent agent dedicates
no attention to what the rest of the agents are voting for and, therefore, she is only considering
her own opinion when voting.

De�nition 5 Given W h
i , agent i 2 N is conformist if the minimal conformity is greater

to one, that is h > 1.

De�nition 6 Given W h
i , agent i 2 N is independent if the minimal conformity is equal

to one, that is h = 1.

In our model, there can be two set of agents, the set of independent agents and the set of
conformist agents. We assume through the paper that the minimal conformity is the same
for all the agents belonging to the same group. Let D = fi 2 N : h = 1g be the set of
independent agents where d refers to its cardinality. Henceforth, when we refer to a list of
committee structures we will write W = (W 1

D;W
h
NnD) to emphasize the partition between

the set of independent and conformist agents. Thus, W 1
D stands for the committee structure

of the independent agents and W h
NnD refers to the committee structure of the conformist

agents.
Given W = (W 1

D;W
h
NnD), a list of true opinions, t = (t1; :::; tn) 2 f0; 1gn observed by

all agents, Rh
i denote the class of preference relations satisfying sel�shness and conformity

relative to W h
i . When a preference relation is part of a given pro�le of preferences, we

use the notation Ri 2 Rh
i to denote that this is the preference relation of agent i in the

pro�le. In other cases, since an agent has only two admissible preference relations, as we
have seen in the previous example, we want to have a name for a given preference relation,
and we use superscripts, i.e. R0i and R

1
i corresponding to the case in which ti = 0 and ti = 1,

respectively. We will also write R1C when Ri = R
1
i for all i 2 C and C � N , R1 = (R11; :::; R1n)

and R0 = (R01; :::; R
0
n).

We now illustrate that the properties of sel�shness and conformity completely determine
the set of admissible preferences of the agents. We also want to stress, as evidenced in the
following example that, when comparing alternatives, agents �rst look at the decision and,
only after, look at the vote of the agents they consider relevant. Agents�preferences are
lexicographic.
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Example 5 Let N = f1; 2; 3g. Given W 2
1 = ff1; 2g; f1; 3g; f1; 2; 3gg, the set of admissible

preference relations for agent 1 satisfying sel�shness and conformity relative to the committee
structure W 2

1 are given in the following table:

R01
f(0; 0; 0; 0); (0; 0; 0; 1); (0; 1; 1; 0); (0; 1; 1; 1); (0; 0; 1; 0); (0; 1; 0; 1)g
f(0; 1; 0; 0); (0; 0; 1; 1)g
f(1; 0; 0; 0); (1; 0; 0; 1); (1; 1; 1; 0); (1; 1; 1; 1); (1; 0; 1; 0); (1; 1; 0; 1)g
f(1; 1; 0; 0); (1; 0; 1; 1)g

R11
f(1; 0; 0; 0); (1; 0; 0; 1); (1; 1; 1; 0); (1; 1; 1; 1); (1; 0; 1; 0); (1; 1; 0; 1)g
f(1; 1; 0; 0); (1; 0; 1; 1)g
f(0; 0; 0; 0); (0; 0; 0; 1); (0; 1; 1; 0); (0; 1; 1; 1); (0; 0; 1; 0); (0; 1; 0; 1)g
f(0; 1; 0; 0); (0; 0; 1; 1)g

The �rst table refers to the case in which agent 1 is against the proposal (R01) and the second
table refers to the case in which agent 1 is in favor of the proposal (R11). Therefore, the
committee structure and the true opinion of an agent completely determine her preference
relation. Note that given the committee structure, there are only two admissible preference
relations, each of them corresponding to the two possible opinions of the agent.

De�nition 7 For any h and any q 2 f1; :::; ng, m 2 M is a weakly undominated Nash
equilibrium of (M; q) at R 2 �i2NRh

i if for all i 2 N , (1) mi is not weakly dominated and
(2) for all m0

i 2Mi, g(mi;m�i)Rig(m
0
i;m�i).

Given W = (W 1
D;W

h
NnD) and R 2 �i2NRh

i , UN((M; q); R;W ) is the set of weakly
undominated Nash equilibria of (M; q) at R.
If all agents are conformists, we show that for any required quota to accept the proposal,

there are undominated Nash equilibria where the decision does not coincide with the socially
optimal decision.

Theorem 1. Let W = (W 1
D;W

h
NnD) be such that D = ;. Then, for any q 2 f1; :::; ng, there

exists undominated Nash equilibria not yielding to the socially optimal decision.
Proof. Let W =

�
W 1
D;W

h
NnD

�
be such that D = ;. In order to prove the result, we present

the following three cases that apply to q = 1, q = n and q 2 f2; :::; n� 1g, respectively.
Case 1. q = 1. If all agents prefer to reject the proposal, all agents voting in favor of the
proposal is a weakly undominated Nash equilibrium.
Let t = t0 and q = 1. Note that q(m1) = 1 = q(m0

i ;m
1
�i) for any i 2 N . Since all

agents are conformists, q(m1)P 0i q(m
0
i ;m

1
�i) for any i 2 N . Since q(m1) 6= 0 = q(t0) and

m1 2 UN((M; q); R;W ), the socially optimal decision is not always obtained6.
Case 2. q = n. If all agents prefer to accept the proposal, all agents voting against the

6Note that for any pro�le of preferences where not all the agents reject the proposal, the weakly undom-
inated Nash equilibrium yield to the socially optimal decision.
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proposal is a weakly undominated Nash equilibrium.
Let t = t1 and q = n: Note that q(m0) = 0 = q(m1

i ;m
0
�i) for any i 2 N . Since all

agents are conformists, q(m0)P 1i q(m
1
i ;m

0
�i) for any i 2 N . Since q(m0) 6= 1 = q(t1) and

m0 2 UN((M; q); R;W ), the socially optimal decision is not always obtained7.
Case 3. q 2 f2; :::;n� 1g. For any pro�le of preferences, all agents voting in favor or
against the proposal is a weakly undominated Nash equilibrium.
Let any t 2 f0; 1gn; and any q 2 f2; :::; n � 1g. Note that q(m0) = 0 = q(m1

i ;m
0
�i) for

any i 2 N . Since agents are conformists, q(m0)P ti q(m
1
i ;m

0
�i) for any i 2 N . Therefore,

m0 2 UN((M; q); R;W ) for any t 2 f0; 1gn. Note also that q(m1) = 1 = q(m0
i ;m

1
�i) for

any i 2 N . Since agents are conformists, q(m1)P ti q(m
0
i ;m

1
�i) for any i 2 N . Therefore,

m1 2 UN((M; q); R;W ) for any t 2 f0; 1gn. Since q(m1) 6= 0 = q(t0); q(m0) 6= 1 = q(t1);
m1;m0 2 UN((M; q); R;W ) for any q 2 f2; :::; n � 1g and the socially optimal decision is
not always obtained.

Theorem 1 o¤ers a negative result8. It shows that asking the voters about their opinions
may not lead us to the socially optimal decision when all agents are conformists. Besides,
there are weakly undominated Nash equilibrium driving to alternatives that are Pareto dom-
inated. In the case of any quota di¤erent to n; when all agents are against the proposal, all
agents voting in favor of the proposal is a weakly undominated Nash equilibrium. However,
having all agents voting against the proposal produces an alternative where all of them are
strictly better o¤. In the case of quota n, when all agents prefer the proposal, all agents
voting against the proposal is a weakly undominated Nash equilibrium. However, all agents
are strictly better o¤ voting in favor of the proposal.

4 Having independent and conformist agents

In the previous section, we have shown that if all agents are conformists and for any required
quota to accept the proposal, there are undominated Nash equilibria where the decision is
not the socially optimal. By contrast, it is well known that if all agents are independents
and for any quota, the unique weakly undominated Nash equilibrium is all agents telling
their true opinion and the socially optimal decision obtains. Then, it is almost imperative to
question whether there is a number of independents which makes that the decision adopted
in every equilibrium coincide with the socially optimal one. There are some examples in real
life, in which the regulator makes the presence of independent agents explicit and essential
when taking decisions.9

We now present a collection of theorems where we show what is the number of indepen-
dent agents, d, guaranteeing that the socially optimal decision is obtained in any weakly
undominated Nash equilibrium for any number of agents, any minimal conformity, and any

7Note that for any pro�le of preferences where not all the agents are in favor of the proposal, the weakly
undominated Nash equilibrium yield to the socially optimal decision.

8This negative result also holds if we consider di¤erent committee structures for each of the agents and/or
more general committee structures in which the identity of the other agents play a role.

