

Using Multicore Processors to Parallelize 3D Point Cloud Registration with the Coarse Binary Cubes Method

Jorge L. Martínez, Antonio J. Reina, Jesús Morales, Anthony Mandow and Alfonso García-Cerezo

Departamento de Ingeniería de Sistemas y Automática
Universidad de Málaga, Spain

Outline

- 1. INTRODUCTION
- 2. THE COARSE BINARY CUBES (CBC) METHOD
- 3. CBC FOR MULTICORE PROCESSORS
- 4. EXPERIMENTAL RESULTS
- 5. CONCLUSIONS

1. INTRODUCTION

3D point cloud matching

- It is a basic operation in mobile robotics for localization and mapping.
- All scan directions and depths may contain relevant data. Farther regions have lower sampling densities.
- The search is performed around an initial odometric estimation.

Aim of this work

• To speed up 3D point cloud matching with the Coarse Binary Cubes (CBC) method

by taking advantage of widespread multicore and multithreaded processors.

THE COARSE BINARY CUBES (CBC) METHOD

Illustration of the CBC principle

Which is the spatial transformation

$$\mathbf{T} = [x_0, y_0, z_0, \alpha, \beta, \gamma]$$

to project the second scan into the first scan that maximices the number J of coincident binary cubes?

The CBC method

- Objective function J(T) can be evaluated:
 - without using any 3D data structure,
 - in O(n) time, where n is the number of points.
- The search for *T* is performed with a variation of the Nelder-Mead method:
 - Instead of a simplex of 7 vertices, $m \gg 7$ vertices are used.
 - Shrinking the set of vertices is avoided and the set is reinitialized around the initial estimation.
- CBC is a compelling alternative to Iterative Closest Points (ICP) and Normal Distribution Transform (NDT) for scene registration (Martínez et al., 2012).

Example of a match for outdoor scene

CBC FOR MULTICORE PROCESSORS

Parallelization alternatives

- 1. To broke down the computation of J into independent tasks to be evenly spread across the cores.
 - It requires semaphores to share data structures.
- 2. To evaluate different prospective solutions J(T) in parallel by replacing the p worst vertices.
 - This strategy is suitable as long as *p*<*m*.
 - Easily scalable to the available cores without rewriting code.
 - Replacement of a vertex requires 2 J evaluations: reflection and (expansion or contraction).

4. EXPERIMENTAL RESULTS

Experimental setup

Indoor scene

Point cloud: n= 505.036 points,

Maximun range: 30 m

Registration results (Linux OS,OpenMP library,m= 22)

Scene	J for the ground truth	l	p	E_s (m)	E_a (°)	Number of evaluations	J	Time (s)	g
Indoor	8857	12381	1	0.010	0.003	802	8906	21.16	1.0
			2	0.008	0.003	802	8912	10.52	2.0
			4	0.008	0.003	802	8908	5.76	3.7
			6	0.009	0.002	810	8901	7.28	2.9
Outdoor	2631	4123	1	0.031	0.005	1303	2653	14.32	1.0
			2	0.026	0.005	1300	2657	7.04	2.0
			4	0.042	0.007	1306	2642	3.76	3.8
			6	0.069	0.010	1306	2628	4.84	3.0

Processor: Intel Core Quad Q9550 (4 cores)

Registration results (Linux OS,OpenMP library,m=28)

Scene	J for the ground truth	l	p	E_s (m)	E_a (°)	Number of evaluations	J	Time (s)	g
Indoor	8857	12381	1	0.007	0.003	807	8912	14.52	1.0
			2	0.050	0.003	803	8809	7.44	2.0
			4	0.064	0.003	806	8803	6.68	2.2
			6	0.010	0.003	809	8898	5.32	2.7
			8	0.011	0.003	806	8901	4.04	3.6
			10	0.010	0.003	810	8886	6.44	2.3
Outdoor	2631	4123	1	0.052	0.010	1305	2640	9.68	1.0
			2	0.030	0.006	1302	2649	5.20	1.9
			4	0.025	0.005	1308	2656	5.02	1.9
			6	0.037	0.006	1308	2650	3.80	2.5
			8	0.056	0.010	1307	2637	2.80	3.5
			10	0.057	0.009	1314	2631	3.60	2.7

Processor: Intel Core i7 2720QM (8 virtual cores)

ICM 2013 Vicenza

5. CONCLUSIONS

Conclusions

- The efficiency of Coarse Binary Cubes (CBC) method has been improved by using multicore processors.
- Prospective solutions has been evaluated in parallel in the Nelder-Mead search by replacing the *p* worst vertices.
- A gain *g* near to the number of physical cores have been achieved without degrading registration accuracy.
- Future work:
 - Subsample the scan to reduce the number of points to be projected *n*.
 - Parallelize CBC with a Graphic Processing Unit (GPU).

Thank you!