9In the Introduction we mention the Dodd-Frank law and how the presence of independent agents is made
explicit in some institutions.
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quota. We will assume that independent agents vote according to their true opinion and
that conformist agents know the number of independents and the orientation of their vote.
In Theorem 2, we provide the number of independent agents for q = 1, q = n, and any

minimal conformity, h 2 f2; ::; ng. The strategy of proof is the following. For q = 1, the only
situation where the socially optimal decision may be not obtained in equilibrium is when all
agents are against the proposal. If the number of independents agents is h � 1, by telling
the truth any agent conforms to h agents and the truth is a weakly dominant strategy. If
n � (h � 1) is lower than h � 1 and the number of independents is n � (h � 1), by telling
the truth any agent conforms to h agents for some voting con�gurations and not telling the
truth would never allow to conform to h agents. Similarly reasoning applies for q = n.

Theorem 2 (q 2 f1;ng). Given any W = (W 1
D;W

h
NnD), for q 2 f1; ng, any undominated

Nash equilibrium yields to the socially optimal decision if

d = minfh� 1; n+ 1� hg:

Proof. See Appendix A.

In Theorem 3, we provide the number of independent agents for q 2 f2; ::; n � 1g, and
any minimal conformity, h 2 f2; ::; ng. The strategy of proof is similar to that of the proof
of Theorem 2. The idea is to obtain the number of independents for the truth to be a weakly
dominant strategy. But, in this case, that number depends also on the quota.

Theorem 3 (q 2f2; ::;n� 1g). Given any W = (W 1
D;W

h
NnD), for q 2 f2; :::; n � 1g, any

undominated Nash equilibrium yields to the socially optimal decision if

d = minfn� 1;maxfq � 1; n� qg+minfh� 1; n+ 1� hgg:

Proof. See Appendix A.

As a Corollary of the above Theorems, we obtain that for any number of voters and
any minimal conformity, the number of independent agents is the same for any two quotas
symmetric with respect to n+1

2
. Before state the corollary, we present an example.

Example 6 In the following table, we provide the number of independent agents guarantee-
ing the socially optimal decision when n = 12 and the minimal conformity is either h = 9;
or h = 11 or h = 12: Take, for instance, h = 11: Then for q = f1; 12g, we have that
minfh�1; n+1�hg = minf10; 2g and d = 2. For q = f5; 8g, we have that

��q � �n+1
2

��� = 1:5,
minfn� 1;maxfq� 1; n� qg+ minfh� 1; n+ 1� hgg = minf11;maxf4; 7g+minf10; 2g =
minf11; 9g and d = 9.
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q=h h = 9 h = 11 h = 12
q = f1; 12g 4 2 1
q = f6; 7g 10 8 7
q = f5; 8g 11 9 8
q = f4; 9g 11 10 9
q = f3; 10g 11 11 10
q = f2; 11g 11 11 11

Corollary 1. For any n, any h 2 [2; n], and any q < q0 such that q0 = n � q + 1, we
have that the number of independent agents guaranteeing the socially optimal decision under
q and q0 is the same.
Proof. See Appendix A.

From the above Theorems, Corollary 2 states that for any number of voters and any
quota, the number of independent agents is the same for any minimal conformity symmetric
with respect to n

2
+ 1. We also present an example of this.

Example 7 In the following table, we provide the number of independent agents guarantee-
ing the socially optimal decision when n = 12 and any quota from 7 to 12: Take, for instance,
q = 7: Then for h = f2; 12g, we have that

��h� �n
2
+ 1
��� = 5, minfn� 1;maxfq� 1; n� qg+

minfh� 1; n+ 1� hgg = minf11;maxf6; 5g+minf1; 11g = minf11; 7g and d = 7.

qnh Minimal Conformity,h
Quota q 2 3 4 5 6 7 8 9 10 11 12
q = 7 7 8 9 10 11 11 11 10 9 8 7
q = 8 8 9 10 11 11 11 11 11 10 9 8
q = 9 9 10 11 11 11 11 11 11 11 10 9
q = 10 10 11 11 11 11 11 11 11 11 11 10
q = 11 11 11 11 11 11 11 11 11 11 11 11
q = 12 1 2 3 4 5 6 5 4 3 2 1

Corollary 2. For any n, any q 2 [1; n], and any h < h0 such that h0 = n + 2 � h, we
have that the number of independent agents guaranteeing the socially optimal decision under
any q is the same for h and h0.
Proof. See Appendix A.

The requirement of independent agents for each quota yielding to the socially optimal
decision, allows us to provide a complete order of the quotas. Since �nding independent
agents may not be an easy task, we establish that a quota is better than other if it is less
demanding in terms of independent agents. It turns out that the unanimous quota (either

12



to accept or to reject the proposal) is the less demanding one. Interestingly, after unanimity,
the less demanding quota is the majority.

From the above two Corollaries, we know that for any h; quotas are symmetric around
n+1
2
. In the following example, we make explicit these ideas for the case in which there are

12 agents.

Example 8 Suppose that there are 12 agents. From the above two corollaries, w.l.o.g., we
restrict to q = f1; :::; 6g and h = f2; :::; 7g. We provide a picture in which we represent for
each quota the number of independent agents guaranteeing the socially optimal decision in
terms of the minimal conformity. Each quota appears in the picture with a di¤erent dotted
line. For any h, the best quota is q = 1. If h = 2, the order is strict. If h = 6, any
q = f2; 3; 4; 5; 6g requires the same number of independent agents. And so on and so forth.

Figure 1: Representation of the number of independent agents for each q = f1; ::; 6g
relative to the minimal conformity h = f2; :::; 7g.

Remark 1 For any number of agents, n, and any h = f2; ::; ng, there is a complete ordering
of the quotas in terms of the number of independent agents guaranteeing the socially optimal
decision. Moreover, unanimous quotas are the less demanding. For any q; q0 2 f2; ::; n� 1g ,
q is weakly less demanding than q0 if and only if

��q � n+1
2

�� � ��q0 � n+1
2

��.
5 Sequential Voting

In this section, we study situations in which agents take turns when voting. Suppose that
there is a �xed order of the agents indicating the sequence in which the agents vote and,
when voting, each agent knows what preceding agents have voted for.
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Let O be the set of all linear orderings of the agents and o 2 O be a particular ordering.
In what follows, without loss of generality, we suppose that o = f1; 2; :::; ng, that is, agent 1
plays in the �rst stage, agent 2 plays in the second stage, and so on and so forth. Note that
for any other ordering of the agents, say o0 2 O, we can rename the agents and call agent 1
to the �rst agent in o0, agent 2 to the second agent in o0, etc.
Since agents vote following an ordering, each agent�s message space consists of an action

at each node in the stage that she plays. For instance, for any i 2 N , Mi = f0; 1g2
i�1
. In

order to introduce conformity in this set-up, we de�ne the following function � : �i2NMi !
f0; 1gn, mapping each pro�le of messages, m 2 �i2NMi, to the pro�le of actions, � (m) =
(�1 (m) ; :::; �n (m)), where for each agent i, �i is the action in mi corresponding to the node
in which agent i plays given m. We �rst de�ne when two agents conform in this context.

De�nition 8 For any m 2 �i2NMj, and any i; j 2 N , we say that agent i conforms to
agent j if and only if �i (m) = �j (m).

For any R 2 Rh and any sequential game (M; q), let Gf1;::;ng = ((M; q); R) be the game
played by agents 1 to n. We now introduce the equilibrium concept that we use throughout
this section.

De�nition 9 For any h; and any q 2 f1; :::; ng, m 2 M is a subgame perfect Nash
equilibrium of Gf1;::;ng at R 2 Rh if for all i 2 N; m is a Nash equilibrium of every
subgame of Gf1;::;ng.

We refer to Gf1;::;ng;q = ((M; q); R) as a game for agents 1 to n, quota q, and R 2 Rh.
Given game Gf1;::;ng;q = ((M; q); R), SPN(Gf1;::;ng;q) is the set of subgame perfect Nash
equilibria of (M; q) at R.
We now de�ne when an agent is pivotal or not pivotal. These remain valid for any type

of the agent t 2 f0; 1gn at any stage of the game Gf1;::;ng;q.

De�nition 10 Agent i 2 N is pivotal relative to m�i 2 M�i and q if there exist mi;m
0
i 2

Mi such that q (mi;m�i) 6= q (m0
i;m�i). Agent i 2 N is not pivotal relative to m�i 2 M�i

and q if for any mi;m
0
i 2Mi we have that q (mi;m�i) = q (m

0
i;m�i).

In the following three theorems, we show that for any q, the socially optimal decision
obtains in subgame perfect Nash Equilibrium at any (M; q). In Theorems 4 and 5, we o¤er
a direct proof for the cases of q = 1 and q = n, respectively.
In each proof, we �rst analyze all preference pro�les for which the socially optimal decision

is to reject the proposal and then those for which the proposal is accepted. In both cases,
we solve the game from stage n; where agent n votes, to stage 1. In each stage, we analyze
the equilibrium strategies for each of the voters, who vote taking into account the actions of
the voters who have voted before them. In equilibrium, each agent votes according to her
true opinion when she is pivotal relative to what the rest of agents have previously voted
for, and according to her minimal conformity when she is not pivotal. This completes the
proof.
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Theorem 4. Let q = 1. For any number of agents n, the socially optimal decision obtains
in any subgame perfect Nash Equilibrium on Rh.
Proof. See Appendix B.

Theorem 5. Let q = n. For any number of agents n, the socially optimal decision obtains
in any subgame perfect Nash Equilibrium on Rh.
Proof. See Appendix B.

Finally, Theorem 6 applies for quotas where q 2 f2; ::; n� 1g. We introduce some addi-
tional notation. We denote as Gf1;:::;kg;q =

�
�ki=1Mi; q; fRigki=1

�
a game consisting of agents

1 to k and quota q, where Ri 2 Rh
i for any i = f1; :::; kg. The strategy of proof is to show

that given the equilibrium strategy of the last agent in the sequence, the reduced game is
either Gf1;:::;n�1g;q if tn = 0 or Gf1;:::;n�1g;q�1 if tn = 1. First, we describe the equilibrium
strategies of this last agent in two claims: a and b. Claim a applies when tn = 0 and Claim
b when tn = 1. Note that the new last agent in the reduced game is agent n� 1. Then, we
show that applying iteratively this line of reasoning, we eventually end up in a game such
that either Gf1;:::;kg;q where q = 1 or Gf1;:::;kg;q where q = k. Once we obtain one of these
two reduced games, the proof �nish applying either Theorem 4 when Gf1;:::;kg;q and q = 1 or
Theorem 5 when Gf1;:::;kg;q and q = k.

Theorem 6 Let q 2 f2; ::; n� 1g. For any number of agents n, the socially optimal decision
obtains in any subgame perfect Nash Equilibrium on Rh:
Proof. See Appendix B.

Note that the socially optimal decision obtains regardless of the minimal conformity, h.
This implies that, under sequential voting, it does not depend on the number of independent
agents as it is the case under simultaneous voting. In both models, conformity is present.
Whereas under simultaneous voting, those equilibria yielding a not socially optimal decision
are generated by the presence of conformity, under sequential voting, conformity does not
a¤ect the decision since agents vote sel�shly in any situation they have the opportunity to
do so. That is, when agents play strategies that are SPNE, they behave as if they were
pivotal at nodes that are out of the equilibrium path.
Finally, solving the model sequentially, we �nd that the conformity phenomenon does not

a¤ect the results since we only obtain equilibria where the decision is the socially optimal
one. This is due to agents, under sequential voting, reach some nodes in which they can be
pivotal and that are unreachable when solving the game simultaneously. It could be said
then that agents are pivotal "more times" when voting sequentially rather than simultane-
ously. This does not imply that conformity is not present, instead it only applies when the
decision is already set. Therefore, a sequential voting model as, for instance, the one used in
athletics competitions, can be an option to consider even with the presence of the conformity
phenomenon and under an open ballot system, as it does derive the socially optimal decision.
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6 Concluding Remarks

In this section, we compare secret versus open ballot in terms of conformity. In any demo-
cratic system, after elections are held, the support obtained by each option is made public.
Therefore, the di¤erence between open and secret ballot is that in the former, what each
agent has voted for is made public whereas in the latter it is not. If agents only pay attention
to the number of people they want to conform to, assuming open or secret ballot does not
provide di¤erent results. Admittedly, when agents pay attention also to the identity of the
people they want to conform to, assuming open or secret ballot makes a di¤erence.
Finally, a word about the presence of independent agents when taking decisions. We

have shown that when voters only take into account the number of agents to conform to, in
order to mitigate the negative e¤ect of conformity, introducing independent agents help. It
is the case that in the corporate world, a great majority of companies normally include in
their committees independent agents that contribute with an external and unbiased opinion
to the decision making process. We ignore what motivates the companies to do so, however
we do know that this helps in obtaining the true choice.

Appendix A

This appendix includes the proofs developed in Section 4. It includes the proof of Theorem
2 and Theorem 3. Additionally, proofs of Corollary 1 and Corollary 2 are also included.

Theorem 2. Given any W = (W 1
D;W

h
NnD), for q 2 f1; ng, any undominated Nash equilib-

rium yields to the socially optimal decision if

d = minfh� 1; n+ 1� hg:
Proof. We distinguish two cases.
Case 1. Let W = (W 1

D;W
h
NnD) and q = 1. From Case 1 in Theorem 1, if t 6= t0, the socially

optimal decision is obtained in equilibrium. Therefore, the only case that is left is when
t = t0. We now show that if d = minfh� 1; n+ 1� hg, the socially optimal decision is also
obtained in equilibrium. To do that, we show that m1

i is weakly dominated by m
0
i for any

i 2 NnD. By assumption, any conformist agent knows that there are d independent agents
that vote for 0. We distinguish two cases:
Case 1a. n + 1 � h > h � 1. Let d = h � 1. Take any agent i 2 NnD. For any
m = (m1

S;m
0
NnS) 2 UN((M; q); R0;W ) we have that D � NnS. Since n� s � h� 1 and by

conformity of agent i 2 S relative to W h
i , we have that q(m

0
i ;m

1
Snfig;m

0
NnS)R

0
i q(m

1
S;m

0
NnS).

By sel�shness, q(m0
i ;m

0
�i)P

0
i q(m

1
i ;m

0
�i) andm

1
i is weakly dominated bym

0
i for any i 2 NnD:

Therefore, the result follows.
Finally, if d < h� 1 we show that there exists m 2 UN((M; q); R0;W ) such that q(m) = 1.
Let m = (m1

S;m
0
NnS) where S = NnD and NnS = D. Take i 2 S, a conformist agent. By

conformity relative to W h
i and since NnS [ fig =2 W h

i , q(m
1
S;m

0
NnS)P

0
i q(m

0
i ;m

1
Snfig;m

0
NnS).

Case 1b. n + 1 � h � h � 1. Let d = n + 1 � h. Take any agent i 2 NnD. For any
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m = (m1
S;m

0
NnS) 2 UN((M; q); R0;W ) we have that D � NnS. Since n � s � n + 1 � h

or equivalently, s � h � 1 and by conformity of agent i 2 S relative to W h
i , we have

that q(m0
i ;m

1
Snfig;m

0
NnS)R

0
i q(m

1
S;m

0
NnS). By sel�shness, q(m

0
i ;m

0
�i)P

0
i q(m

1
i ;m

0
�i) and m

1
i is

weakly dominated by m0
i for any i 2 NnD: Therefore, the result follows.

Finally, if d < n + 1 � h � h � 1, we show that there exists m 2 UN((M; q); R0;W )
such that q(m) = 1. Let m = (m1

S;m
0
NnS) where S = NnD and NnS = D. Take

i 2 S, a conformist agent. By conformity relative to W h
i and since NnS [ fig =2 W h

i ,
q(m1

S;m
0
NnS)P

0
i q(m

0
i ;m

1
Snfig;m

0
NnS).

Case 2. Let W = (W 1
D;W

h
NnD) and q = n. From Case 2 in Theorem 1, if t 6= t1, the

socially optimal decision is obtained in equilibrium. Therefore, the only case that is left is
when t = t1. To do that, we show that m0

i is weakly dominated by m
1
i for any i 2 NnD.

By assumption, any conformist agent knows that there are d independent agents that vote
for 1. We now show that if d = minfh� 1; n + 1� hg, the socially optimal decision is also
obtained in equilibrium. We distinguish two cases:
Case 2a. n + 1 � h > h � 1. Let d = h � 1. Take any agent i 2 NnD. For any
m = (m1

S;m
0
NnS) 2 UN((M; q); R1;W ) we have that D � S. Since s � h� 1 and by confor-

mity of agent i 2 NnS relative to W h
i , we have that q(m

1
i ;m

1
S;m

0
NnS[fig)R

1
i q(m

1
S;m

0
�S). By

sel�shness, q(m1
i ;m

1
�i)P

1
i q(m

0
i ;m

1
�i) and m

0
i is weakly dominated by m

1
i for any i 2 NnD:

Therefore, the result follows.
Finally, if d < h� 1 we show that there exists m 2 UN((M; q); R1;W ) such that q(m) = 0.
Let m = (m1

S;m
0
NnS) where S = NnD and NnS = D. Take i 2 S, a conformist agent. By

conformity relative to W h
i and since NnS [ fig =2 W h

i , q(m
1
S;m

0
NnS)P

1
i q(m

0
i ;m

1
Snfig;m

0
NnS).

Case 2b. n + 1 � h � h � 1. Let then d = n + 1 � h. Take any agent i 2 NnD. For
any m = (m1

S;m
0
NnS) 2 UN((M; q); R1;W ) we have that D � S. Since s � n + 1 � h or

equivalently, n � s � h � 1 and by conformity of agent i 2 NnS relative to W h
i , we have

that q(m1
i ;m

1
S;m

0
NnS[fig)R

1
i q(m

1
S;m

0
NnS). By sel�shness, q(m

1
i ;m

1
�i)P

1
i q(m

0
i ;m

1
�i) and m

0
i is

weakly dominated by m1
i for any i 2 NnD: Therefore, the result follows.

Finally, if d < n + 1 � h � h � 1, we show that there exists m 2 UN((M; q); R1;W )
such that q(m) = 0. Let m = (m1

S;m
0
NnS) where S = D and NnS = NnD. Take

i 2 NnS, a conformist agent. By conformity relative to W h
i and since S [ fig =2 W h

i ,
q(m1

S;m
0
NnS)P

1
i q(m

1
i ;m

1
S;m

0
NnS[fig).

In Theorem 3, we show the number of independent agents d guaranteeing the socially
optimal decision when the quota is q 2 f2; ::; n� 1g.

Theorem 3 (q 2f2; ::; n� 1g). Given any W = (W 1
D;W

h
NnD), for q 2 f2; :::; n � 1g, any

undominated Nash equilibrium yields to the socially optimal decision if

d = minfn� 1;maxfq � 1; n� qg+minfh� 1; n+ 1� hgg:
Proof. Let W = (W 1

D;W
h
NnD). We now show that if d = minfn � 1;maxfq � 1; n � qg +

minfh � 1; n + 1 � hgg, the socially optimal decision is obtained in equilibrium for any
q 2 f2; ::; n� 1g and any t 2 f0; 1gn. To do that, we show that for any ti, mi 6= ti is weakly
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dominated by mti
i for any i 2 NnD. By assumption, any conformist agent knows that there

are d independent agents, knows their opinion and also that they are telling the truth. For
clarifying purposes, we divide the proof in four cases depending on the quota.
Case 1. q 2 f2; :::;

�
n+1
2

�
� 1g. Then, q � 1 < n� q. We distinguish two cases:

Case 1.1. q� 1 � minfh� 1; n+1� hg. Then, q � h. Let d = n� 1, and t = (t1C ; t0NnC) 2
f0; 1gn. Let agent i be the only conformist agent.
If c < q � 1, we have that q(m1

i ;m�i) = q(m
0
i ;m�i) = 0. Since c < q � 1 � h � 1 and by

conformity relative to W h
i , q(m

0
i ;m�i)R

ti
i q(m

1
i ;m�i).

If c = q� 1 and ti = 1 or c = q and ti = 0, we have that q(m1
i ;m�i) = q(m

0
i ;m�i) = 0. Since

c = q � 1 � h� 1 and by conformity relative to W h
i , q(m

0
i ;m�i)R

ti
i q(m

1
i ;m�i).

If c = q � 1 and ti = 0, by sel�shness 0 = q(m0
i ;m

1
C ;m

0
NnC[fig)P

0
i q(m

1
i ;m

1
C ;m

0
NnC[fig) = 1.

If c = q and ti = 1, by sel�shness q(m1
i ;m

1
Cnfig;m

0
NnC)P

1
i q(m

0
i ;m

1
Cnfig;m

0
NnC).

If c > q, we have that q(m1
i ;m�i) = q(m

0
i ;m�i) = 1. If c < h, by conformity relative to W h

i ,
q(m0

i ;m�i)R
ti
i q(m

1
i ;m�i). If c � h , by conformity relative to W h

i , q(m
1
i ;m�i)I

ti
i q(m

0
i ;m�i).

Finally, suppose that d < n�1: Let d = n�2 and suppose w.l.o.g. that 1; 2 2 NnD. Let also
t = (t1C ; t

0
NnC) be such that c = q, and t1 = t2 = 1. For m = (m0

1;m
0
2;m�f1;2g) such that for

any k 2 D, mk = tk, and i; j 2 f1; 2g, we have that q(m0
i ;m

0
j ;m�fi;jg)R

1
i q(m

1
i ;m

0
j ;m�fi;jg).

Case 1.2. q � 1 > minfh� 1; n+ 1� hg. We distinguish two subcases:
Subcase 1.2.a. h � 1 < n + 1 � h. Then, h � n

2
and q > h: Let d = n � 1 � (q � h) and

t = (t1C ; t
0
NnC) 2 f0; 1gn. Let n� d = 1 + q � h be the group of conformist agents.

If c < q, there are at most q� 1 independent agents voting for 1, and then there are at least
h � 1 independent agents voting for 0. Then, either by sel�shness or by conformity, it is a
weakly dominant strategy to vote for 0 for any conformist agent such that ti = 0.
If c � q, there are at least h� 1 independent agents voting for 1. Then, either by sel�shness
or by conformity, it is a weakly dominant strategy to vote for 1 for any conformist agent
such that ti = 1.
Finally, suppose a case where the number of independent agents is lower than d: Let
d = n � 2 � (q � h) and suppose t = (t1C ; t0NnC) is such that for h � 2 independent agents
ti = 1, for n � q independent agents tj = 0 and all conformist agents are such that tk = 1.
Note that the socially optimal decision is 1. Let m be such that all independent agents
tell the truth, and the conformist agents all report mk = 0. Since h � n

2
, by conformity,

0 = q(m0
k;m�k)P

1
k q(m

1
k;m�k) = 0.

Subcase 1.2.b. h� 1 � n+ 1� h. Then, h > n
2
and q < h. Let d = n� q + n� h+ 1 and

t = (t1C ; t
0
NnC) 2 f0; 1gn. Let n� d = h� n+ q � 1 be the group of conformist agents.

If c < q, there are at most q � 1 < h � 1 independent agents voting for 1. Then, either by
sel�shness or by conformity, it is a weakly dominant strategy to vote for 0 for any conformist
agent such that ti = 0.
If c � q, there are at least c� (n� d) � n+1� h independent agents voting for 1, and then
there are strictly less than h� 1 independent agents voting for 0. Then, either by sel�shness
or by conformity, it is a weakly dominant strategy to vote for 1 for any conformist agent
such that ti = 1.
Finally, suppose a case where the number of independent agents is lower than d: Let
d = n�q+n�h and suppose t = (t1C ; t0NnC) is such that for n�h independent agents ti = 1,
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for n � q independent agents tj = 0 and all conformist agents are such that tk = 1. Note
that the socially optimal decision is 1. Let m be such that all independent agents tell the
truth, and the conformist agents all report mk = 0. Then, since h > n

2
and by conformity,

0 = q(m0
k;m�k)P

1
k q(m

1
k;m�k) = 0.

Case 2. q 2 f
�
n+1
2

�
+ 1; :::; n� 1g. Then, q � 1 > n� q. We distinguish two cases:

Case 2.1. n � q � minfh � 1; n + 1 � hg. Then, n � q � h � 1 � q:Let d = n � 1 and
t = (t1C ; t

0
NnC) 2 f0; 1gn. Let agent i be the only conformist agent.

If c < q � 1; we have that q(m1
i ;m�i) = q(m

0
i ;m�i) = 0:

If c = q � 1 and ti = 1 or c = q and ti = 0, since q � 1 > n � q and by conformity relative
to W h

i , q(m
1
i ;m�i)R

ti
i q(m

0
i ;m�i).

If c = q � 1 and ti = 0, by sel�shness 0 = q(m0
i ;m

1
C ;m

0
NnC[fig)P

0
i q(m

1
i ;m

1
C ;m

0
NnC[fig) = 1.

If c = q and ti = 1, by sel�shness q(m1
i ;m

1
Cnfig;m

0
NnC)P

1
i q(m

0
i ;m

1
Cnfig;m

0
NnC).

If c > q, we have that q(m1
i ;m�i) = q(m

0
i ;m�i) = 1. If c < h; at least q independent agents

vote for 1 and at most h � 1 agents vote for 1. Since h � n + 1 � q and h > q > n � q;
then q(m0

i ;m�i)I
ti
i q(m

1
i ;m�i) as either voting for 0 or for 1, any conformist agents does not

conform to h agents.
If q < c < h, at least q independent agents are voting for 1 and at most h � 1 agents are
voting for 1. As h � n + 1 � q and h > q > n � q then q(m0

i ;m�i)I
ti
i q(m

1
i ;m�i) as either

voting for 0 or for 1, any conformist agents does not conform to h agents.
If q � h � c, it could be either q � h < c or q < h � c: If q � h < c; at least h independent
agents are voting for 1: If q < h � c; at least h � 1 independent agents are voting for 1:
Then, by conformity q(m1

i ;m�i)R
ti
i q(m

0
i ;m�i).

Finally, suppose that d < n � 1: Let d = n � 2 and suppose w.l.o.g. that 1; 2 2 NnD. Let
also t = (t1C ; t

0
NnC) be such that c = q � 1, and t1 = t2 = 0. For m = (m1

1;m
1
2;m�f1;2g)

such that for any k 2 D, mk = tk, and i; j 2 f1; 2g, since n � 2 � (q � 1) = n � q � 1 and
q � 1 > n� q; we have that q(m1

i ;m
1
j ;m�fi;jg)R

0
i q(m

0
i ;m

1
j ;m�fi;jg).

Case 2.2. n� q > minfh� 1; n+ 1� hg. We distinguish two subcases:
Subcase 2.2.a. h � 1 < n + 1 � h. Then, h � n

2
and q > h: Let d = q � 1 + h � 1 and

t = (t1C ; t
0
NnC) 2 f0; 1gn. Let n� d = n� q + 1� h+ 1 be the group of conformist agents.

If c < q, there are at most q� 1 independent agents voting for 1 and there are at least h� 1
independent agents voting for 0: Then, either by sel�shness or by conformity, it is a weakly
dominant strategy to vote for 0 for a conformist agent such that ti = 0. For a conformist
agent such that ti = 1; they vote for 1 when the independent agents voting for 1 are equal
or greater to h� 1. Otherwise, by conformity, they vote for 0: For the particular case where
q � 1 independent agents vote for 1 and h� 1 independent agents vote for 0; since q > h all
conformist agents such that ti = 0 will vote for 0 and all conformist agents such that ti = 1
will vote for 1 as q > h either.
If c � q, there are at least h� 1 independent agents voting for 1. Then, either by sel�shness
or by conformity, it is a weakly dominant strategy to vote for 1 for any conformist agent
such that ti = 1.
Finally, suppose a case where the number of independent agents is lower than d: Let
d = q � 1 + h � 2 and suppose t = (t1C ; t

0
NnC) is such that for h � 1 independent agents
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ti = 0, for q �2 independent agents tj = 1 and all conformist agents are such that tk = 0.
Note that the socially optimal decision is 0. Let m be such that all independent agents tell
the truth, and the conformist agents all report mk = 1. Then, since h � n

2
and at least q+1

are voting for 1; by conformity, q(m1
k;m�k)P

1
k q(m

0
k;m�k).

Subcase 2.2.b. h� 1 � n+ 1� h. Note that h > n
2
and h� 1 > q. Let d = n+ q � h and

t = (t1C ; t
0
NnC) 2 f0; 1gn. Let n� d = h� q be the group of conformist agents.

If c < q, there are at most q � 1 independent agents voting for 1: If all conformist agents
vote for 1, then at most h� 1 agents vote for 1: Then, either by sel�shness or by conformity,
it is a weakly dominant strategy to vote for 0 for any conformist agent such that ti = 0.
If c � q, there are strictly more than n+ 1� h independent agents voting for 1 and strictly
less than h�1 independent agents voting for 0: Then, either by sel�shness or by conformity,
it is a weakly dominant strategy to vote for 1 for any conformist agent such that ti = 1.
Finally, suppose a case where the number of independent agents is lower than d: Let
d = n + q � h � 1 and suppose t = (t1C ; t

0
NnC) is such that for q � 1 independent agents

ti = 1, for n � h independent agents tj = 0 and all conformist agents are such that tk = 0.
Note that the socially optimal decision is 0. Letm be such that all independent agents tell the
truth, and the conformist agents all reportmk = 1: Then, since q�1+n�[n+ q � h� 1] = h
and by conformity, q(m1

k;m�k)P
0
k q(m

0
k;m�k).

Case 3. n even and q 2 fn
2
; n
2
+ 1g. Then, n� q > q � 1. We distinguish two cases:

Case 3.1. q � 1 � minfh� 1; n+ 1� hg. Then, q � h. Let d = n� 1 and t = (t1C ; t0NnC) 2
f0; 1gn. Let agent i be the only conformist agent.
If c < q � 1, q(m1

i ;m�i) = q(m
0
i ;m�i) = 0:

If c = q � 1 and ti = 1, by conformity relative to W h
i and q � h � q + 1, we have that

q(m0
i ;m�i)R

ti
i q(m

1
i ;m�i):

If c = q � 1 and ti = 0, by sel�shness q(m0
i ;m

1
C ;m

0
NnC[fig)P

0
i q(m

1
i ;m

1
C ;m

0
NnC[fig).

If c = q and ti = 0, by conformity relative to W h
i , and q � h � q + 1, we have that

q(m0
i ;m�i)R

ti
i q(m

1
i ;m�i):

If c = q and ti = 1, by sel�shness q(m1
i ;m

1
Cnfig;m

0
NnC)P

1
i q(m

0
i ;m

1
Cnfig;m

0
NnC).

If c > q, q(m1
i ;m�i) = q(m

0
i ;m�i) = 1.

If q < c < h, at least q independent agents are saying 1 and at most h� 1 agents are saying
1. Since q � h � q + 1;by conformity we have that q(m0

i ;m�i)R
ti
i q(m

1
i ;m�i).

If q � h � c, it could be either q � h < c or q < h � c: If q � h < c; at least h independent
agents are voting for 1: If q < h � c; at least h � 1 independent agents are voting for 1:
Then, by conformity q(m1

i ;m�i)R
ti
i q(m

0
i ;m�i).

Finally, suppose that d < n � 1: Let d = n � 2 and suppose w.l.o.g. that 1; 2 2 NnD. Let
also t = (t1C ; t

0
NnC) be such that c = q � 1, and t1 = t2 = 1. For m = (m0

1;m
0
2;m�f1;2g)

such that for any k 2 D, mk = tk, and i; j 2 f1; 2g, since q � 1 < n � q we have that
q(m0

i ;m
0
j ;m�fi;jg)R

1
i q(m

1
i ;m

0
j ;m�fi;jg).

Case 3.2. q � 1 > minfh� 1; n+ 1� hg. We distinguish two subcases:
Subcase 3.2.a. h � 1 < n + 1 � h. Then, h � n

2
and q > h: Let d = n � 1 � (q � h) and

t = (t1C ; t
0
NnC) 2 f0; 1gn. Let n� d = q � h+ 1 be the group of conformist agents.

If c < q, there are at most q� 1 independent agents voting for 1, and there are at least h� 1
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independent agents voting for 0. Then, either by sel�shness or by conformity, it is a weakly
dominant strategy to vote for 0 for any conformist agent such that ti = 0. For a conformist
agent such that ti = 1; they vote for 1 when the independent agents voting for 1 are enough
to conform to at least h � 1. Otherwise, by conformity, they vote for 0: For the particular
case where q�1 independent agents vote for 1 and h�1 independent agents vote for 0; since
q > h all conformist agents such that ti = 0 will vote for 0 and all conformist agents such
that ti = 1 will vote for 1 as q > h:
If c � q, there are at least h� 1 independent agents voting for 1. Then, either by sel�shness
or by conformity, it is a weakly dominant strategy to vote for 1 for any conformist agent
such that ti = 1.
Finally, suppose a case where the number of independent agents is lower than d: Let d =
n� 2� (q � h) and suppose t = (t1C ; t0NnC) is such that for h� 2 independent agents ti = 1,
for n � q independent agents tj = 0 and all conformist agents are such that tk = 1. Note
that the socially optimal decision is 1. Let m be such that all independent agents tell the
truth, and the conformist agents all report mk = 0. Then, since h � n

2
and by conformity,

0 = q(m0
k;m�k)P

1
k q(m

1
k;m�k) = 0.

Subcase 3.2.b. h � 1 � n + 1 � h. Then, h > n
2
. Let d = n � q + n � h + 1, and

t = (t1C ; t
0
NnC) 2 f0; 1gn. Let n� d = q � n+ h� 1 be the group of conformist agents.

If c < q, there are at most q� 1 independent agents voting for 1. Then, either by sel�shness
or by conformity, it is a weakly dominant strategy to vote for 0 for any conformist agent
such that ti = 0.
If c � q, there are at least n + 1 � h independent agents voting for 1, and then there are
strictly less than n � q independent agents voting for 0. Given that n � q > q � 1 and
q < h � 1, either by sel�shness or by conformity, it is a weakly dominant strategy to vote
for 0 for any conformist agent such that ti = 0.
Finally, suppose a case where the number of independent agents is lower than d: Let d =
n � q + n � h and suppose t = (t1C ; t0NnC) is such that for n � h independent agents ti = 1,
for n � q independent agents tj = 0 and all conformist agents are such that tk = 1. Note
that the socially optimal decision is 1. Let m be such that all independent agents tell the
truth, and the conformist agents all report mk = 0. Then, since h > n

2
and q < h � 1; by

conformity, 0 = q(m0
k;m�k)P

1
k q(m

1
k;m�k) = 0.

Case 4. n odd and q = n+1
2
. Then, n� q = q � 1 = n�1

2
. We distinguish two cases:

Case 4.1. n�1
2
� minfh� 1; n + 1� hg. Then, q � h. Let d = n� 1 and t = (t1C ; t0NnC) 2

f0; 1gn. Let agent i be the only conformist agent.
If c < q � 1, q(m1

i ;m�i) = q(m
0
i ;m�i) = 0:

If c = q � 1 and ti = 1, by conformity relative to W h
i and q � h � q + 1, we have that

q(m0
i ;m�i)R

ti
i q(m

1
i ;m�i):

If c = q � 1 and ti = 0, by sel�shness q(m0
i ;m

1
C ;m

0
NnC[fig)P

0
i q(m

1
i ;m

1
C ;m

0
NnC[fig).

If c = q and ti = 0, by conformity relative to W h
i , and q � h � q + 1, we have that

q(m0
i ;m�i)R

ti
i q(m

1
i ;m�i):

If c = q and ti = 1, by sel�shness q(m1
i ;m

1
Cnfig;m

0
NnC)P

1
i q(m

0
i ;m

1
Cnfig;m

0
NnC).

If c > q, q(m1
i ;m�i) = q(m

0
i ;m�i) = 1.

If q � h � c, it could be either q � h < c or q < h � c: If q � h < c; at least h independent
agents are voting for 1: If q < h � c; at least h � 1 independent agents are voting for 1:
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Then, by conformity q(m1
i ;m�i)R

ti
i q(m

0
i ;m�i).

Finally, suppose that d < n � 1: Let d = n � 2 and suppose w.l.o.g. that 1; 2 2 NnD. Let
also t = (t1C ; t

0
NnC) be such that c = q � 1, and t1 = t2 = 1. For m = (m0

1;m
0
2;m�f1;2g)

such that for any k 2 D, mk = tk, and i; j 2 f1; 2g, since q � 1 < n � q we have that
q(m0

i ;m
0
j ;m�fi;jg)R

1
i q(m

1
i ;m

0
j ;m�fi;jg).

Case 4.2. n�1
2
> minfh� 1; n+ 1� hg. We distinguish two subcases:

Subcase 4.2.a. h � 1 < n + 1 � h. Then, h � n
2
and q > h. Let d = n � 1 � (q � h) and

t = (t1C ; t
0
NnC) 2 f0; 1gn. This case is analogous to Subcase 3.2.a.

Subcase 4.2.b. h � 1 � n + 1 � h. Then h � n
2
+ 1. Let d = n � q + n � h + 1 and

t = (t1C ; t
0
NnC) 2 f0; 1gn. This case is analogous to Subcase 3.2.b.

Corollary 1. For any n, any h 2 [2; n], and any q < q0 such that q0 = n � q + 1, we
have that the number of independent agents guaranteeing the socially optimal decision of q
and q0 is the same.
Proof. Let any n, any h 2 [2; n], and q; q0 such that q0 = n � q + 1. If q = 1 and q0 = n,
from Theorem 2 d = minfh�1; n+1�hg; that does not depend on q. For any q; q0 6= f1; ng;
from Theorem 3, d = minfn� 1;maxfq � 1; n� qg+minfh� 1; n+ 1� hgg.
Let h be such that 2 � h < n

2
+ 1: Then, the number of independent agents is as follows:

d =

8>><>>:
n� 1 when 2 � q � h
n� q + h� 1 when h � q � n

2

q � 1 + h� 1 when n
2
� q � n� h+ 1

n� 1 when n� h+ 1 � q � n� 1
If q is such that 2 � q � h; we have that n�h+1 � q0 � n�1 and the number of independent
agents is n � 1 for q; q0. If q is such that h � q � n

2
; we have that n

2
< q0 < n � h + 1 and

the number of independent agents is n� q + h� 1 = q0 � 1 + h� 1 for q; q0.
Let h be such that n

2
+1 � h � n: Then, the number of independent agents is as follows:

d =

8>><>>:
n� 1 when 2 � q � n+ 2� h
n� q + n+ 1� h when n+ 2� h � q � n

2

q � 1 + n+ 1� h when n
2
< q < h� 1

n� 1 when h� 1 � q � n� 1
If q is such that 2 � q � n + 2 � h; we have that h � 1 � q0 � n � 2 and the number of
independent agents is n � 1 for q; q0. If q is such that n + 2 � h � q � n

2
; we have that

n
2
< q0 < h�1 and the number of independent agents is n� q+n+1�h = q0�1+n+1�h

for q; q0.

Corollary 2. For any n, any q 2 [1; n], and any h < h0 such that h0 = n + 2 � h, we
have that the number of independent agents guaranteeing the socially optimal decision under
any quota q is the same for h and h0.
Proof. Let any n, any q 2 [1; n], and h; h0 such that h0 = n+2�h: If q = 1 or q = n, from
Theorem 2 d = minfh� 1; n+ 1� hg: In particular:

d =

�
h� 1 when 2 � h � n

2
+ 1

n+ 1� h when n
2
+ 1 � h � n
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If h is such that 2 � h � n
2
+1 we have that n

2
+1 � h0 � n and the number of independent

agents is h� 1 = n+ 1� h0 for h; h0.
Let q be such that q 2 f2; n� 1g : According to Theorem 3, d = minfn� 1;maxfq � 1; n�
qg+minfh� 1; n+ 1� hgg.
Let q be such that 2 � q < n

2
+ 1. Then, the number of independent agents is as follows:

d =

8<:
n� q + h� 1 when 2 � h � q
n� 1 when q � h � n+ 2� q
n� q + n+ 1� h when n+ 2� q � h � n

If h is such that 2 � h � q we have that n+ 2� q � h0 � n and the number of independent
agents is n� q + h� 1 = n� q + n+ 1� h0 for h; h0.
Let q be such that n

2
+1 � q < n� 1. Then, the number of independent agents is as follows:

d =

8<:
q � 1 + h� 1 when 2 � h � n� q + 1
n� 1 when n� q + 1 � h � q + 1
q � 1 + n+ 1� h when q + 1 � h � n

If h is such that 2 � h � n�q+1 we have that q+1 � h0 � n and the number of independent
agents is q � 1 + h� 1 = q � 1 + n+ 1� h0 for h; h0.

Appendix B

This appendix includes the proofs of Theorem 4, Theorem 5 and Theorem 6 developed in
Section 4.
Theorem 4. Let q = 1. For any number of agents n, the socially optimal decision obtains
in any subgame perfect Nash Equilibrium on Rh.

Proof. Let any n be any �nite number of agents. Note that under quota q = 1, if an agent
is not pivotal relative to some m�i 2 M�i, it means that for any mi;m

0
i 2 Mi we have that

q (mi;m�i) = q (m
0
i;m�i) = 1.

Let W = (W 1
D;W

h
NnD) and R 2 Rh be such that ti = 0 for any i 2 N . Then, the so-

cially optimal decision is 0. We have to show that SPN(Gf1;::;ng;1) 6= ; and that for any
m 2 SPN(Gf1;::;ng;1), q(m) = 0. We solve the game starting at stage n where agent n votes
(remember that o = (1; ::; n)).
Since Rn is such that tn = 0, in equilibrium mn is such that for any emi 2 Mi where i < n,
by sel�shness �n (em1; ::; emn�1;mn) = 0 if agent n is pivotal relative to (em1; ::; emn�1), and by
conformity relative toW h

n , �n (em1; ::; emn�1;mn) would be 0 or 1 depending on her committee
structure if agent n is not pivotal. We proceed to stage k, that is, to agent n� 1.
Applying iteratively the same reasoning we reach stage 1.
Again since R1 is such that t1 = 0, in equilibrium m1 is such that (m2; ::;mn) as described
above, by sel�shness �1(m1; ::;mn) = 0 since agent 1 is pivotal relative to (m2; ::;mn). Note
that this is the unique situation agent 1 can �nd, as it is the �rst stage of the game in which
there is only one node.
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Note that q(m1; ::;mn) = 0. Then m as described above belongs to SPN(Gf1;::;ng;1) and
q(m) = 0.
Let W = (W 1

D;W
h
NnD) and R 2 Rh be such that for some Ri, ti = 1. Then, the so-

cially optimal decision is 1. We have to show that SPN(Gf1;::;ng;1) 6= ; and that for any
m 2 SPN(Gf1;::;ng;1), q(m) = 1. As before, we solve the game starting at stage n where
agent n votes.
Let, without loss of generality, agent k be the highest agent in order o for whom Rk is such
that tk = 1.
Since Rn is such that tn = 0, in equilibrium mn is such that for any emi 2 Mi where i < n,
by sel�shness �n (em1; ::; emn�1;mn) = 0 if agent n is pivotal relative to (em1; ::; emn�1), and by
conformity relative toW h

n , �n (em1; ::; emn�1;mn) would be 0 or 1 depending on her committee
structure if agent n is not pivotal. We proceed to stage n� 1, that is, to agent n� 1.
Applying iteratively the same reasoning we reach stage k.
Since Rk is such that tk = 1, in equilibriummk is such that for any emi 2Mi where i < k and
(mk+1; ::;mn), by sel�shness �k (em1; ::; emk�1;mk;mk+1; ::;mn) = 1 if agent k is pivotal rela-
tive to (em1; ::; emk�1;mk+1; ::;mn) and by conformity relative toW h

k , �k(em1; ::; emk�1;mk;mk+1;
::;mn) would be 0 or 1 depending on her committee structure if agent k is not pivotal. We
proceed to stage k � 1, that is, to agent k � 1.
Note that for any emi 2 Mi where i < k, q(em1; ::; emk�1;mk; ::;mn) = 1. Therefore, any
i < k is not pivotal relative to any (em1; ::; emi�1; emi+1; ::; emk�1;mk; ::;mn) for any emj 2 Mj

for j 6= i, j < k. In equilibrium, for any i < k, mi would be such that by conformity relative
to W h

i , agent i votes according to her committee structure at any node in which she plays.
Then m as described above belongs to SPN(Gf1;::;ng;1) and q(m) = 1.

Theorem 5. Let q = n. For any number of agents n, the socially optimal decision obtains
in any subgame perfect Nash Equilibrium on Rh.
Proof. Let any n be any �nite number of agents. Note that under quota q = n, if an agent
is not pivotal relative to some m�i 2 M�i, it means that for any mi;m

0
i 2 Mi we have that

q (mi;m�i) = q (m
0
i;m�i) = 0.

Let W = (W 1
D;W

h
NnD) and R 2 Rh be such that ti = 0 for any i 2 N . Then, the so-

cially optimal decision is 0. We have to show that SPN(Gf1;::;ng;n) 6= ; and that for any
m 2 SPN(Gf1;::;ng;n), q(m) = 0. We solve the game starting at stage n where agent n votes
(remember that o = (1; ::; n)).
Let, without loss of generality, agent k be the highest agent in order o for whom Rk is such
that tk = 0.
Since Rn is such that tn = 1, in equilibrium mn is such that for any emi 2 Mi where i < n,
by sel�shness �n (em1; ::; emn�1;mn) = 1 if agent n is pivotal relative to (em1; ::; emn�1), and by
conformity relative toW h

n , �n (em1; ::; emn�1;mn) would be 0 or 1 depending on her committee
structure if agent n is not pivotal. We proceed to stage n� 1, that is, to agent n� 1.
Applying iteratively the same reasoning we reach stage k.
Since Rk is such that tk = 0, in equilibrium mk is such that for any emi 2 Mi where i < k
and (mk+1; ::;mn), by sel�shness �k (em1; ::; emk�1;mk;mk+1; ::;mn) = 0 if agent k is piv-
otal relative to (em1; ::; emk�1;mk+1; ::;mn) and by conformity relative toW h

k , (�k em1; ::; emk�1;
mk;mk+1; ::;mn) would be 0 or 1 depending on her committee structure if agent k is not
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pivotal. We proceed to stage k � 1, that is, to agent k � 1.
Note that for any emi 2 Mi where i < k, q(em1; ::; emk�1;mk; ::;mn) = 0. Therefore, any
i < k is not pivotal relative to any (em1; ::; emi�1; emi+1; ::; emk�1;mk; ::;mn) for any emj 2 Mj

for j 6= i, j < k. In equilibrium, for any i < k, mi would be such that by conformity relative
to W h

i , agent i votes according to her committee structure at any node in which she plays.
Then m as described above belongs to SPN(Gf1;::;ng;n) and q(m) = 0.
Let W = (W 1

D;W
h
NnD) and R 2 Rh be such that ti = 1 for any i 2 N . Then, the so-

cially optimal decision is 1. We have to show that SPN(Gf1;::;ng;n) 6= ; and that for any
m 2 SPN(Gf1;::;ng;n), q(m) = 1. As before, we solve the game starting at stage n where
agent n votes.
Since Rn is such that tn = 1, in equilibrium mn is such that for any emi 2 Mi where i < n,
by sel�shness �n (em1; ::; emn�1;mn) = 1 if agent n is pivotal relative to (em1; ::; emn�1), and by
conformity relative toW h

n , �n (em1; ::; emn�1;mn) would be 0 or 1 depending on her committee
structure if agent n is not pivotal. We proceed to stage n� 1, that is, to agent n� 1.
Applying iteratively the same reasoning we reach stage 1.
Again since R1 is such that t1 = 1, in equilibrium m1 is such that (m2; ::;mn) as described
above, by sel�shness �1(m1; ::;mn) = 1 since agent 1 is pivotal relative to (m2; ::;mn). Note
that this is the unique situation agent 1 can �nd, as it is the �rst stage of the game in which
there is only one node.
Note that q(m1; ::;mn) = 1. Then m as described above belongs to SPN(Gf1;::;ng;n) and
q(m) = 1.

Theorem 6 Let q 2 f2; ::; n� 1g. For any number of agents n, the socially optimal decision
obtains in any subgame perfect Nash Equilibrium on Rh.

Proof. Let n be any �nite number of agents and q 2 f2; :::; n � 1g. We �rst show that for
any game with a given number of agents n and quota q 2 f2; :::; n� 1g, if agents play their
equilibrium strategies, the reduced game obtained can be either Gf1;:::;kg;q where q = k or to
Gf1;:::;kg;q where q = 1; which will depend on the preferences of the agents.
Let p 2 f1; ::; n� 1g be any �nite number of agents, q 2 f2; :::; p� 1g, and Ri 2 Rh

i for any
i 2 f1; ::; pg. We distinguish two claims depending on the preferences of agent p:
Claim a. Rp such that tp = 0. In equilibrium mp is such that for any emi 2 Mi where
i < p, by sel�shness �p (em1; :::; emp�1;mp) = 0 if agent p is pivotal relative to (em1; :::; emp�1),
and by conformity relative to W h

p , �p (em1; :::; emp�1;mp) would be 0 or 1 depending on her
committee structure if agent p is not pivotal. Then, the reduced game obtained after agent
p plays her equilibrium strategy coincides with a game with agents 1 to p� 1 and quota q,
i.e. Gf1;:::;p�1g;q.
Claim b. Rp such that tp = 1. In equilibrium mp is such that for any emi 2 Mi where
i < p, by sel�shness �p (em1; :::; emp�1;mp) = 1 if agent p is pivotal relative to (em1; ::; emp�1),
and by conformity relative to W h

p , �p (em1; :::; emp�1;mp) would be 0 or 1 depending on her
committee structure if agent p is not pivotal. Then, the reduced game obtained after agent
p plays her equilibrium strategy coincides with a game with agents 1 to p � 1 and quota
q � 1; i.e. Gf1;:::;p�1g;q�1.
We now solve the game starting at stage n where agent n votes (remember that o = (1; :::; n)).
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Let R 2 Rh. We distinguish several cases depending on the number of agents supporting
the proposal, that is ti = 1.
Case 1. R such that #fi 2 N : ti = 1g < q�1. We distinguish several situations depending
on the preferences of the agents 2 to n. If Rk is such that tk = 0 for k = fq+1; :::; ng, Claim
a applies at stages n to q + 1. Then, the reduced game obtained after agents n to q + 1
play their equilibrium strategies coincides with a game with agents 1 to q and quota q, i.e.
Gf1;:::;qg;q.
If Rq is such that tq = 0, and Rj is such that tj = 1 for exactly one agent j 2 fq + 1; :::; ng.
Claim b applies when we reach stage j, otherwise Claim a applies. Then, the reduced game
obtained after agents n to q+1 play their equilibrium strategies coincides with a game with
agents 1 to q and quota q � 1, i.e. Gf1;:::;qg;q�1. To solve stage q, we apply Claim a and
the reduced game obtained consists of a game with agents 1 to q � 1 and quota q � 1, i.e.
Gf1;:::;q�1g;q�1.
If Rq�1 is such that tq�1 = 0, and Rj, Rk are such that tj = 1 = tk for exactly two
agents, j; k 2 fq; :::; ng. Claim b applies when we reach stages j and k, otherwise Claim a
applies. Then, the reduced game obtained after agents n to q play their equilibrium strategies
coincides with a game with agents 1 to q � 1 and quota q � 2, i.e. Gf1;:::;q�1g;q�2. To solve
stage q�1, we apply Claim a and the reduced game obtained consists of a game with agents
1 to q � 2 and quota q � 2, i.e. Gf1;:::;q�2g;q�2.
By a similar reasoning, we end up in a case in which R3 is such that t3 = 0, and Rj is such
that tj = 1 for exactly q�2 agents j 2 f4; :::; ng. Claim b applies in the stages in which each
of the above q� 2 agents play, otherwise Claim a applies. Then, the reduced game obtained
after agents n to 4 play their equilibrium strategies coincides with a game with agents 1 to
3 and quota 2, i.e. Gf1;2;3g;2. To solve stage 3, we apply Claim a and the reduced game
obtained consists of a game with agents 1 and 2 and quota 2, i.e. Gf1;2g;2.
In all of the above cases, for the obtained reduced games the quota coincides with the number
of agents remaining in the game. Applying Theorem 5, the result follows.
Case 2. R such that q < #fi 2 N : ti = 1g. We distinguish several situations depending
on the preferences of the agents 2 to n. If Rk is such that tk = 1 for k = fn + 2� q; :::; ng,
Claim b applies at stages n to n+2� q. Then, the reduced game obtained after agents n to
n+ 2� q play their equilibrium strategies coincides with a game with agents 1 to n+ 1� q
and quota 1, i.e. Gf1;:::;n+1�qg;1.
If Rn+1�q is such that tn+1�q = 1, and Rj is such that tj = 0 for exactly one agent j 2
fn+ 2� q; :::; ng. Claim a applies when we reach stage j, otherwise Claim b applies. Then,
the reduced game obtained after agents n to n + 2 � q play their equilibrium strategies
coincides with a game with agents 1 to n + 1 � q and quota 2, i.e. Gf1;:::;n+1�qg;2. To solve
stage n + 1 � q, we apply Claim b and the reduced game obtained consists of a game with
agents 1 to n� q and quota 1, i.e. Gf1;:::;n�qg;1.
If Rn�q is such that tn�q = 1, and Rj, Rk are such that tj = 0 = tk for exactly two agents,
j; k 2 fn + 1 � q; :::; ng. Claim a applies when we reach stages j and k, otherwise Claim b
applies. Then, the reduced game obtained after agents n to n+ 1� q play their equilibrium
strategies coincides with a game with agents 1 to q and quota 2, i.e. Gf1;:::;n+1�qg;2. To solve
stage n�q, we apply Claim b and the reduced game obtained consists of a game with agents
1 to n� q � 1 and quota 1, i.e. Gf1;:::;n�q�1g;1.
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By a similar reasoning, we end up in a case in which R3 is such that t3 = 1, and Rj is such
that tj = 0 for exactly n� q� 1 agents j 2 f4; :::; ng. Claim a applies in the stages in which
each of the above n� q� 1 agents play, otherwise Claim b applies. Then, the reduced game
obtained after agents n to 4 play their equilibrium strategies coincides with a game with
agents 1 to 3 and quota 2, i.e. Gf1;2;3g;2. To solve stage 3, we apply Claim b and the reduced
game obtained consists of a game with agents 1 and 2 and quota 1, i.e. Gf1;2g;1.
In all of the above cases, for the obtained reduced games the quota is 1. Applying Theorem
4, the result follows.
Case 3. R such that q � 1 � #fi 2 N : ti = 1g � q: We distinguish two subcases.
Subcase 3.1. n� q < q� 1. We distinguish several situations depending on the preferences
of the agents 2 to n. If Rk is such that tk = 0 for k = fq+1; :::; ng, Claim a applies at stages
n to q + 1. Then, the reduced game obtained after agents n to q + 1 play their equilibrium
strategies coincides with a game with agents 1 to q and quota q, i.e. Gf1;:::;qg;q.
If Rr+1 is such that tr+1 = 0, and Rj is such that tj = 1 for exactly q � r agents, q > r > 1,
j 2 fr+2; :::; ng. Claim b applies in the stages in which each of the above q� r agents play,
otherwise Claim a applies. Then, the reduced game obtained after agents n to r + 2 play
their equilibrium strategies coincides with a game with agents 1 to r + 1 and quota r, i.e.
Gf1;:::;r+1g;r. To solve stage r+ 1, we apply Claim a and the reduced game obtained consists
of a game with agents 1 to r and quota r, i.e. Gf1;:::;rg;r. Theorem 5 applies.
If R2 is such that t2 = 0, and Rj is such that tj = 1 for exactly q � 1 agents, j 2 f3; :::; ng.
Claim b applies in the stages in which each of the above q � 1 agents play, otherwise Claim
a applies and the reduced game obtained consists of a game with agents 1 and 2 and quota
1, i.e. Gf1;2g;1.
Subcase 3.2. n� q > q� 1:We distinguish several situations depending on the preferences
of the agents 2 to n. If Rk is such that tk = 1 for k = fn + 2 � q; :::; ng, Claim a applies
at stages n to n+ 2� q. Then, the reduced game obtained after agents n to n+ 2� q play
their equilibrium strategies coincides with a game with agents 1 to n + 1 � q and quota 1,
i.e. Gf1;:::;n+1�qg;1.
If Rr+1 is such that tr+1 = 1, and Rj is such that tj = 0 for exactly n � q � r agents,
n � q > r > 0, j 2 fr + 2; :::; ng. Claim a applies in the stages in which each of the above
n � q � r agents play, otherwise Claim b applies. Then, the reduced game obtained after
agents n to r + 2 play their equilibrium strategies coincides with a game with agents 1 to
r + 1 and quota r, i.e. Gf1;:::;r+1g;2. To solve stage r + 1, we apply Claim b and the reduced
game obtained consists of a game with agents 1 to r and quota 1, i.e. Gf1;:::;rg;1. Theorem 4
applies.
If R3 is such that t3 = 1, and Rj is such that tj = 0 for exactly n�q�r agents, j 2 f3; :::; ng.
Claim a applies in the stages in which each of the above n � q � r agents play, otherwise
Claim b applies and the reduced game obtained consists of a game with agents 1 and 2 and
quota 1, i.e. Gf1;2g;1.
Subcase 3.3. n� q = q� 1. We distinguish several situations depending on the preferences
of the agents 2 to n.
If Rr+1 is such that tr+1 = 0, and Rj is such that tj = 1 for exactly q � r agents, q > r > 1,
j 2 fr+2; :::; ng. Claim b applies in the stages in which each of the above q� r agents play,
otherwise Claim a applies. Then, the reduced game obtained after agents n to r + 2 play
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their equilibrium strategies coincides with a game with agents 1 to r + 1 and quota r, i.e.
Gf1;:::;r+1g;r. To solve stage r+ 1, we apply Claim a and the reduced game obtained consists
of a game with agents 1 to r and quota r, i.e. Gf1;:::;rg;r. Theorem 5 applies.
If Rr+1 is such that tr+1 = 1, and Rj is such that tj = 0 for exactly n � q � r agents,
n � q > r > 0, j 2 fr + 2; :::; ng. Claim a applies in the stages in which each of the above
n � q � r agents play, otherwise Claim b applies. Then, the reduced game obtained after
agents n to r + 2 play their equilibrium strategies coincides with a game with agents 1 to
r + 1 and quota r, i.e. Gf1;:::;r+1g;2. To solve stage r + 1, we apply Claim b and the reduced
game obtained consists of a game with agents 1 to r and quota 1, i.e. Gf1;:::;rg;1. Theorem 4
applies.
Case 1, 2 and 3 covers all the cases and then the result follows.
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